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Abstract: The spike glycoprotein attached to the envelope of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) binds to and exploits angiotensin-converting enzyme 2 (ACE2) as an
entry receptor to infect pulmonary epithelial cells. A subset of integrins that recognize the arginyl–
glycyl–aspartic acid (RGD) sequence in the cognate ligands has been predicted in silico to bind the
spike glycoprotein and, thereby, to be exploited for viral infection. Here, we show experimental
evidence that the β1 integrins predominantly expressed on human pulmonary epithelial cell lines and
primary mouse alveolar epithelial cells bind to this spike protein. The cellular β1 integrins support
adhesive interactions with the spike protein independently of ACE2, suggesting the possibility that
the β1 integrins may function as an alternative receptor for SARS-CoV-2, which could be targeted for
the prevention of viral infections.

Keywords: SARS-CoV-2; spike 1 protein; angiotensin-converting enzyme 2; integrin; cell adhesion;
alveolar epithelial cells

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially
fatal acute pulmonary infection, leading to a cytokine storm that culminates in acute
respiratory distress syndrome and other COVID-19 pathologies [1,2]. As of April 2021,
the SARS-CoV-2 pandemic is reported to globally comprise more than 133 million in-
fected cases, including more than 2.8 million deaths [3]. SARS-CoV-2 is a single-strand
positive-sense RNA virus that on the surface displays a large spike glycoprotein (S-protein),
which plays a critical role in the interaction between the virus and host cells at entry sites.
Angiotensin-converting enzyme 2 (ACE2), an ecto-enzyme present on the cell surface, has
been identified as a major cellular receptor for the viral spike glycoprotein, one that aids
viral entry to host alveolar epithelial cells and other epithelial and endothelial cells [4].
ACE2 is regarded as a promising therapeutic target for blocking such viral entry [4,5].
However, multiple cell-surface receptors other than ACE2 may be simultaneously involved
in the process of viral entry [6–9].

Integrins represent the largest family of cell-adhesion receptors. Composed of the
α-and β-subunits that bind to ligands on the opposing cells and in the matrix proteins,
these integrins mediate adhesive interactions across a wide range of biological processes
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including organ development, wound healing and angiogenesis, host defense and inflam-
mation, and hemostasis [10]. In both humans and mice, 18 α-subunits and eight β-subunits
have now been identified; both participate in the formation of 24 non-covalently associated
α/β heterodimer cell-surface receptors [10]. Several integrins, including the fibronectin
receptor α5β1 integrin and the vitronectin receptor αVβ3 integrin, specifically recognize a
surface-exposed arginyl–glycyl–aspartic acid (RGD) sequence in the cognate ligands in a
Mg2+ ion-dependent manner [11]. Recent investigations have revealed that the S-protein
of SARS-CoV-2, but not other coronaviruses such as SARS-CoV and MERS-CoV, contains a
surface-exposed RGD sequence [12–14]. This component can thereby predict the binding
of S-protein to the cellular integrins, which would facilitate the viral entry of SARS-CoV-2.
Targeting the integrin-binding RGD sequence in the S-protein could be used for blocking
SARS-CoV-2 infections [6,15]. Here, we set forth experimental evidence showing that
integrins in human pulmonary epithelial cell lines and mouse primary alveolar epithelial
cells bind to the spike protein.

2. Materials and Methods
2.1. Culturing of Different Cell Lines

The MLO-A5 cell line (mouse osteocytes) was obtained from Kerafast (Boston, MA,
USA) and grown in MEM alpha (Thermo Fisher Scientific, Waltham, MA, USA) containing
5% fetal bovine serum (FBS; Equitech-Bio, Kerrville, TX, USA), 5% calf serum (Biowest,
Riverside, MO, USA), and penicillin/streptomycin (Nacalai, Kyoto, Japan). A human
monocytic cell line (THP-1) was purchased from ATCC (Manassas, VA, USA) and human
lung epithelial cell lines (11-18 and QG-56) were kindly provided by Dr. Yoshihiro Miyahara
(Mie University Medical School, Mie, Japan). The human breast cancer line MDA-MB-
231 was from ATCC. β1-control (Scr.) and β1-KO clones of MDA-MB-231 generated in
our laboratory [16] were used to validate the effect of β1 integrin on cell adhesion to S1
protein. Cells were grown in RPMI-1640 (Nacalai) containing 10% FBS (Equitech-Bio) and
penicillin/streptomycin (Nacalai).

2.2. Mice

C57BL/6J mice (10 to 13 weeks old) were obtained from CLEA Japan (Tokyo, Japan).
The mice were maintained in the Mie University Experimental Animal Facility under
specific pathogen-free conditions with ad libitum access to water and food and with a
standard 12-hour light–dark cycle. The experimental animal protocol was approved by the
Ethics Review Committee of Mie University (Approval number: #2019-41).

2.3. Isolation of Primary Lung Epithelial Cells from Mouse Lungs

Epithelial cells were isolated from mouse lung tissues by using a mechanical dissocia-
tion with sterile sieve meshes followed by a discontinuous density-gradient centrifugation
using Percoll (GE Healthcare Life Sciences, Chicago, IL, USA) in accordance with previous
studies [17,18] with some modifications. Three Percoll solutions (25%, 40%, and 75%) were
prepared, the cells from lung tissues were resuspended in 40% solution, and three distinct
gradients were carefully placed in the order of 25%–40%–75% from top to bottom in a
15 mL centrifuge tube (Corning, Glendale, AZ, USA). The cells were spun at 780× g for
20 min in a centrifuge (AX-511) (Tomy, Tokyo, Japan) at the setting of minimal acceleration
and deceleration. The epithelial cells were centered at an interface between 25% and 40%
Percoll solution and were then taken and washed extensively with RPMI1640 (Nacalai)
containing 10% FBS (Equitech-Bio) and penicillin/streptomycin (Nacalai).

2.4. Cell Adhesion Assay

An adhesion assay was carried out as previously described [19]. Ninety-six-well
V-bottom plates (Greiner, Tokyo, Japan) were coated with 2.5 µg/mL SARS-CoV-2 spike
protein 1, Fc Tag (S1-Fc) (Sino Biological, Wayne, PA, USA), 2.5 µg/mL SARS-CoV-2 spike
protein 1, Fc Tag (S1-Fc) (Sino Biological), or 2.5 µg/mL IgG Fc fragment protein (Abcam,
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Cambridge, MA, USA) at 4 ◦C for 18 h and washed twice with phosphate-buffered saline
(PBS). To chelate the metal ions, cells were resuspended in serum-free medium containing
5 mM ethylenediaminetetraacetic acid (EDTA) (Wako, Osaka, Japan) and washed twice
with the same medium with no EDTA. The cells were then labeled with a fluorescent
dye (1 mM 3′-O-Acetyl-2′,7′-bis(carboxyethyl)-4 or 5-carboxyfluorescein, diacetoxymethyl
ester (BCECF-AM)) (Dojindo, Kumamoto, Japan) and washed with 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES)-buffered saline. Equal numbers of labeled cells
(1 to 5 × 104 per well) were plated into the V-bottom wells and incubated with either
anti-integrin monoclonal antibodies (mAbs) or isotype controls (1 µg/mL for anti-human
integrin and 10 µg/mL for anti-mouse integrin antibodies) at room temperature for 10 min.
Anti-mouse CD29 (HMb1-1) mAb and its isotype control (HTK888) for treating mouse
cells were obtained from BioLegend (San Diego, CA, USA) and used at a concentration
of 10 µg/mL; anti-human CD29 (P5D2) (R&D Systems, Minneapolis, MN, USA) and its
isotype (MOPC-21) (Biolegend), anti-mouse/human CD49d (PS/2) (Southern Biotech,
Birmingham, AL, USA) and its isotype (G013B8) (Biolegend), and anti-human CD51 (NKI-
M9) (Biolegend) and its isotype (MG2a-53) (Biolegend) mAbs were used at 1 µg/mL. The
cells were incubated with either 2 mM EDTA (Wako, Osaka, Japan) or 1 mM CaCl2 (Sigma-
Aldrich) plus 1 mM MgCl2 (Sigma-Aldrich) for 10 min. The plates were spun at 280× g
for 5 min in the centrifuge (AX-511; Tomy Seiko Co. Ltd., Tokyo, Japan). The fluorescence
obtained from unbound pellets was measured with a 2030 ARVO reader (PerkinElmer,
Waltham, MA, USA). Cell adhesion to S1-Fc and other control proteins such as S2-Fc and
IgG Fc fragment is expressed as the percentages of bound cells to input cells, after the
application of the centrifugal force to produce shear stress to separate free cells from bound
cells [19].

2.5. Flow Cytometry

Monoclonal antibodies (mAbs) to human integrins were purchased as follows: β1
(TS2/16) (Biogems, Westlake Village, CA), β3 (VIPL2) (Abcam), β5 (AST-3T) (Biolegend),
α5 (NKI-SAM-1) (Biolegend), and αV (P2W7) (LSBio, Seattle, WA, USA). Anti-mouse
integrin MAbs were also obtained: β1 (HMb1-1) (Biolegend), β3 (HMb3-1) (Biolegend), β5
(KN52; Thermo Fisher Scientific), α5 (5H10-27) (Biolegend), and αV (RMV-7) (Biolegend).
Isotype-matched control antibodies were also obtained: mouse IgG1 (MOPC-21, Biolegend),
mouse IgG2a (MOPC-173) (Biolegend), mouse IgG2b (MPC-11) (Biolegend), Armenian
hamster IgG (HTK888) (Biolegend), and rat IgG1 (RTK2071) (Biolegend). The cells were
stained with those fluorescently labeled antibodies, washed twice with PBS containing 2%
FBS and 2 mM EDTA (Wako, Osaka, Japan), and analyzed by using a BD Accuri C6 flow
cytometer and software (BD Biosciences, San Jose, CA, USA).

2.6. Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from the cells by using TRIzol reagent (Thermo Fisher
Scientific) and RT was conducted with a Prime Script RT Kit (Takara Bio, Shiga, Japan)
according to the manufacturer’s instructions. To determine relative ACE2 expression,
qPCR was performed by using a PowerUp SYBR Green Master Mix PCR kit (Applied
Biosystems, Foster City, CA, USA) and the StepOne Real-Time PCR System (Applied
Biosystems) according to the manufacturer’s instructions. For endogenous controls, β-actin
was used to normalize ACE2 expression. The PCR primers (5′→3′) used in this study
were as follows: human β-actin, CCCTGGACTTCGAGCAAGAG (forward) and ACTC-
CATGCCCAGGAAGGAA (reverse); human ACE2, AAACATACTGTGACCCCGCAT (for-
ward) and CCAAGCCTCAGCATATTGAACA (reverse); mouse β-actin, GATCAAGAT-
CATTGCTCCTCCTGA (forward) and AAGGGTGTAAAACGCAGCTCA (reverse); and
mouse ACE2, TGGGCAAACTCTATGCTG (forward) and TTCATTGGCTCCGTTTCTTA
(reverse). Relative expressions were calculated by using the comparative threshold method
(2−∆CT) normalized to β-actin.
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2.7. Statistical Analysis

Data are expressed as the mean± standard error of the mean (SEM) and were analyzed
using a two-tailed unpaired t-test for comparisons between two groups and a one-way
analysis of variance (ANOVA) for comparisons among three groups. p values less than 0.05
were considered significant. Statistical analysis was done by using the Prism8 software
(GraphPad, San Diego, CA, USA).

3. Results

As pulmonary epithelial cells represent a prime target for SARS-CoV-2, we have
investigated the binding of the spike protein to the human pulmonary epithelial cell lines
11-18 and QG-56. We have found that these epithelial cell lines showed good binding to
the spike protein (Figure 1A,B). β1 integrins are the predominant integrins expressed in
pulmonary epithelial cells under physiologic conditions, although some levels of αVβ3,
α6β4, αVβ5, αVβ6, and αVβ8 integrins are also expressed (Figure 2) and upregulated
under pathologic conditions such as in various cancers and fibrosis [20]. Thus, we have
tested the effects of anti-β1 and anti-αV integrin inhibitory antibodies that block all β1
integrins (α1β1, α2β1, α3β1, α4β1, α5β1, α6β1, α7β1, α8β1, α9β1, α10β1, and α11β1)
and αV integrins (αVβ1, αVβ3, αVβ5, αVβ6, and αVβ8), respectively. The adhesive
interactions of pulmonary epithelial cells with the spike 1 (S1) protein are potently inhibited
by pretreatment with anti-β1 or anti-αV integrin inhibitory antibodies (Figure 1A,B).

As monocytes/macrophages are implicated in the pathogenesis of COVID-19, we
have studied human monocyte-like cell line THP-1, thereby showing a good binding to
S1 protein (Figure 1C). THP-1 binding to S1 protein was blocked by not only anti-β1 and
anti-αV integrin inhibitory antibodies, but the anti-α4 integrin inhibitory antibody that
blocks α4β1, and α4β7 integrins (Figure 1C). THP-1 cells express α4 integrin, whereas
11-18 and QG-56 cells do not (Figure 2). Thus, the anti-α4 integrin inhibitory antibody did
not show any blocking effects on 11-18 and QG-56 cells (Figure 1A,B).

To further substantiate our findings regarding the β1 integrin-dependent binding
of spike proteins to pulmonary epithelial cell lines, we studied primary pulmonary cells
freshly isolated from mouse lungs that were enriched with alveolar epithelial cells. We
have shown that mouse primary lung cells robustly bind to S1 proteins, which are inhibited
by the antibody to mouse β1 integrins (Figure 3A).

As we used S1-Fc fusion protein throughout the experiments, we sought to substanti-
ate the specific binding to the S1 protein, thereby comparatively studying the cell adhesion
to S1-Fc fusion protein and two types of reference proteins S2-Fc fusion protein and IgG Fc
fragment protein (Figure 4A–D). We have shown that QG-56, 11-18, and THP-1 cells hardly
bound to IgG Fc fragment protein, while binding well to S1-Fc protein (Figure 4B–D). As
S2-Fc protein is a scarce reagent for us, we have studied it only with QG-56 cells, which
bound significantly better to S1-Fc protein than to S2-Fc protein (Figure 4A). These results
confirmed the specific binding of QG-56, 11-18, and THP-1 cells to S1 protein.

To further validate the specific interaction of β1 integrin with S1 protein, we utilized a
β1 integrin knockout (KO) clone of a human breast cancer cell line (MDA-MB-231) that
we previously established using CRISPR/Cas9 [16] as a model cell. A flow cytometric
examination confirmed the absence of β1 integrin in the KO cells (Figure 5A). S1 binding
of β1-KO cells was completely abolished, compared to that of β1-control cells (i.e., mock
transfectants) [16] (Figure 5B), even though β1-KO cells retain αV integrin expression
(Figure 5A). These results have revealed that β1 integrins can support binding to S1 protein
independently of αV integrins.
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cently labeled monoclonal antibodies (mAbs) to integrins. The integrin expression was analyzed 
by using flow cytometry for human (A) and mouse (B) cells. Histograms indicate the expression of 
integrins indicated. Data are representative of three separate experiments. Red lines, mAb; black 
lines, isotype IgG. 
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flow cytometry for human (A) and mouse (B) cells. Histograms indicate the expression of integrins
indicated. Data are representative of three separate experiments. Red lines, mAb; black lines,
isotype IgG.
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Figure 4. Binding of human lung epithelial cells and monocytes to S1-Fc. Cellular binding to S1-Fc
was compared to S2-Fc (A) and to Fc alone (B–D). QG-56 (A,B), 11-18 (C), THP-1 (D) were used in
this assay. Results are shown as column scatterplots overlayed with the mean ± SEM of at least
3 independent experiments, in which each sample was triplicated. *** p < 0.001; **** p < 0.0001.

Human pulmonary epithelial cell lines and mouse lung primary cells express moderate
to high levels of ACE2, the authentic receptor for the S1 protein (Figure 6A,B), which may
be involved in the observed adhesive interactions of lung cells with the S1 protein. Residual
binding to S1 protein in the presence of anti-integrin antibodies could be partly mediated
by ACE2. As mouse ACE2 supports S1 protein binding much less efficiently than human
ACE2 [21], this could be the case with human pulmonary epithelial cells. To confirm the
ability of integrins (e.g., β1 integrin) to bind to the S1 protein independently of ACE2, we
utilized ACE2-negative cells, such as human monocytic THP-1 cells and mouse osteoclastic
MLO-A5 cells. We have shown that these ACE2-negative cells exhibited good binding to
the S1 protein in a β1 integrin-dependent manner (Figures 1C and 3B).
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Figure 5. Integrin expression and S1 binding of β1-control and β1-KO cells of a human breast cancer
cell line (MDA-MB-231). (A) The cells were stained with the fluorescently labeled mAbs to integrins.
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and β1-KO (lower panel) cells of MDA-MB-231. Histograms indicate the expression of integrins
indicated. Data are representative of three separate experiments. Red lines, MAb; black lines, isotype.
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as column scatterplots overlayed with the mean ± SEM of at least 3 independent experiments, in
which each sample was triplicated. **** p < 0.0001.
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triplicated. ** p < 0.01; and **** p < 0.0001. 

Figure 6. qRT-PCR measuring the expression of ACE2 in human (A) and mouse (B) cells. Relative
expression of ACE2 to β-actin was determined by using the 2−∆CT method. In panel A, statistical
significance between two groups (THP-1 vs. 11-18) was analyzed by a two-tailed unpaired t-test,
while other comparisons were by one-way ANOVA. Results are shown as column scatterplots
overlayed with the mean ± SEM of at least 3 independent experiments, in which each sample was
triplicated. ** p < 0.01; and **** p < 0.0001.

4. Discussion

In this study, we have demonstrated that native β1 integrins expressed on human and
mouse pulmonary epithelial cells bind to the S-protein of SARS-CoV-2, thereby providing
experimental evidence to support recent predictions regarding their role in this global
disease [12,13]. Our results are consistent with a recent report that showed, in a cell-free
ELISA-type assay, that α5β1 integrin protein immobilized on plates supported binding
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to the SARS-CoV-2 S-protein [15]. Our results demonstrate the critical roles played by β1
integrins in mediating cellular adhesive interactions with the S-protein, although we have
shown that αV integrins on pulmonary epithelial cell lines and α4 integrins on monocytic
cell lines also support binding to S1 protein. Integrins are conformationally mobile pro-
teins that undergo dynamic structural rearrangements on the cell surface in response to
intracellular signaling pathways specific to cell types [22,23]. Thus, demonstrating the
ability of the S1 protein to bind integrin expressed on the surface of relevant cells is of great
importance, and all of this contributes to emphasizing the significance of the results from
the cell-based experiments in our study.

It has been shown in the recent report that a small molecule peptide antagonist of
integrin α5β1 (ATN-161, Ac-PHSCN-NH2) inhibited the infection of SARS-CoV-2 in VeroE6
cells in vitro [15]. Due to technical difficulties, we were unable to study the ability of anti-
integrin blocking antibodies to interfere with SARS-CoV-2 infection. Whereas further
investigations would be necessary to confirm the ability of integrin antagonists to suppress
SARS-CoV-2 infection in vitro and in vivo, integrin-targeted approaches may serve as
potentially effective anti-viral treatments. A few therapeutic antibodies to integrins have
been approved for the treatment of inflammatory disorders such as multiple sclerosis [24]
and inflammatory bowel diseases [25]. Although proven to be clinically effective, integrin
antagonism in patients can nonetheless pose serious adverse effects. The integrin inhibitor
natalizumab, which blocks α4β1 and α4β7 integrins, is reported to sporadically cause
progressive multifocal leukoencephalopathy, an often fatal brain disease resulting from
reactivation of a latent JC virus infection due to iatrogenic immune suppression [24]. Thus,
inhibition of integrins, especially β1 integrins, in clinical settings must be carried out with
special precautions. Nevertheless, a multiple sclerosis patient treated with natalizumab
has been reported to recover well from SARS-CoV-2 infection [26], which might be relevant
to our finding that α4 integrin blockade abolished binding of S1 protein to monocytes.

Integrins have been shown to bind not only to the viral S-protein, as shown in this
study, but also to the cellular ACE2, as previously reported [27]. ACE2 contains a conserved
RGD sequence that is not surface exposed; however, β1 integrins bind to ACE2 in an
RGD-independent manner. A recent and provocative hypothesis proposes not only that
integrin binding to ACE2 sterically shields the SARS-CoV-2 binding site within ACE2,
but that the cis-interaction of integrins with ACE2 on the same cells naturally prevents
the virus from binding to the entry receptor ACE2. In this context, inhibition of integrins
may result in the liberation of ACE2 for SARS-CoV-2 binding, potentially enhancing
viral entry [14]. Although extremely intriguing, this alternative scenario appears to be
unlikely [6]. Simultaneous inhibition of integrin–S-protein interactions and the ACE2–
S-protein interactions offers a promising therapeutic approach for robustly suppressing
SARS-CoV-2 infections [6]. We have shown that β1 integrin supports the binding of S1
protein to mouse primary lung cells.

5. Conclusions

To conclude, we have provided important experimental evidence that SARS-CoV-2
spike protein 1 binds to β1 integrins on the surface of pulmonary epithelial cells. β1
integrins bind to the S1 protein independently of ACE2; however, the therapeutic potential
of integrin antagonists inhibiting SARS-CoV-2 infections with or without an intervention
targeting ACE2 in vivo warrants further investigation.
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