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Open-set deep learning–enabled single-cell Raman 
spectroscopy for rapid identification of airborne 
pathogens in real-world environments
Longji Zhu1, Yunan Yang1,2, Fei Xu1, Xinyu Lu3, Mingrui Shuai4,5, Zhulin An4, Xiaomeng Chen2,  
Hu Li1, Francis L. Martin6,7, Peter J. Vikesland8, Bin Ren3, Zhong-Qun Tian3,  
Yong-Guan Zhu1,9*, Li Cui1*

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying 
pathogens directly from complex air environments remains highly challenging. We present an advanced method 
that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-
world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To 
test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria. Through 
optimizing OSDL algorithms and training strategies, Raman-OSDL achieves 93% accuracy for five target airborne 
pathogens, 84% accuracy for untrained air bacteria, and 36% reduction in false positive rates compared to con-
ventional close-set algorithms. It offers a high detection sensitivity down to 1:1000. When applied to real air 
containing >4600 bacterial species, our method accurately identifies single or multiple pathogens simultane-
ously within an hour. This single-cell tool advances rapidly surveilling pathogens in complex environments to 
prevent infection transmission.

INTRODUCTION
Bacterial infections are a leading cause of global mortality and are re-
sponsible for >7.7 million deaths annually (1, 2). Bio-aerosols are critical 
vehicles for airborne pathogen transmission between the environment 
and humans (3–5). Respiratory activities such as coughing, sneezing, 
talking, and breathing by individuals suffering from respiratory infec-
tions produce pathogen-laden aerosols that can travel long distances 
and remain suspended in air for hours (3, 6). If inhaled, then pathogen-
laden aerosols potentially colonize the airways or lungs and may lead to 
respiratory disease (7). Aerosol transmission is a major source of noso-
comial infections, particularly in operating rooms and intensive care 
units (ICUs) (8). Accordingly, timely and accurate detection of air-
borne pathogens is essential to contain infectious disease outbreaks at 
their source and to reduce nosocomial infection rates (9, 10).

Despite the pervasive threats of airborne pathogens, tools to rap-
idly identify them in real environments are limited. Conventional 
culture-based approaches take several days to yield results (11, 12). 
While matrix-assisted laser desorption ionization–time-of-flight 
mass spectrometry (MALDI-TOF MS) enables pathogen identifica-
tion within a few minutes (13), the method nonetheless requires 
lengthy microbial cultivation to form colonies prior to identification 
(14). In addition, cultivation methods are futile for bacteria that 

adopt a viable but nonculturable (VBNC) state as a survival strategy 
(15). Culture-independent methods, such as polymerase chain reac-
tion, isothermal amplification, enzyme-linked immunosorbent as-
say, or biosensors, can offer relatively rapid detection (16–20). 
However, they are heavily reliant on preselected recognition ele-
ments (e.g., specific primers, antibodies, and aptamers) and are lim-
ited by the type of pathogens that can be simultaneously identified, 
and their typically low airborne densities. DNA sequencing enables 
unbiased simultaneous detection of nearly all pathogens from a 
given environment (21, 22), but requires substantial bacterial bio-
mass for library construction and long timeframes (several to tens of 
days) for sequencing. Therefore, advanced techniques for rapid, ac-
curate, and universal detection of airborne pathogens are urgent-
ly needed.

Single-cell Raman spectroscopy combined with deep learning 
(Raman-DL) provides a promising approach to identify pathogens 
in a rapid and culture-free manner (23–25). By training a model us-
ing Raman spectra of pathogenic bacteria and testing bacterial types 
within the training set (close-set identification), DL enables dis-
crimination of subtle differences in Raman spectral fingerprints at 
the species and strain levels (26–29). Unfortunately, conventional 
close-set Raman-DL identification is limited to the bacterial spectra 
included in the training set. When applying Raman-DL to interro-
gate pathogens in real-world environments, high misclassification 
rates (i.e., false positives) are typical. The reason is that in real envi-
ronments, a limited number of pathogenic bacteria coexist with 
large numbers of highly diverse nonpathogenic indigenous bacteria. 
In addition, because up to 99% of environmental bacteria are as yet 
unculturable (30,  31) and bacterial diversity can be 100 to 1000× 
higher than that of pathogenic bacteria, it is impossible to encom-
pass all classes of environmental bacteria within Raman-DL train-
ing sets. The presence of these unseen/unknown bacteria for the 
training model greatly impairs the performance of traditional close-
set DL approaches that are necessarily forced to choose from the 
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known classes included in the training set, thus leading to false-
positive results (32, 33). To address the diversity in real-world situa-
tions, bacterial identification should be open-set, i.e., the model 
should not only accurately classify known classes but also appropri-
ately exclude unseen/unknown classes.

Recently, open-set DL (OSDL) approaches have shown potential 
toward improving the accuracy of image recognition in real-world 
settings, such as facial and medical images (33, 34). However, the 
utility for OSDL to enable single-cell Raman identification of patho-
gens in real environments remains underexplored. Compared with 
face images, Raman spectra of bacteria comprising around 225 fea-
tures (from 600 to 1800 cm−1) are more complex and vary with bac-
terial physiology. Therefore, to ensure the identification accuracy 
specific for airborne pathogens, Raman datasets of pathogens in an 
aerosol state should be established for model training purposes.

To address the above challenges and advance single-cell Raman 
spectroscopy as a tool to identify pathogens in real-world air envi-
ronments, we designed the microbial aerosol generation and collec-
tion (MAGC) device as a means to collect pathogen-laden aerosols, 
and then established the first Raman spectral training datasets of 
pathogens collected from air environments. This device allows us to 
build a Raman spectral dataset that is closer to real-world airborne 
pathogens. Moreover, an advanced OSDL algorithm was developed 
by introducing two open-set strategies (softmax with threshold and 
openmax with threshold) to a DL attentional neural network (aNN) 
model. This is, to our knowledge, the first combination of DL and 
open-set strategy in the identification of bacteria based on Raman 
signal in real-world environments. By optimizing the algorithm 
threshold and testing it using a dataset containing both known 
pathogens and unknown air bacteria, the Raman-OSDL not only 
maintained a high 93% identification accuracy for target pathogens 
but also significantly reduced (~36%) the misclassification of un-
known air bacteria as pathogens (i.e., false-positive rate) compared 
to traditional close-set DL. The optimized open-set aNN model was 
then applied to eight real-world air samples containing either single 
or multiple pathogens within a population of >4600 other bacterial 
species as determined by metagenomic sequencing. The positive 
presence of high- or low-abundance pathogens reported by Raman-
OSDL was cross validated by metagenomic sequencing and culture 
methods. The entire process including aerosol collection, single-cell 
Raman acquisition, and OSDL output requires approximately 1 hour 
for high-abundance pathogens. These results demonstrate the capa-
bility of Raman-OSDL to rapidly, reliably, and simultaneously iden-
tify multiple airborne pathogens in real-world air environments 
that contain diverse microbes. Raman-OSDL obviously outper-
forms the close-set approach and provides a breakthrough that tran-
sitions Raman-based pathogen identification from pure culture to 
real-world environmental settings.

RESULTS
Establishing a RAPD platform for single-cell Raman 
identification of airborne pathogens
Raman spectra of bacteria are highly sensitive to bacterial physiol-
ogy, which readily varies with living state and local environment. To 
identify airborne pathogens, an important premise is to collect a 
training dataset consisting of Raman spectra of bacteria under air 
conditions that can be used by algorithms for learning. Toward this 
objective, a rapid airborne pathogen detection (RAPD) platform 

comprising three essential components was established. RAPD in-
cludes a MAGC device (01), an airborne bacterial pretreatment and 
Raman acquisition system (02), and a DL model (03) (Fig. 1). The 
MAGC device was specially designed to enable aerosol generation, 
collection, ventilation, sterilization, and flexible switching of aerosol 
sources that contain specific bacteria (fig. S1). The microbial aerosol 
generation module releases pathogens into a sterile air chamber to 
form well-defined pathogenic aerosols. Then, a collection module is 
used to capture air samples containing specific pathogens on a gela-
tine membrane filter. Gelatine can be dissolved in water and is prov-
en to exert no interference on bacterial Raman spectra (fig. S2). 
Device throughput is ~50 liter/min, allowing the collection of 1000 liter 
of air samples sufficient for pathogen detection within 20 min. Con-
sidering that air bacterial concentration is generally between 104 
and 106 m−3, and the abundance of pathogens inside is in the range 
of 10−3 to 10−2 (35–37), collecting 1000 liter of air is expected to 
have at least 104 cells, which are sufficient to detect even low-
abundance pathogens inside. Ventilation and sterilization modules 
facilitate switching to other air samples those contain different 
pathogenic aerosols.

Bio-aerosols containing either target pathogens or nontarget bac-
teria were collected separately and successively to construct the 
training database. Five common airborne pathogenic bacteria were 
used as targets: Staphylococcus aureus, Escherichia coli, Pseudomonas 
aeruginosa, Salmonella enterica, and Acinetobacter baylyi. These 
pathogens have been found to be prevalent in both indoor air (hos-
pital ICU) (38) and outdoor air (near sewage) (39) environments 
and cause millions of infection-related deaths each year (2). When 
selecting these pathogenic species, their distribution in the phyloge-
netic tree was not considered, as the main difficulties we need to 
overcome is how to avoid interference from highly diverse unknown 
bacteria in real-world environments on the identification of target 
pathogens. Nontarget bioaerosols included five nonpathogenic bac-
teria isolated from air (i.e., Exiguobacterium acetylicum, Priestia 
megaterium, Bacillus velezensis, Bacillus cereus, and Staphylococcus 
lentus) as well as indigenous airborne bacteria directly sampled 
from indoor and outdoor environments. Through sample collection, 
pretreatment, and Raman spectral analyses of these bio-aerosols from 
three separate batches, we constructed a Raman training dataset 
comprising 7552 spectra that included 6149 spectra from the five 
pathogenic bacteria and 1403 spectra from the nontarget air bacte-
ria. This dataset was used to train and test the DL model to identify 
pathogens from real-world air environments (04 and 05 in Fig. 1) 
that contain not only target pathogens but also highly diverse bacte-
rial classes not considered during training.

Figure 2A compares the single-cell Raman spectra of five 
pathogens obtained from laboratory liquid culture and from the 
MAGC device under air conditions. Both liquid and air bacteria 
were washed by water and air-dried on aluminum foil before Raman 
measurement. The only difference is that the air-suspended bacteria 
experienced aerosol states and adapted in the air environment. Un-
supervised principal components analysis was used to classify and 
visualize these species using a two-dimensional score plot (Fig. 2B). 
The five pathogens in liquid culture or air conditions formed 
distinct clusters on either side of the line (Bray-Curtis distance, 
P < 0.01). The distances between the same species under liquid and 
air conditions were larger than those between different species un-
der the same condition. Specifically, the relative intensities of peaks 
at approximately 1322 and 1578 cm−1 in the air environment were 
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Fig. 1. Overview of the RAPD workflow. Airborne samples containing specific pathogens are generated and collected by the microbial aerosol generation and collection 
(MAGC) device (01). Bacteria in aerosol states were then subjected to single-cell Raman measurement with only a removing filter membrane pretreatment. The obtained 
spectra were used to construct the training database of bacteria in aerosol states (02). OSDLs strategies are developed, trained/tested with the constructed database, and 
optimized with artificially blended spectra containing both target and nontarget air bacteria for classifying airborne pathogens (03). Through the use of the pretrained 
open-set aNN model, single or multiple target pathogens in real-world air environments containing diverse, unknown indigenous air bacteria (04) that cannot be fully 
included in the training dataset were successfully identified (05).
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significantly lower than those in the liquid culture (P < 0.05) except 
for P. aeruginosa. These findings demonstrate the impact of changes 
in bacterial physiology in liquid and air on Raman spectral features, 
thus confirming the necessity of establishing Raman training mod-
els using pathogens in an aerosol state as opposed to conventional 
laboratory liquid cultures. Previous studies about the effect of growth 
and storage conditions (e.g., culture media, storage temperature/
media, and time) on Raman spectra of bacteria also ended up sus-
pending the bacteria in water, but the spectral differences were still 
captured, indicating that bacterial physiological state can be main-
tained after washing (40–42).

Developing Raman-OSDL algorithm to identify pathogens 
and unknown bacterial classes in air
To identify pathogens in real air environments, it is infeasible to 
collect spectra of all bacterial species present; there are always un-
known bacterial classes that the training set has never seen before. 
Here, to simulate complex air environments, a database of Raman 
spectra containing both known target pathogens and unknown air 
bacterial classes was constructed. The performance of four close-
set ML/DL algorithms was initially tested in this scenario, 
including linear discriminant analysis (LDA), random forest (RF), 
support vector machine (SVM), and aNN (fig. S3). When both the 
training and testing sets were exposed to the same type of five air 
pathogens generated by the MAGC device, all four close-set ML/
DL models displayed satisfactory accuracy with the aNN algorithm 
achieving the highest accuracy of 97%. Despite the good perfor-
mance of the models, this was not realistic of complex air samples. 
Accordingly, the airborne bacterial classes that were not trained by 
aNN were newly introduced at the testing stage (labeled “unknown” 
class, Fig. 3C). This unknown class contains different indigenous 
airborne bacteria collected directly from outdoor air (test set 1, Fig. 
3H). Unfortunately, when testing the “well-trained” aNN model 
with the unknown classes, the false-positive rate was as high as 
100% (Fig. 3C). This result occurs because the traditional close-set 
algorithms inevitably classify the unknown air classes into one of 

the known pathogen classes included in the training set (Fig. 3B). 
To reduce this false positive rate, an “others” class (negative sample) 
containing five nonpathogenic bacteria isolated from air and bacte-
ria collected directly from indoor air (i.e., indoor air 1) without 
cultivation were introduced in the training set to allow the model to 
see and learn (training set 1, Fig. 3H). We emphasize that the bac-
teria in the others class only represent a limited proportion of air-
borne bacteria because acquiring spectra of all airborne bacteria is 
infeasible. However, when we tested the aNN model with the un-
known class containing spectra of airborne bacteria collected from 
outdoor air (i.e., not included in training), only 48% of the un-
known dataset were correctly identified as the “others” class and up 
to 52% was misclassified as one of the five pathogens (i.e., false 
positive, Fig. 3D). Notably, none of the samples were classified as 
the “unknown” class. By comparison, for all the classes that were 
initially trained on aNN including five pathogens and “others” 
class, >96% accuracy was obtained. The above results indicate the 
obvious limitation of close-set approaches in testing a new class 
that was not included in the training model. Although it is possible 
to train some additional classes outside of the target pathogens of 
interest, it is not possible to train all real-world classes. In this case, 
close-set algorithms are not applicable for identification of bacteria 
in real air environments.

We introduced an open-set algorithm to the aNN to optimize its 
real-world application. An ideal open-set algorithm should be able 
to reduce the misclassification rate of unknown classes while retain-
ing a high accuracy for target classes. Here, two open-set strategies 
were investigated. Compared with the close-set DL, the first strategy 
used was to introduce a threshold to the softmax activation func-
tion in the deep networks (Fig. 3A). Softmax has the capacity to 
generate a probability distribution for known class labels and to 
identify samples to the class with the highest probability (43). After 
setting a threshold for the probability of the softmax function, only 
when a Raman spectrum in the test set exhibited sufficient confi-
dence (e.g., exceeding a threshold of 0.98) to a class in the training 
set, it was classified as that class; otherwise, it was categorized as 
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Fig. 3. Development of Raman-open set DL algorithm to identify pathogens and unknown classes in air. (A) Strategies for optimizing aNN algorithm from close set 
to open set. (B) Schematic diagrams of close-set DL. U1, U2, and U3 represent unknown classes in air environments. (C and D) Confusion matrix for five target airborne 
pathogens and unknown bacterial classes based on the close-set aNN before (C) and after (D) introducing new others class (H) to the training set. The other class repre-
sents a negative sample class including five nonpathogenic bacteria isolated from air and bacteria collected directly from indoor air without cultivation. The unknown 
class means air microbiota without containing the five target pathogens. (E) Schematic diagrams of OSDL. (F and G) Confusion matrix for five target airborne pathogens, 
others, and unknown classes based on two open-set aNN strategies of softmax + threshold (F) and openmax + threshold (G). (H) Composition of the dataset and the 
number of spectra used for model training and testing. Curved arrows indicate the source of the data set. All spectra in the test set were not used in the training set. 
(I) Retrained binary classification model to further distinguish E. coli from unknown bacteria classes. Unknown and Unknown2 were air bacteria obtained from two differ-
ent locations in independent experiments. PA, pathogen accuracy; UA, unknown accuracy; FPR, false-positive rate.
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unknown. When training and testing this open-set algorithm (i.e., 
softmax + threshold) using the same dataset as that in Fig. 3D, the 
accuracy of the unknown class significantly increased from 48 to 
83% (Fig. 3F). Unfortunately, this improvement was accompanied 
by a decrease in the average accuracy for the five pathogens from 98 
to 92%. Further, even at this high threshold of 0.98, some false-
positive results had high-probability scores, and the false-positive 
rate was still 17%. These results indicate that merely adding a thresh-
old for probabilities may not be sufficient to solve the open-set iden-
tification problem (44).

The second open-set strategy was to introduce an openmax func-
tion as an alternative to the softmax activation function into the fi-
nal fully connected layer of the aNN (Fig. 3A) (33). Different from 
softmax, in openmax function, the activation vector of the penulti-
mate layer was recalculated on the basis of Meta-Recognition and 
the Weibull distribution to identify system failure. Openmax can 
produce not only the probabilities of samples belonging to each 
known class but also the probabilities of samples not belonging to 
any known class, thus enabling prediction of unknown classes (Fig. 
3E) (45). When performing this open-set aNN model using the 
“openmax + threshold” strategy (threshold: 0.98) with the same da-
tasets, identification accuracies of 93 and 84% were achieved for the 
target pathogens and the unknown classes, respectively (Fig. 3G). 
Compared to the “softmax + threshold” strategy, the openmax + 
threshold strategy not only maintains high identification accuracy 
for most pathogens (90 to 97%) but also results in an additional 4% 
increase in the accuracy to identify E. coli, a 1% increase for identi-
fying unknown, and a 1% decrease in the total false-positive rate. 
Ten-fold cross validation results confirmed the robustness of the 
open-set aNN model (fig. S4). Although the accuracy of 93% for 
the target pathogens is not as high as the close-set results (98 
to 99%), this is understandable because the open-set model has to 
balance the identification of known classes with the rejection of 
unknown classes.

We further noticed that the false-positive rate of misidentifying 
nonpathogenic air bacteria to E. coli (12%) is much higher than the 
other four pathogens (0 or 2%) (Fig. 3G). The reason could be due to 
the likelihood that the Raman spectral signatures of some non-
pathogenic air bacteria are highly similar to those of E. coli. To ef-
fectively distinguish E. coli from diverse unknown airborne bacteria, 
the E. coli and unknown class were trained a second time using a 
higher threshold of 0.996 (training set 2, Fig. 3H). Subsequently, we 
tested the model using a new unknown sample named “unknown2” 
collected from another indoor air setting (i.e., indoor air 2) (test set 
2). This sample encompassed diverse spectra of airborne microbes 
but lacked the five target pathogens in the training set, which was 
verified by pure culture methods. As expected, the identification 
accuracies of E. coli and unknown samples were improved to 93 
and 100%, respectively, and the false-positive rate declined to zero 
(Fig. 3I).

Together, these results indicate that the open-set aNN model 
can not only accurately identify target pathogens included in 
the training dataset (output as specific classes) but also reliably 
reject classes not present in the training dataset (output as un-
known class). The Raman-OSDL method obviously outperforms 
the close-set approach and thus provides a novel means to detect 
pathogens in real-world air environments containing a large diver-
sity of microbes.

Exploring the optimal parameter and detection limit of 
single-cell Raman-OSDL
It is notable that the thresholds used in the above softmax and 
openmax of the open-set aNN model were the optimized values we 
obtained. Hereby, we show how the model performance is affected 
by varying thresholds (Fig. 4A). The identification accuracy of the 
pathogen and unknown classes exhibited inverse trends with an 
increase in threshold. A larger threshold resulted in a rapid in-
crease in the identification accuracy of unknown classes but a slow 
decrease in that of known pathogens. To simultaneously ensure a 
high accuracy (~90%) of both target pathogens and unknown 
classes, the threshold at 0.98 was selected as the optimal value to 
enable balanced performance of the open-set aNN model. Howev-
er, the threshold is adjustable according to the risks of pathogens in 
practical applications. For example, for high-risk pathogens, to en-
sure a high true-positive rate of pathogens, the threshold needs to 
be set lower. In contrast, for daily surveillance of low-risk patho-
gens, to keep a low false-positive rate, the threshold needs to be set 
higher. Compared with softmax, openmax shows similar accuracy 
for pathogens but higher accuracy and lower error for the unknown 
class, especially under a lower threshold range (0.90 to 0.98). In 
addition, the accuracy and loss curves gradually converge with an 
increase in epoch number (Fig. 4C), thus suggesting that the 100 
training epochs used here were sufficient to achieve a robust model.

Using the above-optimized parameters, we further explored the 
detection limit of the open-set aNN model. This study was conduct-
ed under the consideration that the abundance of pathogens in air 
may fluctuate wildly as an epidemic swells and recedes with time 
and location. For example, the pathogen/background bacteria ratio 
may be relatively low during the early stage of an outbreak but can 
increase to higher levels as an epidemic progress. This ratio also 
could be high in highly polluted air near feedlots and wastewater 
treatment plants but relatively low in ICU environments and typical 
home settings. Here, a total 30 test sets (3 different ratios × 10 mixed 
datasets) were created by artificially blending the single-cell Raman 
spectra of the five target pathogens with spectra of air microbes col-
lected directly from air at decreasing ratios of 1:10, 1:100, and 
1:1000, respectively (Fig. 4B). Notably, all the microbes in the test 
(test set 3, Fig. 3H) were collected from air, and their Raman spectra 
were never involved in model training. A total of 1149 pathogen 
spectra and 12,200 unknown spectra (augmented from 610 un-
known spectra in test set 1, Fig. 3H) were used as the test set for 
randomly selected pathogens and unknowns according to different 
ratios. To ensure the reliability of the results, the sensitivities and 
specificities of the model for each class were determined by 10× ran-
dom selection tests of spectra from pathogens and unknowns at dif-
ferent ratios (Fig. 4D). The sensitivity (true positives) curves for all 
five pathogens and the unknowns exhibited a nearly consistent 
trend without decrease in pathogen abundance down to 1:1000 
(two-tailed Student’s t test, P  >  0.05). For the specificity (true 
negativity), except for the slight decrease in Acinetobacter baylyi 
from 100% at 1:10 to 99.97% at 1:1000 (two-tailed Student’s t test, 
P < 0.01), the other five classes were not impaired by the decrease 
of pathogen abundance (two-tailed Student’s t test, P > 0.05). The 
stable sensitivity and specificity indicate that Raman-OSDL can de-
tect over a broad concentration range of pathogens. It indicates 
that even when just one pathogen is present in a milieu of up to 
1000 nontarget microorganisms, it can be reliably identified. This 
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result is very important and is a prerequisite for the timely detec-
tion of pathogens.

Extending single-cell Raman-OSDL to identify pathogens in 
real-world air environments
To demonstrate that the Raman-OSDL approach can be extended to 
real-world air environments, we tested our model on two air sam-
ples spiked with either a single pathogen (Salmonella enterica) or 
five typical air pathogens (S. aureus, E. coli, P. aeruginosa, S. enterica, 
and A. baylyi). Notably, different from the above where we used ar-
tificially mixed spectra of pathogens and airborne microbes, here 
pathogenic aerosol was directly released into the real-world air with 
the diverse indigenous air microbes and then collected simultane-
ously. These indigenous microbes constituted >4600 different 
species as sequenced and annotated by metagenomic sequencing, 
indicating the high diversity of air microbial communities (fig. S5). 
Single-cell Raman spectra were then acquired without prior knowl-
edge of the corresponding species identity. This situation well fits the 
expected real-world sampling scenarios.

A total of 2111 single-cell Raman spectra (test set 4 in Fig. 3H) 
were acquired from the air and then inputted into the pretrained 
Raman-OSDL model for testing. Because the approach was com-
pletely blinded and excluded any linkage between species identify 
and spectra, it was not possible to provide an accuracy value for 
identification. Instead, Raman-OSDL was used to classify target 
pathogens and unknown airborne bacteria based on their single-
cell Raman spectra, and then this information was used to calculate 
the abundance of target pathogens within the airborne microbial 
community. Figure 5A shows the abundance results. For an air sam-
ple contaminated with S. enterica, the Raman-OSDL revealed 
that S. enterica was the dominant pathogen. A separate pathogen, 
S. aureus, was identified at a relatively low abundance in air. For re-
porting purposes that should avoid false positives and false alarms, 
we set a true-positive threshold for each pathogen based on the 
mean value +3 SD of the false-positive rate determined from the 
10-fold cross validation of the open-set aNN model (Figs. 3G and 
5A). The thresholds ranged from 0.5 to 4.2% for each pathogen 
are shown as the short red lines in Fig. 5 (A and B). In addition, 
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Fig. 4. Exploration of model parameters and detection limits. (A) Selection of threshold values for the probability used in softmax and openmax function of the open-
set aNN model by considering the identification accuracy of both pathogens and unknown classes. (B) Schematic diagram illustrating the mixing of Raman spectra of 
pathogens and unknowns at ratios of 1:10 (10:100), 1:100 (10:1000), and 1:1000 (10:10000), respectively. The numbers in parentheses represent the actual number of 
spectra, which are randomly selected from the test set 3 in Fig. 3H. (C) Accuracy and loss curves of the open-set aNN model. (D) Exploration of the detection limit by cal-
culating the sensitivity and specificity for the identification accuracy of target pathogens among background microbes at ratios shown in (B). **, significant difference 
observed between 1:10 and 1:1000 group (two-tailed Student’s t test, P < 0.01). ns, no significant difference.
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Fig. 5. Identification of single or multiple pathogens in real-world air samples. Relative abundance of the Raman-OSDL identified pathogen in real air samples con-
taminated with (A) single S. enterica and (B) five pathogens (i.e., A. baylyi, E. coli, P. aeruginosa, S. aureus, and S. enterica). Red lines represent the true-positive threshold for 
each pathogen, which is calculated as the mean value +3 SD from the false positive results in Fig. 3G. (C and D) Comparison of the identification results among Raman-
OSDL, traditional cultivation and metagenomics methods in two air samples contaminated with S. enterica (C) and five pathogens (D). “− Negative”: relative abundance 
(RA) < 1% or no specific colony; “+ Positive”: relative abundance (RA) ≥ 1% or ≥ 1 specific colony. (E) Microscopic image of one predicted S. aureus cell (outlined by a red 
circle) on aluminum and comparison of its Raman spectra with that of a true S. aureus used in training. (F) Linear regression analysis of Raman spectra between the pre-
dicted and true S. aureus in (E). (G) Performance comparison between Raman-OSDL, Raman-close set DL, and two traditional methods used for real-world pathogen 
identification. (H) Identification results of six more real-world air environments using Raman-OSDL and traditional cultivation methods. Blue and gray columns represent 
the positive and negative Raman-OSDL results, respectively. The plate photographs only show positive results of the cultivation method.
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considering that the outbreak of a pandemic usually requires patho-
gens to reach sufficient concentrations in airborne communities, 
thus we set 1% as the cutoff for a positive result based on the relative 
abundance of pathogens frequently observed in various air environ-
ments (37). Positives were reported only when the result for each 
pathogen exceeds both the true-positive threshold and the cutoff 
value simultaneously. On the basis of this criterium, both S. enterica 
and S. aureus were reported as positive in the air, while the other 
three pathogens were not.

To verify the results of our Raman-OSDL approach, the collected 
air sample was cultured on pathogen selective medium. This is the 
conventional way to identify pathogens based on the specific color 
of colonies (Fig. 5C and table S1). The colony of S. enterica with a 
specific color was detected, consistent with Raman-OSDL identifi-
cation. However, none of the other four pathogens formed cultured 
colonies, including S. aureus. To explore the reasons for this discrep-
ancy, we further compared the morphological and Raman spectral 
characteristics of the Raman identified S. aureus and a true S. aureus 
strain. The identified S. aureus in the air sample exhibits the typical 
spherical shape of S. aureus under the microscope (Fig. 5E). More-
over, its characteristic Raman peaks match well with those of the 
S. aureus used for training. The corresponding correlation coeffi-
cient between the two sets of Raman spectra was 0.94 (P < 0.001; 
Fig. 5F) and was much higher than that with the other four true 
pathogens (0.76, 0.79, 0.78, and 0.87) (fig. S6). To further confirm 
the results, metagenomic sequencing of this air sample was per-
formed, and we found S. aureus in the metagenome with a relative 
abundance of <1%. The apparent absence of this species following 
culture may be due to their subsistence in a VBNC state or low 
abundance that results in the bacteria being challenging to isolate 
via plating on agar. These results demonstrate the accuracy of 
Raman-OSDL in identifying S. aureus, even when present in the 
VBNC state or at low abundance.

We further verified the performance of Raman-OSDL in testing 
an air sample contaminated with five pathogens. Using the same re-
porting criteria, the positive presence of S. aureus and S. enterica in 
air was consistently reported by Raman-OSDL, metagenomics, and 
pure culture (Fig. 5, B and D). For E. coli, positive results were re-
ported by Raman-OSDL with a relative abundance >1%, but not via 
culture (no specific blue colony), or metagenomic sequencing with a 
low abundance (<1%) (fig. S5). For the other two airborne patho-
gens, A. baylyi and P. aeruginosa, all three methods produced nega-
tive results (relative abundance <1% or no specific colony), indicating 
that the abundances of these two pathogens in the air environment 
were too low to be reported as positive.

To test the generalizability of Raman-OSDL, we further extend-
ed the test to six more real-world air samples (1271 spectra, test set 
4 in Fig. 3H) from a range of environments in which the presence 
of pathogens is completely unknown, including dining hall, shop-
ping mall, kitchen waste plant, microbiology laboratory, public 
lavatory, and hospital. Both culture-dependent chromogenic meth-
od and culture-independent single-cell Raman method were used 
to detect pathogens from these air samples (Fig. 5H). One to four 
types of pathogens were identified in these samples via both 
methods. In addition, for all the positive pathogens identified by 
cultivation method, Raman method reported consistent pathogen-
positive results, while one additional Raman-reported pathogen 
was not observed to grow into colonies in some air samples. The 
reason could be due to their too low abundance to be isolated via 

plating or in dead or VBNC state in response to stresses such as 
disinfection. These results demonstrated the generalizability of 
Raman combined with OSDL in identifying pathogens in diverse 
air environments.

Notably, using the RAPD platform and the pretrained Raman-
OSDL model, the entire process from air sampling to obtaining test 
results requires just 1 hour for pathogens at abundance of >1%, in-
cluding air sampling (<20 min, 1000 liters), pretreatment (<20 min, 
washing three times), Raman measurement (<20 min, ~400 spec-
tra), and identification (<1 min). This end-to-end RAPD platform 
operates at a speed more than 10× faster than traditional culture 
methods (>12 hours to several days) and metagenomic sequencing 
(several days) (21,  22). Compared with traditional methods, the 
Raman-OSDL shows better comprehensive performance in terms of 
accuracy, rapidness, and sensitivity (Fig. 5G).

DISCUSSION
Here, we advance single-cell Raman spectroscopy as a means for 
rapid, accurate, and culture-free identification of airborne patho-
gens in real-world air environments. These heterogeneous matrices 
contain not only pathogens but also diverse unknown indigenous 
bacteria that cannot be fully included in a training model. This effort 
represents a breakthrough in Raman-based pathogen identification 
as it transitions from pure cultures to real-world environmental set-
tings. This transition is achieved by solving two challenges. The first 
is the development of an open-set aNN DL model that enables not 
only effective identification of known target pathogens but also re-
jection of diverse unknown airborne bacteria that previously gener-
ated misclassification and false positives. The second is the design of 
an MAGC device that enables construction of a Raman spectral 
training dataset of bacteria in aerosol states that improves identifica-
tion accuracy. The established Raman-OSDL method performs air-
borne pathogen identification within 1 hour from air sampling and 
single-cell Raman acquisition to final classification output. The sen-
sitivity is down to 1:1000, enabling identification of a broad concen-
tration range of target pathogens, including those at low abundances 
in air environments. We envisage our approach as a rapid and sensi-
tive tool for surveilling and identifying airborne pathogens in in-
door and outdoor environments that will assist in prevention of 
airborne infection transmission.

Direct identification of pathogens from complex environmental 
microbial communities has long been a major challenge for close-
set DL-based Raman spectral identification. Environmental micro-
biota are highly complex and include diverse and dynamically 
changing microorganisms. The air investigated in this study harbors 
almost all major bacteria phyla (e.g., Proteobacteria, Bacteroidetes, 
Actinobacteria, and Firmicutes) (fig. S5). Moreover, >99% of natu-
ral microorganisms have been reported as unculturable in a labora-
tory setting (30, 31). Such high diversity and high unculturability 
make it impossible to get pure isolates of all airborne bacteria such 
that they can be included in Raman spectral training models. Al-
though traditional close-set DL-based Raman spectroscopy exhibits 
good ability when all the testing classes are known during training, 
unseen/unknown classes not encountered during training emerge 
frequently in real-world environments, thus causing high false-
positive rates that greatly limits the application of close-set DL.

Here, inspired by the advent of OSDL as a means to address real-
world image recognition challenges (33), we proposed two OSDL 
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strategies of softmax + threshold and openmax + threshold. Their 
performances were tested and optimized for Raman identification 
of five typical pathogens collected from air in the presence of mul-
tiple unknown airborne species. For the openmax + threshold 
strategy, the average identification accuracy of the five airborne 
pathogens reached up to 93%, closely matching or even surpassing 
previous close-set ML accuracies for pure-cultured isolates (table 
S2) (28, 46). This open-set method achieved 84% accuracy in iden-
tifying previously unseen airborne bacterial classes and reduced the 
false-positive rate by 36% in comparison with the conventional 
close-set DL. This is an obvious improvement and demonstrates the 
success of Raman-OSDL in avoiding interference from unseen 
environmental microorganisms and its applicability in real-world 
pathogen identification. Moreover, in cases wherein some non-
pathogenic bacteria may exhibit very similar spectral characteristics 
to the target pathogen, such as E. coli shown here (Fig. 3G), we pro-
posed a further strategy of employing a binary classification model 
with a higher threshold to distinguish E. coli from other unknown 
bacteria and decreased the false-positive rate from 12 to 0% (Fig. 
3I). With the established training model, we successfully and simul-
taneously identified single and multiple pathogens directly collected 
from eight real-world air environments despite having completely 
blind information on the linkage between the collected spectra and 
microbial species. The identification results were cross validated by 
both metagenomic sequencing and culture-based methods, fully 
demonstrating its accuracy. Notably, the whole Raman dataset in-
cludes a total of ~23,000 spectra from target pathogens, non-
pathogenic air bacteria, and eight real-world air microbiota. The 
associated bacterial diversity and dataset size are higher than most 
previous works (28, 46–48).

The developed single-cell Raman-OSDL method displays advan-
tages in its rapidness and high sensitivity. It takes approximately 
1 hour for pathogens at abundance of >1% from air sampling to 
classification output, at least 10× faster than culture-based methods 
(12, 14). Single-cell detection allows direct identification of indige-
nous airborne bacteria without lengthy cultivation. Compared to 
metagenomic sequencing, it requires much fewer cell numbers and 
less air volume, thereby reducing the overall air sampling time from 
several hours to minutes. Moreover, single-cell resolution enables 
identification of airborne bacteria in the VBNC state that often con-
stitutes an important reservoir of pathogens in the environment 
(49). The detection sensitivity is down to a pathogen concentration 
of 1:1000, outperforming culture-based methods in effectively 
detecting low-abundance pathogens in practical settings.

The established RAPD platform relies upon an open-source 
OSDL algorithm and commercially available components that can 
be easily used by people lacking expertise in microbiology or com-
puter science. In addition, the aNN DL algorithm used in this work 
has been previously demonstrated to be able to identify pathogen-
derived extracellular vesicles down to species and even strain level 
(47). Thus, it should not be a big challenge to use the present RAPD 
platform to identify pathogens at a higher species or even strain lev-
els. RAPD also allows for easy generalizability to other pathogenic 
bacteria and fungi in air environments. Users can establish training 
libraries for Raman spectra of any airborne pathogens of concern 
and can identify them in various air environments. Beyond the 
airborne aerosol, the idea of single-cell Raman combined with 
open-set identification may be extendable to the detection of micro-
organisms in other complex environmental matrices, such as soil, 

water, and the gut. Moreover, the open-set algorithm may have 
broad applications in other spectra-based identification, such as 
mass spectra (50), nuclear magnetic resonance spectra (51), and 
Fourier transform infrared spectra (52).

To achieve real-time surveillance of pathogens in practical 
applications, sample throughput and automatization require future 
improvements. High throughput potentially can reduce the time 
required to acquire large numbers of single cells from an environ-
ment and can accelerate the identification of low-abundance patho-
gens. Our throughput using the current micro-Raman spectrometer 
can be approximately 1000 cells/hour (3600/3  =  1200). Using a 
state-of-art Raman detector, the shortest time to acquire Raman 
spectra of single bacteria can be 0.01 s, thus potentially increasing 
the throughput to >300,000 cells/hour (46). For automation, recently 
developed Raman spectrometer that combines microfluidics, posi-
tive dielectrophoresis, and software has enabled automatic sample 
introduction and single-cell Raman acquisition (53, 54). In a pre-
liminary study, this system enabled automatic acquisition of high-
quality spectra and classification of five airborne pathogens used in 
this study (fig. S7). Our RAPD hardware can potentially be inte-
grated with it to automatically monitor airborne pathogens and 
improve detection speed and throughput. These improvements rep-
resent a promising future direction for deploying Raman-OSDL for 
rapid surveillance of environmental pathogens.

To the best of our knowledge, this study marks the first ap-
plication of Raman-OSDL for rapid, accurate, and simultaneous 
identification of multiple pathogens in complex real-world en-
vironments. Such a technique is urgently needed for early warn-
ing and safeguarding against potential outbreaks and the spread 
of biosafety concerns in various environments. Raman-OSDL 
represents a major advancement for this purpose under One 
Health perspective.

MATERIALS AND METHODS
Pathogen-laden aerosol generation and collection
Five model bacterial pathogen isolates—including A. baylyi, E. coli, 
P. aeruginosa, S. aureus, and S. enterica—were cultured in Luria-
Bertani (LB) media at 37°C overnight as preparation for microbial 
aerosol generation (see table S3 for full isolate information). These 
pathogens represent the airborne pathogens commonly detected in 
aerosols collected from high-risk environments such as hospitals 
and open wastewater canals (39, 55, 56). Inspired by previous efforts 
(57), we constructed the present MAGC device for pathogen-laden 
aerosol generation and collection. The MAGC device is composed 
of four modules that perform different functions, including the mi-
crobial aerosol generation module (g), air sampling module (f), 
sterilization module (j), and the ventilation system (i, e, and d) (Fig. 
1 and fig. S1). By using the MAGC device, air samples containing 
specific pathogens can be obtained to construct a pathogenic bacte-
rial Raman dataset. The device workflow is as follows:

1) The sterilization module (j) sterilizes the air in the device for 
30 min using ultraviolet light.

2) The ventilation system (i, e, and d) works for 10 min to remove 
residual microbial cell material. Concurrently, clean outside air is 
brought into the device after removing outside microbes using a 
0.22-μm polycarbonate filter.

3) The aerosol generation module (g) works to convert liquid 
pathogen cultures into aerosols and releases them into the air.
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4) After suspended in the air for an hour, microbial aerosol was 
collected by the air sampling module (f, at a rate of 50 liter min−1) 
with a 3-μm (pore size) gelatine filter membrane (12602-80-ALK, 
Sartorius stedim biotech). To avoid the effect of gelatine on bacterial 
Raman signal, the gelatine membrane was then dissolved in sterile 
water, in which the microbes was centrifuged and washed with 
sterile water to leave only bacteria for further Raman spectral and 
metagenomic analysis. We further compared the Raman spectra of 
(i) bacteria obtained via the above processes, (ii) gelatine dissolved 
in water, (iii) potential gelatine residue after washing, and (iv) alu-
minum foil substrate using the same acquisition time (fig. S2). 
Raman signal of bacteria is much stronger than the dissolved gela-
tine, and the Raman signal of potential gelatine residue after wash-
ing [air-dried on aluminum (Al) foil] almost has no difference with 
aluminum foil substrate. These results indicated that the gelatine 
after washing has no contribution to bacterial Raman signal. Before 
collecting the next pathogenic aerosol, the MAGC device was steril-
ized and ventilated for 30 min, respectively.

Single-cell Raman spectroscopy measurements and 
data pre-processing
An aliquot of 3  μl of air-suspended/liquid pathogen samples after 
washed by sterile water was immediately spotted on an Al foil sub-
strate and air-dried at room temperature. Raman spectra of the dried 
samples were measured using a LabRAM Aramis (HORIBA Jonin-
Yvon, Japan) confocal micro-Raman system with a 532-nm Nd:YAG 
(Yttrium Aluminium Garnet) excitation laser and with a grating of 
300 g/mm. A 100× objective (Olympus, 0.90 numerical aperture) was 
used for Raman spectra acquisition. A 30 μm–by–30 μm XY map was 
taken using the mapping mode, with 3-μm spacing between spots to 
avoid overlap between different cells. Most spectra are acquired at the 
single-cell level due to the similar size between the laser spot and the 
bacterial cell (~1 μm). To maintain a consistent acquisition condition 
for all bacteria, the acquisition time for each spot was 3 s with three 
replicates (3 s × 3). Actually, an acquisition time of 3 s for once (3 s × 1) 
can already produce highly reproducible spectra (fig. S8). A small 
part of the spectra taken from multilayer or nonbacterial regions 
were excluded. The spectral range between 600 and 1800 cm−1 was 
used as the fingerprint for bacterial identification. The baseline of the 
spectra was automatically corrected, and the spectral intensity was 
normalized between 0 and 1 using Python scripts. In addition, only 
the spectra in fig. S7 were acquired using a Raman Flow Cytometry 
named FlowRACS (Qingdao Single-cell Biotech, China) as a prelimi-
nary study for automatic acquisition of spectra (54).

Raman dataset
The Raman dataset consists of spectra for the five airborne pathogens 
(i.e., A. baylyi, E. coli, P. aeruginosa, S. aureus, and S. enterica), five 
nonpathogenic isolates from air (i.e., Exiguobacterium acetylicum, 
P. megaterium, Bacillus velezensis, B. cereus, and S. lentus), and un-
known microbes collected from real indoor and outdoor air environ-
ments. The Raman dataset contains 7552 spectra including 6149 
spectra for the five airborne pathogens (>1000 for each class) and 
1403 spectra for the unknown microbes collected at three measure-
ment times. The above-unknown spectra contain various microbial 
species from air but do not contain the target five pathogens (verified 
by cultivation). In addition, another 3382 spectra were collected from 
two real-world air samples spiked with pathogens and six more 
real-world air samples from a range of environments in which the 

presence of pathogens is completely unknown, including dining hall, 
shopping mall, kitchen waste plant, microbiology laboratory, public 
lavatory, and hospital. All of the spectra were divided into six parts 
including two training sets and four test sets (Fig. 3H). Training set 1 
and test set 1 are used to optimize and test the DL algorithm from 
close-set to open-set. For one of pathogens that show high false-
positive rate even with openmax + threshold strategy, a further bi-
nary training and testing strategy (training set 2 and test set 2) with a 
higher threshold was developed to decrease misidentification of non-
pathogenic air bacteria to E. coli. The purpose of test set 3 with many 
more spectra is to explore the detection limit of the above optimized 
DL model. Please note by now, training set and test set 1 to test set 3 
are all from spectra with identity labels so as to calculate the identifi-
cation accuracy. Last, with the established training model, test set 4 
from bacteria in real air samples (without identity label) was collected 
to test its performance in complex real-world microbiota.

Traditional machine learning model
Three classical machine learning models, LDA (58), SVM (59), RF 
(60), and one DL model, aNN (47), were tested to compare their 
performance in airborne pathogen identification. As previously re-
ported (47), the aNN model had better performance at bacterial 
identification than traditional algorithms and was optimized on the 
basis of traditional convolutional neural network (CNN) (28) by the 
addition of an attention module. According to the results of the 
confusion matrix and the receiver operating characteristic (ROC) 
curve, the best performing model was used for subsequent pathogen 
identification of real-world air samples.

Open-set aNN model and training details
The open-set aNN model used in this work is based on the innovative 
integration of a previously reported aNN architecture (47) and the 
OSDL (33) algorithms. The innovation of this study is not the algo-
rithm itself, but the perfect combination of the two to effectively solve 
new practical environmental problems. The construction of aNN in-
cludes four convolution modules, four attention modules, and a fully 
connected layer (Fig. 1). The convolution block comprises four lay-
ers: convolution, batch normalization, pooling, and activation. The 
attention module was designed to enhance the significance of spe-
cific features within hidden layers through adaptive weighting, there-
by amplifying the importance of crucial features. The aNN model 
with the attention module can better extract the difference between 
bacterial Raman spectra in two dimensions including channel atten-
tion and wave number attention. Detailed mechanisms of the atten-
tion module were described in our previous work (47).

Traditional DL methods, including aNN, fall under the close-set 
condition, whereby all testing classes are known at time of training. 
This is often not applicable to real-world environments containing 
complex unknown classes. This is mainly due to the close nature of 
the softmax layer of traditional DL algorithms. The softmax activa-
tion function can produce a probability distribution over known 
classes and classify the input into one of the known classes with the 
highest probability, even if the probability of each class is low (Fig. 
3A). To adapt the aNN model into OSDL, a threshold δ was added to 
the maximum probability of the softmax output (softmax + thresh-
old). Although the softmax + threshold strategy may improve OSDL 
performance somewhat, it is still not sufficient to identify unknown 
classes. A previous study has shown that a false-positive result 
may also produce high-probability scores (44). Considering this 
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situation, we further adapted the aNN model by introducing a new 
model layer, openmax (33), to replace the softmax layer. Compared 
with the softmax layer, openmax can evaluate the probability that 
the input belongs to each known class and the probability that it does 
not belong to any known class (i.e., the probability of unknown 
class) (33). The openmax layer modified the activation vector from 
the fully connected layer and then created a probability distribution 
of each class based on the Weibull distribution, which can check the 
reliability of the result (60). The input will be classified as the known 
class only if the maximum probability does not belong to the un-
known class and is higher than the threshold value; otherwise, it will 
be classified as the unknown class (45). By removing the restriction 
that the sum of probabilities of known classes is 1 and rejecting in-
puts that are far from known classes, openmax can correctly handle 
unknown/unseen classes during identification. The detailed steps 
for openmax computation are shown below in Algorithm 1 (33) 

Algorithm 1. Detailed steps for openmax computation.
Require: Activation vector (AV) for v (x) = v1(x),⋯, vn(x)
Require: means μj and libMR models ρj =

(
τi, λi, κi

)

Require: α, the number of “top” classes to revise
Let s(i) = argsort

(
vj(x)

)
; Let ωj = 1

for i = 1,…, α do

end for
Revise activation vector v�(x) = v(x)◦ω(x)
Define v�

0
(x) =

∑
i
vi(x)

�
1−ωi(x)

�

Let y∗ = argmaxj P
�
(
y= j ∣x

)

Reject input if y∗ == 0 or P�
(
y= y∗ ∣x

)
< δ

where mean μj is the mean activation vector over only the correctly 
classified training samples. For each class j, ρj represents an estima-
tion value of the probability of an input being an outlier based 
on the extreme value theory and Weibull distribution. Parameters 
τi , λi , κi are associated with the data shifting, Weibull scale, and 
shape, respectively. The weight (ω) for the α largest activation classes 
was computed and used to scale the Weibull distribution probabili-
ty. The v′ is the AV after revised and P′ is the final openmax proba-
bility. δ is the threshold of the model.

The aNN model was trained using the Stochastic Gradient De-
scent (SGD) optimizer with learning rate of 0.1, momentum of 0.9, 
weight decay of 5 × 10−4, and batch size of 64. The predefined train-
ing epoch is 100 and 10-fold cross validation was conducted to verify 
the robustness of the model. To test the ability of the model to ad-
dress real-world situations, all classes during training were known, 
while both known and unknown classes existed during testing.

Validation using real air samples contaminated 
with pathogens
To validate the performance of the Raman-OSDL technology in 
the real world, pathogenic aerosols were directly released to a 

real-world air environment containing original indigenous microbes 
to produce two air environments contaminated with either single-
 or multiple-pathogens. The first air sample dataset, consisting of 
~900 spectra, was collected from the air environment contaminated 
with a single pathogen (i.e., S. enterica). The second air sample data-
set, consisting of ~1200 spectra, was collected from an air environ-
ment contaminated with multiple pathogens (i.e., A. baylyi, E. coli, 
P. aeruginosa, S. aureus, and S. enterica). To ensure the reliability of 
the results, we used the pretrained model and performed the same 
procedure without any fine-tuning adjustment. The detection re-
sults of the real air samples were verified by traditional methods, 
including cultivation and metagenomic sequencing. Cultivation was 
conducted using CHROMagar chromogenic media (CHROMagar, 
Paris, France) for each target pathogen (table S1). Colonies with specific 
colors were picked and used for full-length sequencing of the 16S rRNA 
gene using primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 
1492R (5′-TACGGYTACCTTGTTACGACTT-3′) to further species 
validation. Moreover, metagenomic sequencing was used to ana-
lyze the microbial composition of pathogen-contaminated air 
samples according to the previous procedure (61). Last, another 
six real-world air samples (~1200 spectra) from a range of environ-
ments in which the presence of pathogens was completely un-
known were used to demonstrate the generalizability of the method 
in different air environments.

Statistical analysis
A two-tailed Student’s t test was implemented in SPSS 25.0 to test 
the statistical significance between two groups with P values < 0.05 
considered significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S8
Tables S1 to S3
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