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Editorial 

Challenges and chances for deep-learning based target and organ at risk segmentation in 
radiotherapy of head and neck cancer 

One of the most important steps in the radiotherapy treatment chain 
is the definition of the target volume and the organs at risk. Especially in 
head and neck cancer (HNC) patients this can be a tedious task, as many 
organs at risk (OARs) are present, and primary tumor (GTVt), involved 
lymph nodes (GTVn), and elective target volumes need to be segmented. 
With the rapid development of deep-learning based medical image 
segmentation (DLS) in the past decade, research regarding auto- 
segmentation of OARs and target volumes in HNC is rapidly 
increasing. This trend was kickstarted with the 2015 HNC auto- 
segmentation challenge for OARs [1], and the 2020 HNC tumor seg
mentation challenge (HECKTOR) [2]. In these challenges, research 
teams from all over the globe compete in achieving the most accurate 
segmentations on a publicly provided dataset. These public datasets 
remain impactful beyond the scope of the challenges, as they are often 
used to demonstrate the impact of new DLS developments, as training 
set, or external validation set. This enables comparison of research re
sults, but also limits the variability of data-quality used in research 
leading to a potential mismatch in segmentation accuracy with real- 
world data. 

Themes that often are addressed in DLS research evolve around the 
impact of dataset size, dealing with the class imbalance problem, and 
especially for GTV segmentation, uni- vs multi-modal imaging. Recently, 
two papers in the area of DLS in HNC were published in Physics and 
Imaging in Radiation Oncology, by Henderson et al. [3] and Outeiral et al. 
[4]. The Henderson et al. paper focused on OAR segmentation (brain
stem, mandible, parotid glands, spinal cord) on computed tomography 
(CT) scans, while the latter addressed primary tumor segmentation in 
the oropharynx on magnetic resonance imaging (MRI)-only data. 

1. OAR segmentation in HNC 

Henderson et al. [3] used a publicly available CT dataset of 35 pa
tients [5], and assessed the influence of using one or three input chan
nels with different window level settings (soft-tissue, bone, brain), three 
different loss functions (multi-class weighted soft-dice (wSD), cross- 
entropy (XE) + wSD, and Exponential Logarithmic Loss (ExpLogLoss), 
and the use of transpose vs resize convolutions in the up-sampling part of 
their convolutional neural network (CNN). For external validation, they 
also took their optimal model configuration and trained with the 2015 
OAR challenge dataset, using the 25 patients of the training set for 
training, the 5 onsite testing patients for validation, and the 10 offsite 
patients for testing. The main findings were that the ExpLogLoss was the 
best loss function, and using three input channels with different window 
level settings improved results for the soft-tissue OARs, but not for the 

mandible. For the parotids, the three input channels HD95% scores were 
about 1 mm smaller compared to one channel. The type of convolutions 
had limited effect on the segmentation accuracy. The segmentation re
sults on the 2015 OAR challenge dataset were comparable to the state- 
of-the-art papers on the same data. 

It is interesting to see the impact of a simple pre-processing step 
offering one CT scan in three different contrast settings to the CNN. 
Almost at the same time as the Henderson et al. paper, a study on class 
imbalance in HN OAR segmentations by Tappeiner et al. got published 
[6]. They tested two strategies on the 2015 OAR challenge dataset using 
the nnUNet framework [7]. The first was to optimize the patch size to 
minimize the class imbalance. The second was to adapt the Dice loss 
function by making it class-adaptive, meaning that only classes available 
in the patch are in the calculation, instead of assuming a perfect score for 
missing classes. The main improvement came from reducing the stan
dard patch size (192 * 160 * 56) to a smaller patch size (90 * 80 * 48), 
resulting in a Dice similarity coefficient (DSC) increase of 0.02–0.03 and 
a reduction of the 95 % Hausdorff distance (HD95%) from 4 to 3 mm. The 
adaptation of the loss function had very limited effect. 

When comparing Henderson et al. to Tappeiner et al. there is an 
interesting difference. Henderson et al. did not use patches in their 
training, but automatically cropped the scans to anatomically consistent 
sub-volumes with the dimensions of 200 × 200 × 56 voxels [8], slightly 
larger than the standard patch size in the Tappeiner et al. paper. This 
automated cropping step assured that only the relevant part of the CT 
scans was used for training, and possibly had a bigger impact on the 
segmentation accuracy than the presented methods. It would be inter
esting to know if patch size would still affect results when imaging data 
is first automatically cropped to the right area of interest. 

In the ideal world, testing of methods that optimize CNN perfor
mance in the setting of limited training data need to be evaluated in a 
large dataset, to put performance into perspective. Fang et al. nicely 
showed that for most HNC OARs, a training set of 40 patients can pro
duce DSC scores of about 95 % of what you are able to reach if you have 
a larger dataset of up to 800 patients [9]. Unfortunately, DSC is not the 
full story of segmentation accuracy, as it is volume dependent, and MSD 
and HD95% might be more representative for how segmentation differ
ences influence the dose distribution. One can speculate that for MSD 
and especially for HD95%, more patients are needed to achieve similar 
levels, as these measures are more influenced by inter-observer variation 
in the ground truth data. Unfortunately, both of these measures were not 
presented in the study by Fang et al. [9]. 

Disentangling the problem of inter-observer variation (IOV) from the 
accuracy of DLS tools is challenging, as the manual contour is the only 
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“truth” available, and it is dependent on who has done the segmentation. 
With more and more DLS tools for OARs being used in the clinics, it now 
becomes possible to assess auto-segmentation accuracies in clinical 
practice [10,11]. By assessing the adaptations of the auto-contours, 
insight is obtained into where observers disagree with the DLS tools. 
Brouwer et al. [10] showed in a study on 103 HNC patients that organs 
at risk can be put in a standardized reference frame, to systematically 
study where DLS contours are being adapted. They showed that some of 
the systematic adaptations could be linked to the performance of the 
DLS tool, while others were based on interpretation differences of 
delineation guidelines between observers. A similar study on OAR seg
mentation in lung (n = 350) and breast cancer patients (n = 362) 
showed that analyzing adaptations of auto-contours from DLS in real 
world data is a powerful tool to identify potential improvements in the 
DLS tools, the workflow, and the scan protocols. 

2. GTV segmentation in HNC 

Use of DLS tools in HNC GTV segmentation has not really reached 
clinical practice yet. This might be due to lack of segmentation accuracy 
so far, in combination with the higher impact of a segmentation error on 
the dose distribution compared to OAR segmentation errors. In the first 
HECKTOR challenge on GTV segmentation (n = 201 for training), the 
winning team reached an average DSC of 0.76 and an HD95% of 3.27 mm 
[2]. In the second challenge (n = 224 for training) the scores only 
slightly improved to DSC = 0.77 and HD95%=3.09 mm for the winning 
team [12]. It is important to note that these numbers are mean scores, 
which are not fully representative for performance on the entire test set. 
When results are presented in boxplots, there is a wide variety in scores, 
with a subset of patients with high DSC scores (>0.85), but also outliers 
towards much lower scores [13]. With the dataset of the 2nd HECKTOR 
challenge being only a small expansion of the first dataset, it will be 
interesting to follow what will happen in the 2022 challenge, where 524 
patients are available for training. 

The recent paper by Outeiral et al. [4] was based on an MR dataset of 
230 oropharyngeal cancer patients (training n = 190, validation n = 20, 
testing n = 20), with each a 2D T1- and T2-weighted scan, and a 3D T1 
weighted scan with gadolinium. The main objective was to address class 
imbalance challenges with two strategies. The first was to implement a 
fully automated 2-stage approach, where first a UNet was trained to 
localize a bounding box around the GTV, followed by training a UNet to 
segment the GTV using cropped data. The authors earlier published on 
the use of observer defined bounding boxes to improve segmentation 
results in a subset of this dataset [14]. The second approach was to 
compare four different loss functions, Dice-loss, Generalized-Dice-loss, 
Tversky-loss, and Unified-Focal-loss. These different loss functions were 
only evaluated in an end-to-end 3D UNet setting, without the image 
cropping. The main findings were that Generalized-Dice-Loss lead to the 
best results (median DSC = 0.54, HD95% = 10.6 mm) but differences 
with other loss functions were not significant. The 2-stage approach 
further improved the segmentations to a median DSC = 0.64 and HD95% 
= 8.7 mm. 

The segmentation accuracy in this MR-only paper is not as good as 
what is produced in the HECKTOR challenge, where PET-CT data was 
used. Direct comparison is of course challenging, as these are different 
datasets of different patients and hospitals. Ren et al. recently showed in 
a multi-modal dataset of CT, PET, and MR data, that modality combi
nations which include the PET image (CT-PET, MR-PET, and CT-PET- 
MR) resulted in better DLS results compared to using CT-MR only 
[15]. This could of course be biased by which data is used to produce the 
ground truth delineation that is used for training and evaluation. If 
clinicians mainly look at the PET-CT data, and have the MRI on the side, 
the ground truth delineations might not fully cover the MR imaging 
information. However, in Outeiral et al. the ground truth GTVs were 
delineated on the 3D T1 gadolinium scans with the other MR modalities 
available, so using the same data that was used for DLS. In another 

recent paper, Wahid et al. investigated the use of different anatomical 
(T1, T2) and functional MR sequences (ADC, Ktrans, Ve) on the seg
mentation accuracy [16]. On a small dataset of only 30 patients, they 
compared segmentation accuracy using a 3D residual UNet with T2 only, 
T2 plus T1, ADC, Ktrans, or Ve, or all together in a leave-one-out cross- 
validation setting. Best results were obtained with T2 + T1, and inter
estingly, using all modalities together led to worse results than T2 only. 
It is of course questionable if a complex research question on different 
combinations of imaging modalities is sufficiently powered with only 30 
patients. In a Turing test, three independent observers were not able to 
distinguish the DLS from the ground truth contour. More importantly, in 
a subjective assessment, 60 % of the DLS contours were deemed clini
cally acceptable, compared to only 64 % of the ground truth de
lineations. This finding illustrates the challenges in tumor segmentation 
in HNC in the first place, which is directly affecting the supervised DLS 
tools for tumors. 

Regarding the 2-stage approach, it is interesting to compare the 
automated results with the previous paper using observer defined 
bounding boxes. In the first study, two observers manually placed a 
bounding box, with an average shift compared to the ground truth 
(bounding box of the ground truth tumor segmentation) of 3.0 and 8.9 
mm [13]. This difference in bounding box accuracy led to a difference in 
segmentation accuracy of median DSC = 0.74 and HD95% = 4.6 mm for 
observer 1 and median DSC = 0.67 and HD95% = 7.2 mm. In the fully 
automated approach, the localization step had an average shift of 8.7 
mm, resulting in a median DSC = 0.64 and HD95% = 8.7 mm. The fully 
automated results are therefore more comparable to observer 2, and 
illustrate that the accuracy of the localization directly affects the accu
racy of segmentation. It is also important to note that in the HECKTOR 
challenge, the imaging data is provided including an automatically 
generated bounding box around the oropharyngeal region. 

In summary, DLS in HNC is a fast-developing research field, and 
expectations for the future are high. For OAR segmentation, DLS is used 
in more and more clinics, providing a great opportunity to assess per
formance in real-world-data. More research regarding the influence of 
dataset size is welcome, especially using more clinically relevant accu
racy parameters such as HD95% and MSD. The class imbalance problem 
is being addressed in many ways, and from the discussed literature, a 
combination of localization/cropping and loss-function optimization 
might be the way to go. For GTV segmentation, DLS tools are still mainly 
within the academic setting, and actual use in clinical practice is limited. 
The main challenge in this area is not in the dataset size or the class 
imbalance, it is in the quality of the ground truth segmentations. 
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