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Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA
damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organi-
zation. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin
structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and
ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of
the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chro-
matin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome
stability.
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Introduction

In eukaryotes, the genome is organized in different compac-
tion states. Schematically, euchromatin, which defines the
open compaction state, contains active genes, whereas hetero-
chromatin, which is the repressive compacted chromatin, in-
cludes gene-poor regions and different types of repeated ele-
ments with a specific chromatin structure (Nishibuchi and
Déjardin 2017). The ends of linear chromosomes, or telo-
meres, are protected from recognition by the DNA damage
response (DDR) machinery. This prevents chromosome end-
to-end fusion and cell death (Palm and de Lange 2008). In
mammals, telomeres are wrapped with nucleosomes and form
a heterochromatin structure (Schoeftner and Blasco 2010).
Telomeres consist of an array of tandem repetitions of the
hexanucleotide TTAGGG motif that spans over several kilo-
bases (10-15 kb in humans and up to 50–100 kb in laboratory
mice). Because of the semi-conservative process of DNA

replication, telomeric DNA shortens at each cell cycle, a phe-
nomenon known as the “end replication problem” (i.e., the
inability of DNA polymerases to fully replicate linear ge-
nomes) (Gilson and Géli 2007). Once telomeric DNA short-
ening reaches a critical point, this triggers the permanent exit
from cell cycle, preventing the deleterious loss of genetic ma-
terial encoded by the chromosome ends. However, telomeric
DNA can be elongated by the telomerase enzyme or by alter-
native mechanisms (Cesare and Reddel 2010) (Fig. 1, upper
panel). Here, we review the current knowledge on the role of
canonical chromatin factors on telomere dynamics, particular-
ly how the telomere chromatin structure regulates telomere
maintenance in meiosis and in early development.

Maintenance of telomere chromatin structure
in mammalian cells

Components of telomeres that protect against DDR

The Shelterin complex is one of the main components of
mammalian telomeres (Palm and de Lange 2008) and consists
of six main proteins in mammals: TRF1, TRF2, POT1
(POT1a and POT1b in mice), TPP1, and TIN2 (Fig. 1).
TRF1, TRF2, and POT1 bind to telomeric double- and
single-stranded DNA, respectively. The current model of
Shelterin assembly suggests that each complex binds
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independently to telomeric DNA repeats according to a
“beads on a string” pattern, the length of which is proportional
to the telomere length (Erdel et al. 2017). Then, Shelterin
protects the telomere end from recognition by the DDR ma-
chinery, thus preventing deleterious end-to-end chromosomal
fusions (van Steensel et al. 1998). TRF2 is a key player in
telomeric DNA protection by regulating T-loop formation at
telomeres and by suppressing DDR (reviewed in Feuerhahn
et al. 2015). This last function could depend on Shelterin-
mediated chromatin compaction, thereby preventing telomere
expansion and hindering its recognition by the DDR machin-
ery (Bandaria et al. 2016). However, two recent studies using
stochastic optical reconstruction microscopy (STORM) and

assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) showed robust DDR lo-
calization at telomeres following co-depletion of TRF1 and
TRF2, despite the fact that their depletion did not significantly
affect telomeric chromatin compaction and accessibility
(Timashev et al. 2017; Vancevska et al. 2017). This suggests
that telomere recognition by DDR is most likely due to chang-
es in telomeric chromatin structure and composition rather
than to decompaction.

Moreover, in mammalian cells, telomeres and subtelomeric
regions harbor specific histone posttranslational modifications
(PTMs) and proteins that are typically found at pericentric
heterochromatin (PCH), such as trimethylation of lysine 9 of

Fig. 1 Chromatin structure of human and mouse telomeres. Telomeric
chromatin is organized in a closed state with repressive histone
posttranslational modifications (PTM), similar to those observed at
pericentric heterochromatin (PCH) domains. Telomeric nucleosomes are
labeled with H3K9me3 and possibly H4K20me3, while subtelomeric
DNA is also methylated at CpG dinucleotides. H3.3-containing
nucleosomes are provided by the ATRX/DAXX complex. Although
telomeric chromatin is heterochromatic, subtelomeric regions contain
promoters that promote the transcription of the long non-coding RNA
TERRA. Telomere length is maintained by the action of the enzyme
telomerase that catalyzes the addition of extra TTAGGG repeats to

chromosome ends. Shelterin complexes bind along the telomere and
protect from recognition by the DNA damage pathway. For graphical
clarity, only one shelterin complex (TRF1, TRF2, POT1a/b, TPP1, and
TIN2) is shown (top). In a subset of cancer cells, telomerase is not used to
elongate telomeres. Instead, alternative lengthening of telomere (or ALT),
allows recombination-mediated elongation. ATRX is frequently lost in
ALT cells. Repressive marks are reduced, and TERRA RNA is more
abundant, leading to putative recombinogenic DNA-RNA hybrids (R-
loops). Variant repeats in ALT cells can induce binding of NR2C/F
transcription factors to telomeres, leading to chromosomal
rearrangements and genomic instability (bottom)
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histone H3 (H3K9me3), trimethylation of lysine 20 of histone
H4 (H4K20me3), hypoacetylation of histone H3 and H4, and
HP1 proteins (Schoeftner and Blasco 2010). However,
H4K20me3 was not found at telomeres using mass spectrom-
etry approaches (Saksouk et al. 2014). Subtelomeric regions
that contain CpG dinucleotides are also methylated. Like
PCH, telomeric DNA is considered to be in a closed and
repressed heterochromatic environment. Nevertheless, tran-
scription by RNA polymerase II is observed at subtelomeric
regions, leading to the production of the long non-coding
RNA TERRA that coats telomere ends (López de Silanes
et al. 2014). Although its precise function remains enigmatic,
TERRAwas proposed to play several roles in telomere main-
tenance (reviewed in Azzalin and Lingner 2015).

ATRX and alternative lengthening of telomeres

By perturbing the chromatin state of telomeres, several studies
demonstrated the critical influence of the chromatin structure
on telomere homeostasis and length (O’Sullivan and
Almouzni 2014). Stem cells and most cancer cells use telo-
merase to add de novo TTAGGG repeats and prevent telomere
shortening in order to maintain high cell proliferation (Fig. 1,
upper panel). However, a subset of cancer cells (about 10–
15%) do not rely on telomerase activity but use a
recombination-mediated alternative lengthening of telomere
(ALT) mechanism (ALT cells) (Dunham et al. 2000) (Fig. 1,
bottom panel). ALT cells can be identified by the presence of
PML bodies that contain telomeric DNA, Shelterin proteins,
DNA repair factors and chromatin proteins, and that are
known as ALT-associated PML bodies (APBs). Other ALT
features include telomere clustering, extrachromosomal
DNA of telomeric repeats (both linear and circular DNA),
telomere sister-chromatid exchange (T-SCE), telomere length
heterogeneity, and absence of telomerase (O’Sullivan and
Almouzni 2014). Although these features are often considered
as ALT hallmarks, they may be observed also in non-ALT
cells in some conditions. For instance, human embryonic stem
(ES) cells contain extra-circular telomeric DNA that results
from trimming of overly long telomeres (Rivera et al. 2016).
Therefore, these characteristics are most likely to be the con-
sequence rather than the causality of recombination occurring
at telomeres. However, recombination is a requirement for
ALT maintenance, because depletion of homologous recom-
bination proteins impairs ALT and results in telomere short-
ening (Zhong et al. 2007). ALT cells contain variant telomeric
repeats that are recognized by the nuclear orphan receptor
NR2C/F that can promote chromosomal rearrangements
(Déjardin and Kingston 2009; Marzec et al. 2015). Indeed,
ALT-mediated telomere maintenance is associated with in-
creased genomic instability.

Because of its occurrence in cancer cells, it is important to
understand the molecular mechanisms and factors involved in

ALT induction. Interestingly, absence of ATRX expression or
localization at telomeres is a frequent feature of ALT cancer
cell lines (Heaphy et al. 2011; Lovejoy et al. 2012) (Fig. 1).
ATRX is a chromatin remodeler that contains a SWI/SNF2-
type ATPase/helicase motif and a plant homeodomain-like
zinc finger (Watson et al. 2015). ATRX forms a complex with
the histone H3.3 chaperone DAXX that regulates histone
loading at telomeres (Wong et al. 2010; Lewis et al. 2010).
Strikingly, when ectopic ATRX is expressed in ATRX-null
human osteosarcoma U2OS cells, the ALT pathway is re-
duced. This effect requires DAXX function (Clynes et al.
2015; Napier et al. 2015). Several hypotheses were proposed
to explain how ATRX mutations promote ALT (reviewed in
Amorim et al. 2016). ATRX is involved in the formation of
repressed heterochromatin structures at several genomic loci,
such as intracisternal A particle (IAP) retrotransposons and
imprinted loci (Voon et al. 2015; Sadic et al. 2015). Loss of
ATRX function leads to reduced incorporation of histone H3.3;
therefore, chromatin marks cannot be maintained, presumably
leading to telomere derepression and increased TERRA tran-
scription (Udugama et al. 2015; Nguyen et al. 2017).
Transcribed telomeric repeats form RNA-DNA hybrids (R-
loops) that are supposed to promote the formation and stabi-
lization of G-quadruplexes at telomeric repeats. As G-
quadruplexes can impair replication fork progression, the in-
creased rate of replication fork stalling might lead to DNA
damage and drive homology search and recombination at
telomeric regions (Arora et al. 2014).Another study suggested
that in the absence of ATRX, the histone variant macroH2A1.1
binds to the poly(ADP-ribose) polymerase tankyrase 1, thus
preventing its binding to telomeres and the resolution of co-
hesion between sister chromatids. Persistent cohesion would
then promote recombination by T-SCE (Ramamoorthy and
Smith 2015). However, activation of the ALT pathway might
not depend only on ATRX. Indeed, ATRX inactivation in pri-
mary or immortalized cell lines does not trigger ALT (Napier
et al. 2015). Moreover, ALT is more frequently observed in
cancer cells of mesenchymal origin (Jiao et al. 2011; Heaphy
et al. 2011). These observations suggest that additional chro-
matin or cellular events (e.g., DNA damage at telomeres)
could be required to promote ALT in the absence of ATRX
(Hu et al. 2016). For instance, co-depletion of the two paralogs
of anti-silencing function 1 (ASF1a and ASF1b) leads to ALT
(O’Sullivan et al. 2014). ASF1 is a histone chaperone of both
H3.1/H3.3-H4 dimers that plays a critical role in nucleosome
transfer during DNA replication. Thus, destabilization of nu-
cleosomes at telomeres could affect the chromatin state, lead-
ing to ALT induction.

Safeguarding telomeric chromatin during DNA replication

DNA replication involves the faithful duplication of the genetic
material and proper re-establishment of the parental chromatin
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states in both daughter strands. Chromatin reassembly after the
replication fork passage requires efficient maintenance mecha-
nisms to preserve the epigenetic information and cell identity.
For instance, replication fork stalling might affect proper trans-
fer of nucleosomes and maintenance of chromatin marks, thus
impairing the binding of readers to their specific histone PTM
(Groth et al. 2007; Jasencakova et al. 2010). Purification and
analysis of the proteins present on chromatin associated with
newly synthesized DNA showed that heterochromatic proteins,
such as SUV39H1/2, DNMT1, and HP1, are readily found on
nascent chromatin, while the re-establishment of H3K9me3 on
parental and new histones occurs over several cell cycles
(Alabert et al. 2014, 2015).

As telomeres resemble fragile sites, they may challenge the
DNA replication machinery. Moreover, ALT cells undergo
replication stress due to the presence of long, recombinogenic
telomeres. Therefore, specific proteins are required for proper
replication of the chromosome ends and for preserving geno-
mic integrity (Higa et al. 2017). ATRX is critical for resolving
DNA structures, such as G4-quadruplexes, that could induce
replication fork stalling at repetitive regions of the genome,
including telomeres (Law et al. 2010). As ATRX interacts
with H3K9me3, through its ADD (ATRX-DNMT3-
DNMT3L) domain, and with HP1, through a conserved motif
(Iwase et al. 2011), impropermaintenance of nucleosomes and
histone PTM at telomeres might prevent ATRX binding, thus
compromising telomeric DNA stability. Replication defects
could impair ATRX loading and affect telomere maintenance.
Several Shelterin components also participate in the proper
maintenance of telomere stability by recruiting specialized
enzymes to resolve deleterious secondary DNA structures that
might form at telomeres. For instance, TRF1 and TRF2 asso-
ciate with the helicases Werner syndrome RecQ helicase
(WRN) and Bloom syndrome protein (BLM) that are involved
in the resolution of G-quadruplexes and Holliday junctions.
The functions of these two helicases do not fully overlap.
WRN can promote the restart of collapsed forks by break-
induced replication (BIR). WRN associates with SWI/SNF-
related, matrix-associated, actin-dependent regulator of chro-
matin, subfamily A-like 1 (SMARCAL1), another helicase
that interacts directly with replication protein A (RPA) and is
involved in replication fork restart and genome stability
(Ciccia et al. 2009). In the absence of SMARCAL1, collapsed
replication forks at telomeres are converted to DNA double-
strand breaks that promote end-to-end chromosome fusion
and compromise cell viability (Cox et al. 2016). Thus,
SMARCAL1, BLM, andWRN are essential factors to prevent
replicative stress of both normal and ALT telomeric DNA. T-
loops also represent a barrier to replication forks and must be
unwound during DNA synthesis. This could be partly medi-
ated by the helicase RTEL1 (Vannier et al. 2012; Sarek et al.
2015) because RTEL1 loss induces replication fork stalling
and C-circle accumulation.

Replication of chromosome ends is not only a matter of
replicative stress management but also of preservation of the
chromatin state. Indeed, subtelomeric regions contain genes
and TERRA promoters, the activity of which must be regulat-
ed. Modifications in the chromatin status or DNAmethylation
levels of telomere and subtelomeres can alter TERRA expres-
sion (Schoeftner and Blasco 2008). Uncontrolled TERRA ex-
pression might favor the accumulation of RNA-DNA hybrid
structures that could impair fork progression and stability. In
mouse ES cells, the telomeric protein RIF1 associates with
multiple H3K9 histone methyltransferases to maintain
subtelomeric heterochromatin silencing (Dan et al. 2014).
Upon Rif1 knockdown, this heterochromatic structure is lost
and the subtelomeric Zscan4 gene is derepressed, leading to
an overrecombination phenotype (Zscan4 function is
discussed below). Similarly, the epigenetic regulator structural
maintenance of chromosomes (SMC) flexible hinge domain-
containing 1 (SMCHD1) is involved in the silencing of
subtelomeric DUX4 repeats (Lemmers et al. 2012). In human
cells, DUX4 is localized in the subtelomeric region of chro-
mosome 4q. This locus is composed of tandem repeats of 10
to 100 D4Z4 units organized in a condensed heterochromatic
state in somatic cells. Genetic or chromatin alterations of the
repeat array are associated with facioscapulohumeral dystro-
phy (FSHD) (reviewed in Daxinger et al. 2015). SMCHD1 is
a non-canonical SMC protein identified in a screen for genes
that induce a variegated expression pattern of a multi-copy
transgene in the mouse (Blewitt et al. 2005). In SMCHD1
heterozygous individuals, SMCHD1 levels are reduced and
this was correlated with increased DUX4 expression.
Although many facets of SMCHD1 regulation are still under
investigation, it appears essential for the maintenance of the
heterochromatic state of tandem repeats, including telomeric
DNA.

Thus, maintenance of the chromatin state of telomeres in
daughter cells is vital for genome stability and cell identity.
The interplay between chromatin regulators and the replica-
tion machinery or Shelterin proteins is an efficient system to
perpetuate chromatin states as the cells divide. In the next
chapters, we will discuss how chromosome ends are regulated
during the drastic chromatin remodeling that occurs during
germ cell differentiation and early embryonic development.

Chromatin dynamics at telomeres during early
mammalian development

Telomere structure in the germline

The germline has the critical task of producing the male and
female gametes (i.e., spermatozoa and oocytes) through a pro-
cess called gametogenesis. Importantly, during this process,
male and female germ cells undergomeiosis, a specialized cell
division characterized by one round of DNA synthesis
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followed by two rounds of cell division, resulting in the pro-
duction of haploid gametes. During and after meiosis, germ
cells undergo chromatin remodeling, leading to specific DNA
and histone methylation patterns, and to histone to protamine
exchange in male germ cells (Kota and Feil 2010).
Perturbation of these processes can result in the reduction or
loss of germ cells, leading to infertility, or in aneuploidy, lead-
ing to abortive pregnancies or congenital abnormalities in the
newborn. Besides their role in protecting the chromosome
ends, telomeres also contribute to the dynamic process of
germ cell development (Reig-Viader et al. 2016; Keefe
2016). The following section will focus on recent insights
on the role of the telomere structure in germ cell function.
The chromatin dynamics in germ cells has been described
elsewhere (Kota and Feil 2010; Gill et al. 2012).

In male germ cells, high telomerase activity is considered
as a hallmark of undifferentiated spermatogonia (Pech et al.
2015). Then, telomerase activity progressively declines during
gametogenesis and is absent in spermatozoa (Wright et al.
1996; Eisenhauer et al . 1997; Achi et al . 2000).
Nevertheless, telomere length in spermatozoa is among the
longest in mammalian cells. Importantly, it has been shown
that sperm telomere length correlates with embryo quality and
thus with good clinical outcome in in vitro fertilization proce-
dures (Yang et al. 2015). Moreover, in late-generation telome-
rase-null mice, the germ cell compartment is strongly deplet-
ed, leading to almost empty seminiferous tubules (Lee et al.
1998). Thus, telomerase activity appears critical for male germ
cell homeostasis, although it cannot be excluded that other
lengthening mechanisms might take place during spermato-
genesis (Tanemura et al. 2005). Conversely, and despite some
discrepancies, telomeres in female germ cells do not elongate
throughout oogenesis. Telomere length in oocytes is shorter
than in somatic cells, most likely due to low or no telomerase
activity and long exposure to reactive oxygen species before
ovulation (Keefe et al. 2006; Liu et al. 2007).

Interestingly, in late-generation telomerase-null mice, mei-
osis is impaired due to altered synapsis of homologous chro-
mosomes and decreased recombination (Liu et al. 2004b).
Thus, proper telomere length homeostasis is essential for ga-
metogenesis. During meiosis, telomeres tether chromosomes
together to the nuclear envelope, leading to the formation of
the “bouquet”, a characteristic structure of clustered telomeres
(Scherthan 2007). This “bouquet” conformation promotes
alignment and pairing of homologous chromosomes through
cytoplasmic microtubule movements. Telomeres are attached
to the nuclear membrane by their interaction with the linker of
nucleoskeleton and cytoskeleton (LINC) complex that in-
cludes the highly conserved transmembrane proteins
KASH5 and SUN1 (Shibuya and Watanabe 2014). The
LINC complex connects telomeres to cytoplasmic motors
(i.e., dynein and dynactin), allowing chromosome pairing
(Ding et al. 2007). Telomere association with the LINC

complex is mediated by the TERB1/2-MAJIN complex
(Shibuya et al. 2015). TERB1 is a meiosis-specific protein
with affinity for telomeric DNA (Daniel et al. 2014). In early
prophase, a chimeric complex of Shelterin and TERB1/2-
MAJIN is bound to telomeres. During meiosis progression,
Shelterin is released from the complex, leaving only TERB1/
2-MAJIN on the telomere. This meiosis-specific complex is
essential for proper chromosome tethering and recombination,
while protecting the chromosome ends. Therefore, and despite
the fact that the Shelterin complex is considered as a hallmark
ofmammalian telomeres (Palm and de Lange 2008), inmature
sperm cells, telomeres are specifically anchored to the nuclear
periphery (Haaf and Ward 1995) through a sperm-specific
protein complex that does not include TRF1 and TRF2, but
contains a sperm-specific variant of histone H2B (Gineitis
et al. 2000).

The higher order chromatin structure of sperm in mice
specifies regulatory information to be used during embryonic
development (Jung et al. 2017). However, it is not known
whether there is structural information embedded in telomeric
DNA that could be transmitted to the embryo. Indeed, only
few data are available on the composition of telomeric chro-
matin in germ cells. TERRA is highly abundant in meiotic
prophase I of both male and female human and mouse germ
cells (Reig-Viader et al. 2014). TERRA precise role in this
context is unclear, but it could be involved in telomerase reg-
ulation during gametogenesis or chromosomal movements,
particularly homologous chromosome synapsis and pairing
during meiosis. Indeed, in interphasic cancer cells, TERRA
transcription correlates with higher telomere movements
(Arora et al. 2012). Moreover, in somatic and ES cells, short
telomeres or altered telomeric DNA structure can promote
TERRA transcription (Schoeftner and Blasco 2008).
Interestingly, in human somatic cells, H3K9me3 enrichment
at telomeres might repress TERRA transcription, presumably
through the action of SUV39H1 (Arnoult et al. 2012), while in
human ES cells, reduction of TERRA expression impairs
SUV39H1 recruitment and promotes telomere lengthening
(Zeng et al. 2017). Thus, certain TERRA-dependent targeting
of chromatin regulator might be cell specific. In mouse germ
cells, loss of Suv39h1 and Suv39h2 results in impaired synap-
sis between homologous chromosomes, leading to spermato-
genesis failure and infertility (Peters et al. 2001). However,
this seems to be related to the loss of H3K9me3 at PCH and
aberrant centromere clustering (Takada et al. 2011). Similarly,
loss of Setdb1, another H3K9 methyltransferase, in the fe-
male germline leads to altered kinetochore-spindle interac-
tions, bipolar spindle organization, and chromosome segre-
gation defects (Kim et al. 2016; Eymery et al. 2016).
However, the telomeric structure of Setdb1−/− germ cells
was not specifically evaluated. Therefore, the precise mo-
lecular composition of telomeric chromatin in germ cells
awaits future investigations.
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Telomere dynamics during early development

Mammalian development starts by the fusion of two highly
differentiated cells, the sperm and the oocyte. This event,
commonly referred to as fertilization, marks the beginning of
early embryonic development and is characterized by the for-
mation of a totipotent 1-cell zygote. This unique cell will
further divide and give rise to the whole embryo and extra-
embryonic tissues, such as the placenta. As the embryo de-
velops, the DNA methylation and histone PTM profiles at
chromatin domains undergo extensive maturation, associated
with changes in the expression of genes and repeated elements
(Albert and Peters 2009). Proper and timed reorganization of
the chromatin landscape in early embryos is required for their
successful development (Beaujean 2014). Due to the limited
number of available cells, the first studies were predominantly
performed by microscopic analysis using indirect immunoflu-
orescence or tagged proteins in combination with mouse ge-
netic models (Santos et al. 2005; Burton and Torres-Padilla
2010). These studies revealed that broad genome domains
show highly dynamic DNA methylation and histone PTM
patterns during preimplantation development and that
impairing the establishment of such patterns is deleterious
for the embryo (Posfai et al. 2012). Due to their role in chro-
mosomal stability and cellular homeostasis, it is important to
understand telomere contribution and regulation during pre-
implantation embryo development.

First of all, the establishment of proper telomere length is of
crucial importance for reproduction/fertility and embryo de-
velopment. Knockout mouse models gave the first insights of
telomere elongation role in mammalian development. Mice
lacking the telomerase RNA component (mTR−/−) do not
show any obvious phenotype and can be maintained for at
least six generations, suggesting that the overly long telomeres
of laboratory mice could compensate for the telomeric se-
quence reduction. Nevertheless, telomeric DNA is gradually
lost at each generation with increasing incidence of chromo-
somal abnormalities (Blasco et al. 1997), particularly in highly
proliferative cells. Indeed, late-generation mTR−/− mice have
hematopoietic defects, impaired mitogen-induced prolifera-
tion of primary splenocytes, and severe germ cell depletion
(Lee et al. 1998). Male germ cells, which require a high level
of telomerase activity for their efficient maintenance, are
strongly depleted in these animals, resulting in decreased fer-
tility (Lee et al. 1998; Pech et al. 2015). Although gametes
from earlier generationmTR−/−mice (generation 2 or 3) can be
used for in vivo or in vitro fertilization, they are less efficient
than wild-type gametes and lead to aberrant embryos with
pronucleus formation defects, cytofragmentation, and im-
paired preimplantation development (Liu et al. 2002). Of note,

if short telomeres increase the risk of genomic instability, too
long telomeric DNA also can compromise telomere stability
and should similarly be avoided. In human and mouse ES
cel ls , te lomeric DNA trimming is performed by
NBS1/XRCC3 (Rivera et al. 2016). Whether these complexes
also regulate telomeric length during early embryonic devel-
opment is currently not known.

Work from Liu and colleagues suggests that telomeres are
elongated dramatically in the absence of any detectable telo-
merase activity after egg fertilization and activation (Liu et al.
2007). This surprising result warrants further investigations,
as it implies the activation of an ALT-like mechanism at this
developmental stage. During the first cell cycles, telomere
length increases by several kilobases. This is incompatible
with the sole activity of telomerase because it allows only
the addition of a few hundred base pairs per division.
Interestingly, early embryos show high T-SCE rate and co-
localization of recombination proteins with TRF1 foci, a com-
mon phenotype of ALTcancer cells. In embryos, about half of
the telomeres are localized close to PCH, while the other half
is dispersed in the nucleoplasm, which is consistent with the
acrocentric nature of mouse chromosomes (Aguirre-Lavin
et al. 2012). These studies did not report any strong clustering
of telomeres, which could be indicative of an ALT phenotype
(Marzec et al. 2015). However, as embryonic chromatin is
highly dynamic, these events might not be easily captured
when using fixed material and might require live-imaging
techniques. On the other hand, telomerase activity is clearly
detected at the morula-blastocyst transition inmammals, when
telomere length is stabilized (Wright et al. 1996; Schaetzlein
et al. 2004). These intriguing observations suggest that the
telomere maintenance mechanism switches from
recombination-based “ALT-like” elongation after fertilization
to telomerase activation prior to the blastocyst stage (Fig. 2).
In human cancer cells, these two mechanisms are not always
mutually exclusive. Perrem et al. (2001) and Cerone et al.
(2001) describe co-occurrence of ALT with telomerase. In
cancer cells, the ALT pathway generates heterogenous telo-
mere length with very long and also very short telomeres.
Such short telomeres could be generated by breakage in the
telomere tract, which could either be extended by break-
induced replication (BIR) or by the telomerase to ensure ge-
nome stability (Ford et al. 2001; Dilley et al. 2016). In con-
trast, it does not seem that very short telomeres are generated
during early embryonic development, suggesting that the
mechanism at play is not a typical ALT pathway. It could be
that the transition between ALT-like and telomerase telomere
lengthening might not be abrupt and that both mechanisms
could co-exist during a short period in order to restore a ho-
mogeneous telomere length at the end of the preimplantation
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Fig. 2 Telomere dynamics during mouse embryo preimplantation
development. Extensive chromatin remodeling occurs at the onset
of embryo development, with a histone-to-protamine replacement
after fertilization, formation of the two parental pronuclei and
major zygotic genome activation (ZGA) at the two-cell stage. In
this environment, telomeres are elongated by a recombination-
mediated mechanism that is telomerase-independent at the one-
and two-cell stage. It is not known whether this mechanism is
also used at later stages. Then, telomerase activity is readily
detected starting from the morula-blastocyst transition. In mouse

zygotes, ATRX labels PCH, and by the morula stage, ATRX is
clearly targeted to telomeres. Telomere chromatin maturation
might allow ATRX targeting by yet unknown mechanisms, such
as recognition of histone PTM, a specific chromatin factor or
binding to TERRA that is expressed at the 4-cell stage (TERRA
dynamics at later stages are still unclear). DUX, a major driver of
ZGA in both mouse and human zygotes, promotes expression of
endogenous retroviruses (MERVL), H3K9 lysine demethylases from
the Kdm4 family and Zscan4 that favors telomere elongation by
recombination in mouse ES cells
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development.Moreover, it is not clear why and how telomeres
are elongated by a telomerase-independent pathway in early
embryos. Studies in cultured mammalian cells suggest that
alteration of the telomere chromatin state could favor the
ALT pathway (O’Sullivan and Almouzni 2014). Indeed, the
chromatin landscape during early embryonic development is
highly dynamic and more open than that of somatic cells (Wu
et al. 2016). Single-nuclei Hi-C studies suggest that the chro-
matin of mouse preimplantation embryos exist in a “relaxed”
state after fertilization, while higher-order structures are pro-
gressively re-established as embryonic development proceed
(Du et al. 2017; Ke et al. 2017). Whether such “openness” of
the genome at the early stages of development could favor the
ALT pathway is unknown. Based on the present knowledge
from studies of the ALT pathway in cancer cells and early
embryonic development, several factors could contribute to
telomere lengthening control in preimplantation embryos.
Here, we will focus on the ATRX/DAXX complex and
DUX/ZSCAN4 pathway (Fig. 2).

The ATRX/DAXX complex

As mentioned before, the ATRX/DAXX complex is a key
repressor of the ALT pathway. Mouse Atrx or Daxx genetic
ablation is embryonic lethal at E9.5 (Michaelson et al. 1999;
Garrick et al. 2006). Daxx−/− embryos are growth-retarded
and show massive apoptosis, while embryos in which Atrx is
inactivated at the 8–16-cell stage grow and implant normally,
but die later because of defects in extraembryonic
trophectoderm formation. The presence of defects in telomere
maintenance in these embryos was not determined. Atrx and
Daxx mRNA are maternally provided in the embryo (RNA
sequencing data from Park et al. 2013). Interestingly, ATRX
and DAXX undergo a spatiotemporal re-localization during
preimplantation embryo development. After fertilization,
ATRX is localized at maternal condensed chromosomes, then
it labels predominantly PCH domains (which assembles
around prenucleolar bodies) of maternal origin where it re-
presses transcription of the underlying major satellite repeats
(De La Fuente et al. 2015). Conversely, DAXX is concentrat-
ed on paternal PCH, defining an interesting epigenetic asym-
metry that contrasts with the classic view of ATRX and
DAXX co-localization at these regions, as observed in oocytes
and most somatic cells. Interestingly DAXX targeting at IAP
retrotransposons in ES cells does not rely on ATRX (Hoelper
et al. 2017). Thus, ATRX and DAXX could operate in differ-
ent complexes during development and assemble on chroma-
tin with different kinetics. Strikingly, by the morula stage,
ATRX and DAXX are mostly co-localized at telomeres (He
et al. 2015). Therefore, ATRX/DAXX absence from telomeres
in the early stages of development is compatible with an ALT-
like mechanism and suggests that telomeric chromatin un-
dergoes changes during development, thus allowing the

specific loading of ATRX and DAXX at the end of preimplan-
tation. The reasons for ATRX and DAXX absence at telo-
meres in the early stages of embryo development are unclear.
Specific requirements for ATRX targeting (i.e., H3K9me3 or
HP1 proteins) could be missing on telomeric chromatin just
after fertilization and be re-established only later during de-
velopment. The paternal genome undergoes massive
protamine-to-histone exchange right after fertilization and this
could impair ATRX loading. At the one- and two-cell stage,
H3K9me2/3 is low on the paternal pronucleus and global
levels on both pronuclei start to increase at the four-cell stage
onward (Liu et al. 2004a; Yeo et al. 2005). Such dynamics in
the H3K9methylation could thus favor ATRX loading at telo-
meres only latter during development after histone methyla-
tion levels are restored. Also, it would be interesting to test
whether the kinetics of ATRX and DAXX loading at telo-
meres differs according to the parental origin (telomere
transgenerational inheritance and parental origin are discussed
below).

Similarly, it is not known how ATRX and DAXX are load-
ed at telomeres later in development. It was suggested that in
mouse ES cells, DNA hypomethylation promotes
ATRX/DAXX loading at tandem repeats (e.g., IAP or telo-
meres). This could lead to SUV39H1 recruitment to mediate
H3K9me3 and heterochromatinization (He et al. 2015). Such
model is appealing because the genome undergoes global hy-
pomethylation during preimplantation and this could favor
ATRX binding (Messerschmidt et al. 2014). However, telo-
meres and IAP are not regulated by DNA methylation in ES
cells, and IAP retains high levels of DNA methylation
throughout preimplantation (Maksakova et al. 2013; Arand
et al. 2015). Furthermore, subtelomeric DNA methylation is
not altered in induced pluripotent stem (iPS) cells generated
from mouse embryo fibroblasts, suggesting that, at least dur-
ing in vitro reprogramming, DNA methylation is maintained
at these loci (Marion et al. 2009). Whether this also applies to
preimplantation embryos is not clear and will require further
investigations.

During early embryo development, several transposable el-
ements and tandem repeats undergo massive transcription
(Peaston et al. 2004; Probst et al. 2010; Fadloun et al. 2013).
As exemplified with PCH, transcription of major satellites is
required for efficient maturation of these loci and embryo de-
velopment progression (Casanova et al. 2013). TERRA signals
are detected by RNA FISH by the 4-cell stage (Probst et al.
2010). We could hypothesize that TERRA transcription in the
embryo represents a starting signal for recruiting ATRX and/or
other chromatin factors to telomeres and establishing a canon-
ical H3K9me3/HP1 heterochromatic state (Nguyen et al.
2017). Thus, deciphering the regulation of ATRX/DAXX re-
cruitment at telomeres during natural embryo development
could help better understanding heterochromatin establishment
at telomeric DNA.
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The DUX/ZSCAN4 pathway

After fertilization, maternally inherited transcripts control de-
velopment before their rapid clearance. The embryonic ge-
nome is then activated (zygotic genome activation (ZGA)),
marking the maternal-to-zygotic transition (Svoboda et al.
2015). In mice, a minor ZGA occurs at the one-cell stage
followed by a major ZGA at the two-cell stage (four- to
eight-cell stage in humans). Zinc finger and SCAN domain-
containing 4 (Zscan4) is among the genes that are specifically
expressed during ZGA (Falco et al. 2007) (Fig. 2, bottom
panel). In mice, the Zscan4 cluster includes six genes and
three pseudogenes, while humans only have one copy of
ZSCAN4. In preimplantation embryos, Zscan4 expression
peaks at the two-cell stage in mice and at the four- to eight-
cell stage in humans (Vassena et al. 2011; Ishiguro et al. 2017).
Interestingly, a subpopulation of proliferating mouse ES cells
(about 1–5% of all cells) expresses transiently transcripts that
are detected in two-cell embryos, such as the MERVL endog-
enous retrovirus and the Zscan4 cluster. Accordingly, these
cells are referred to as “2C-like” cells (Macfarlan et al.
2012). ES cells that express Zscan4 (“Zscan4-associated
event” or “Z4 event”) are characterized by rapid and
telomerase-independent telomere lengthening. Telomeres are
bound by recombination proteins and undergo T-SCE
(Zalzman et al. 2010). In ALT cancer cells these features are
associated with genomic instability. Conversely, Zscan4 ex-
pression in ES cells is associated with improved karyotypes
and developmental potency and is required for long-term cul-
ture of ES cells (Amano et al. 2013). Similarly, Zscan4 im-
proves iPS cell reprogramming efficiency, when expressed for
only a few days (Hirata et al. 2012; Jiang et al. 2013).
However, uncontrolled Zscan4 expression leads to over-re-
combination, telomere length heterogeneity, and chromosome
fusions (Dan et al. 2014). In preimplantation mouse embryos,
Zscan4 genetic ablation or sustained expression impairs de-
velopment progression and blastocyst implantation (Falco
et al. 2007). Thus, fine-tuned Zscan4 expression is required
for proper genome stability in ES cells and early embryo
development.

Interestingly, the chromatin state of ES cells that express
Zscan4 is characterized by global DNA hypomethylation, his-
tone hyperacetylation, and transcription of heterochromatin
domains (pericentromeres, telomeres, and retrotransposons)
(Akiyama et al. 2015; Eckersley-Maslin et al. 2016).
Hypomethylation of subtelomeric DNA is associated with
recombination-mediated telomere lengthening, while hyper-
methylation, as observed in Tet−/− ES cells, is associated with
reduced recombination and telomere shortening (Gonzalo
et al. 2006; Yang et al. 2016). Tet1 knockdown in epiblast-
like cells (EpiLC) results in Zscan4 decrease and telomere
shortening, while Tet TKO in ES cells cultured in 2i condi-
tions (“ground state”) induces increased Zscan4 expression

and telomere elongation (Lu et al. 2014; Khoueiry et al.
2017). Thus, Tet enzymes may regulate Zscan4 levels with
different outcomes depending on the cell type or pluripotency
status. Accordingly, the hypomethylated state of Zscan4-ex-
pressing cells should favor recombination-mediated telomere
elongation. The expression and localization of activating and
repressive chromatin regulators in ZSCAN4-positive cells
suggest that ZSCAN4 and, most likely, other factors promote
first an open and then repressed chromatin state, presumably
to allow the transient nature of the “2c-like” state in ES cells
(Akiyama et al. 2015). Indeed, a prolonged “2c-like” state in
ES cells might lead to the irreversible erasure of specific chro-
matin marks, such as parental imprints (Eckersley-Maslin
et al. 2016).

How are Zscan4 genes induced during ZGA? In ES cells,
the transcription factor TBX3 induces Zscan4 expression
through modulation of DNMT3b and TET2 levels, thereby
reducing DNA methylation at the Zscan4 locus (Dan et al.
2013). However, single-cell transcriptomic data in preimplan-
tation mouse embryos suggest that Tbx3 expression is restrict-
ed to the inner cell mass (Nestorov et al. 2015). Therefore, a
Tbx3 role in Zscan4 expression at the two-cell stage seems
unlikely. Several studies identified human DUX4 and mouse
Dux genes as master regulators of many genes and
retrotransposons, including Zscan4, during ZGA (De Iaco
et al. 2017; Hendrickson et al. 2017; Whiddon et al. 2017).
What drives the expression of Dux/DUX4 is still unclear. Its
expression appears to be associated with chromatin relaxation
or destabilization, as observed in mouse ES cells in which the
chromatin assembly factor (CAF-1) Chaf1a is downregulated
and in myoblasts from patients with FSHD (Geng et al. 2012;
Ishiuchi et al. 2015). The early embryo genome is character-
ized by an open chromatin structure and dynamic histone mo-
bility (Bošković et al. 2014; Wu et al. 2016). This environ-
ment could favor Dux/DUX4 upregulation and consequently
Zscan4 gene transcription to promote a rapid, but transient
telomere lengthening and karyotype correction. Maternally
and/or zygotically expressed factors that repress the 2c-like
state in ES cells (such as SETDB1, HP1, and TRIM28) could
participate in Dux and Zscan4 repression and allow the estab-
lishment of a canonical heterochromatin state at later develop-
mental stages (Macfarlan et al. 2012; Maksakova et al. 2013;
De Iaco et al. 2017).

Chromatin marks at telomeres and genome reprogramming

After fertilization, the embryo genome undergoes a rapid re-
organization or “reprogramming” that is essential for proper
ZGA, totipotency acquisition, and development. Nuclear
reprogramming can by studied by somatic cell nuclear transfer
(SCNT) in which a donor nucleus (usually from a somatic
cell) is injected into an enucleated oocyte. The oocyte will
reprogram the donor nucleus in a similar way as the
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reprogramming of the maternal and paternal genomes after
natural fertilization (Sepulveda-Rincon et al. 2016). Another
method consists in expressing keys transcription factors
(Oct4, Sox2, Klf4, and Myc) in somatic cells to induce
pluripotency (Takahashi and Yamanaka 2016). In this way,
iPS cells have been successfully generated in different mam-
malian species. However, experimental reprogramming is not
equivalent to what observed following natural fertilization,
suggesting that somatic cells contain specific factors or chro-
matin determinants that are refractory to artificial
reprogramming. Telomere rejuvenation is a feature of success-
ful reprogramming and its efficiency can be enhanced by spe-
cific alterations of the chromatin state (Liu 2017). Strikingly,
H3K9 methylation appears to be a roadblock to efficient
reprogramming in both SCNT and iPS cells (Chen et al.
2013; Matoba et al. 2014; Chung et al. 2015). During iPS cell
induction, telomeres adopt a chromatin structure similar to
that of ES cells with reduced H3K9me3 (Marion et al.
2009). Reduction of H3K9me3 levels by ectopic expression
of the H3K9 demethylase KDM4B in SCNT-derived embryos
helps to restore transcriptional reprogramming and induces
Zscan4 expression (Matoba et al. 2014). Moreover, Kdm4b
or Zscan4 expression enhances telomere elongation and the
successful formation of iPS cells (Jiang et al. 2013; Sridharan
et al. 2013). In pluripotent cells, SUV39H1/2 and SETDB1
could control H3K9me3 levels at telomeres (García-Cao et al.
2004; Udugama et al. 2015). Both maternally inherited
Suv39h2 and Setdb1 transcripts are found in the zygote
(Park et al. 2013). However, the absence of ATRX binding
to telomeres, which relies predominantly on H3K9me3 and
HP1, suggests that H3K9me3 methyltransferases are not
targeted to these regions in the zygote. Genome-wide studies
of the chromatin landscape in early embryos will surely pro-
vide a better understanding of the dynamic organization of
telomeres during preimplantation development.

Inheritance and parental origin

The discovery that after the histone to protamine exchange,
the fraction of histones retained in mature sperm carries PTM
led to the idea that male germ cells could transmit epigenetic
information to the progeny (Gill et al. 2012). Moreover, the
retained histones are not randomly positioned in the genome.
Indeed, ChIP-sequencing analysis of nucleosomes and histone
PTM in human and mouse mature sperm cells led to the iden-
tification of a specific chromatin structure at developmentally
regulated genes (Hammoud et al. 2009; Brykczynska et al.
2010; Erkek et al. 2013). Removal of histone marks from
sperm impairs the expression of embryonic genes in a
paternal-specific manner and leads to impaired embryo devel-
opment (Teperek et al. 2016). Chromatin marks and more
generally higher-order chromatin structures in sperm cells
(i.e., 3D organization, enhancers) are supposed to influence

genome organization and gene expression in the embryo
(Jung et al. 2017). Several studies reported that telomeres in
human mature sperm cells contain nucleosomes (Zalenskaya
et al. 2000), and that nucleosomes can be found in gene-poor
regions and at several repeated elements in sperm (Carone
et al. 2014; Samans et al. 2014). However, bioinformatics
analysis of repeated elements is to be considered very careful-
ly because the obvious repetitive nature of these elements
requires proper data treatment to prevent misleading conclu-
sions (Royo et al. 2016). Moreover, chromatin higher-order
structure of both parental genomes is drastically remodeled
from fertilization until blastocyst stage (Du et al. 2017).
Therefore, it is not clear whether in gametes, telomeres have
a specific chromatin structure that could be inherited and with
a role in early development.

The parental origin influence, if any, on telomeric chroma-
tin regulation is also quite enigmatic. A parental-specific chro-
matin structure is visible at PCH domains in the zygote.
H3K9me3 and HP1 are absent from paternal PCH, while they
are highly enriched at maternal PCH. Conversely, Polycomb
complexes bind to these domains and repress expression of
major satellites from the paternal pronucleus (Puschendorf
et al. 2008). To analyze the influence of the parental origin
on telomere regulation, Liu and colleagues analyzed telomere
lengthening in mouse parthenotes (embryos with a genome of
only maternal origin). Telomere elongation was comparable in
parthenotes and in in vitro fertilized zygotes, suggesting that
the factors controlling telomere lengthening in embryos are
provided by the oocyte (Liu et al. 2007). Interestingly,
ATAC-seq and DNAse-seq genomic analyses, which provide
allelic information in early embryos, suggest that chromatin
accessibility is comparable in the two parental genomes with
the exception of imprinted genes (Wu et al. 2016; Lu et al.
2016). Therefore, paternal chromatin accessibility is
reprogrammed shortly after fertilization to similar levels as
for maternal chromatin. This suggests that the parental-
specific differences in chromatin states of telomeres, if they
exist, do not exert a strong influence on their regulation at the
onset of development.

Conclusions

Telomeres are essential structure to ensure genome stability,
tissue homeostasis, and embryo development. Telomeric
chromatin plasticity is a striking feature that allows the dy-
namic regulation of chromosome ends following develop-
mental cues, cell cycle, or metabolism. These plasticity fea-
tures are crucial during natural development or experimental
reprogramming of somatic nuclei. Thus, understanding the
mechanisms that operate at telomeric DNA in these conditions
will greatly help the development and optimization of assisted
reproductive technologies or therapeutic reprogramming
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techniques (Sepulveda-Rincon et al. 2016). Furthermore,
chromatin modifications at telomeric repeats can alter the telo-
mere lengthening mode, switching to the ALT pathway
(O’Sullivan and Almouzni 2014). Although telomerase is
the most common mechanism of telomere maintenance in
cancer cells, treatment with telomerase inhibitors can lead to
the appearance of ALT (Hu et al. 2012). Thus, understating
how the chromatin state can promote one or the other telomere
maintenance mode could lead to the development of therapeu-
tic strategies to enhance anti-telomerase treatments.
Interestingly, ALT or ALT-like lengthening also occurs in
physiological conditions (Liu et al. 2007; Neumann et al.
2013). Deciphering the role of such mechanisms during evo-
lution and comparing the mechanisms used in other organisms
should provide clues on the advantages of using a specific
telomere-lengthening mode during the development and
lifespan of an organism.
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