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Abstract Information about the total chemical composi-

tion of primary metabolites during grape berry develop-

ment is scarce, as are comparative studies trying to

understand to what extent metabolite modifications differ

between cultivars during ripening. Thus, correlating the

metabolic profiles with the changes occurring in berry

development and ripening processes is essential to progress

in their comprehension as well in the development of new

approaches to improve fruit attributes. Here, the develop-

mental metabolic profiling analysis across six stages from

flowering to fully mature berries of two cultivars, Cabernet

Sauvignon and Merlot, is reported at metabolite level.

Based on a gas chromatography–mass spectrometry

untargeted approach, 115 metabolites were identified and

relative quantified in both cultivars. Sugars and amino

acids levels show an opposite behaviour in both cultivars

undergoing a highly coordinated shift of metabolite asso-

ciated to primary metabolism during the stages involved

in growth, development and ripening of berries. The

changes are characteristic for each stage, the most pro-

nounced ones occuring at fruit setting and pre-Veraison.

They are associated to a reduction of the levels of

metabolites present in the earlier corresponding stage,

revealing a required catabolic activity of primary

metabolites for grape berry developmental process. Net-

work analysis revealed that the network connectivity of

primary metabolites is stage- and cultivar-dependent,

suggesting differences in metabolism regulation between

both cultivars as the maturity process progresses. Fur-

thermore, network analysis may represent an appropriate

method to display the association between primary

metabolites during berry developmental processes among

different grapevine cultivars and for identifying potential

biologically relevant metabolites.

Keywords Vitis vinifera � Grapevine berry � GC–MS �
Grapevine metabolome � Metabolic profiling

1 Introduction

Grape is a non-climacteric fruit and one of the most

important crop in the world. Approximately 7.400.000 ha

are dedicated to its cultivation worldwide, with an esti-

mated production of 67Mt (FAO 2008, http://faostat.fao.

org/site/567/default.aspx). Around 71 % of this production

is used for wine, 27 % as fresh fruit, and 2 % as dried fruit

(raisins). Grape growth, development and ripening has

been widely studied in the literature due to the particular

characteristics of the processes in this plant species and the

interest to understand the physiological and biochemical

events that determine grape and wine quality (Coombe and

McCarthy 2000; Conde et al. 2007; Agudelo-Romero et al.

2013a; Kuhn et al. 2014).

In the last few years, multiple studies mainly based on

transcriptomic analysis and some other works on
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proteomics or integration of omics data have provided

information at molecular levels of genes and proteins

involved in the multiple physiological and biochemical

events which may determine growth, development and

ripening of grapevine berries (Waters et al. 2006; Pilati

et al. 2007; Deluc et al. 2007; Deytieux et al. 2007;

Grimplet et al. 2009; Zenoni et al. 2010; Zamboni et al.

2010; Fasoli et al. 2012; Torniellei et al. 2012; Rienth et al.

2014).

Wine composition and quality is determined by a

number of parameters reflecting variability due to the

source of the biological material used (most prominent the

grape variety/maturity and the yeast strain) as well as

variability inherent in the various processing steps per-

formed during the wine making process and storage. Thus

based on the main requirements by controlling both the

processing and the biological material, the wine-makers

should be able to have access to management of wine

quality in a highly standardized way. Whereas the post-

harvest processing steps can be fairly well controlled, the

control of the biological starting material, notably the

berries with respect to parameters such as berry size, sugar

content, optimal harvest time, content of anthocyanins,

phenolic, and volatile compounds which have been found

to be essential for wine quality, is much more difficult to

achieve. In addition to being determined by the grapevine

variety these parameters are strongly dependent on the

exact environmental conditions (soil, temperature, humid-

ity, UV radiation, etc.) and agronomics practices (Kliewer

and Dokoozlian 2005; Lund and Bohlmann 2006; Holt

et al. 2008). A comprehensive understanding of the diverse

physiological and biochemical processes involved in the

biological stages of grape fruit formation, development and

ripening should help achieving better control of this pro-

cess ultimately leading to an improvement of grape berry

quality and, in consequence, wine quality.

Grape development from flowering to ripening is usu-

ally divided in three phases based on morphological and

biochemical changes (Coombe and McCarthy 2000):

(i) early fruit development, characterized by exponential

growth and accumulation of solutes such as tartaric and

malic acid; (ii) veraison, a stage mainly characterized by

berry color change and growth reduction; and (iii) ripening,

by resuming growth and accumulation of sugars, antho-

cyanins and flavor compounds. There are several studies at

the transcript level describing the underlying changes on

the gene expression level based on either EST sequencing

or array hybridization approaches either considering dif-

ferent developmental stages or some specific tissues of

grape berries (Peng et al. 2007; Pilati et al. 2007; Zenoni

et al. 2010, Fortes et al. 2011; Guillaumie et al. 2011;

Lijavetzki et al. 2012, Diaz-Riquelme et al. 2012; Sweet-

man et al. 2012; Agudelo-Romero et al. 2013a). With

respect to proteomics, several studies have characterized

protein levels in different grape tissues, such as flesh, fruit

and skin, as well as wines, under different stress conditions

and different stages of ripening (Grimplet et al. 2009;

Palma et al. 2011; Sharathchandra et al. 2011; Martı́nez-

Esteso et al. 2013). Large efforts have been dedicated to

characterize the chemical components of grapevine tissues.

However, those studies have been performed in a classic

targeted approach mostly focused on the specific class of

compounds, such as organic acids malic and tartaric acid,

phenolics, volatile compounds or plyamines (Ribéreau-

Gayon et al. 2000; Oliveira et al. 2004; Adams 2006;

Kennedy et al. 2006; Teixeira et al. 2013; Agudelo-Romero

et al. 2013b).

More comprehensive studies on the metabolite level

have been reported in the last few years by using different

platforms available for the high throughput analysis of

plant metabolites and metabolomes, varying in their

selectivity and sensitivity. However, most of such studies

are limited to the metabolome analysis of grapevine berries

of a determined cultivar and/or some few berry develop-

mental stages (Deluc et al. 2007; Grimplet et al. 2009;

Zamboni et al. 2010; Fortes et al. 2011), to a certain plant

tissue (Lawo et al. 2011) or to a particular kind of stress

condition (Hong et al. 2012). More comprehensive and

comparative studies focused on the characterization of

grapeberry development have been recently reported con-

sidering diverses grapevine cultivars, several develop-

mental berry stages/tissues, or combining different

‘‘omics’’ platforms in the analysis (Torniellei et al. 2012).

For instance, Ali et al. (2011) described biochemical

changes during four grape berry development stages of five

grape cultivars from Portugal by NMR spectroscopy, while

Dai et al. (2013) perfomed a metabolomic description of 10

different developmental phases of a specific clone of

Cabernet Sauvignon (CS) by using LC–MS from either

field-grown vines or fruiting cuttings grown in the green-

house. Metabolic profiles during late berry development in

the Italian grapevine cultivar Corvina have been also

reported (Toffali et al. 2011) as well metabolic phenotyp-

ing of berries in different grape cultivars (Son et al. 2014)

or of grapes of controlled appellation regions (Teixeira

et al. 2014). Some other studies advise omics data inte-

gration of transcriptomics, proteomics and metabolomics

during grape development for the cultivar Corvina (Zam-

boni et al. 2010), the cultivar Trincadeira (Fortes et al.

2011) and Aragones and Touriga Nacional (Agudelo-

Romero et al. 2013a).

Grape berry development involves changes in size and

and composition. From being small, firm, and acidic with

little sugar and desirable flavours or aroma the berries turn

into larger, softened, sweet, highly flavoured, less acidic,

and highly coloured fruit. The development of these
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characteristics determines the quality and attributes of the

final fruit. Primary metabolites are key components and are

playing a crucial role during the different stages of berry

development and the generation of flavor and aroma

properties. For instance, during the first growth period

chlorophyll is the main pigment present in fruit which are

also rich in organic acids such as tartaric and malic acids.

Thereafter, a huge increase of sugars like glucose and

fructose is observed as well as an augmentation of phenolic

and aromatic compounds, whereas malate content declines

(Davies and Robinson 1996). On the other hand, the bal-

ance acid-sugar partially determines the development of

flavour in table grapes (Boss and Davies, 2001) while

aromas arise from volatile compounds such as terpenes,

norisoprenoids, and thiols stored as sugar or amino acid

conjugates (Lund and Bohlmann 2006). Thus, the correct

ripening of the grape berry is fundamental for both the

commercial value of the fruit (table grape) and the quality

of wine.

In consequence, changes in chemical substances

(metabolites) levels are playing a role in both growth and

maturity of the grape berry but it is still unclear to what

extent primary metabolite modifications differ between

cultivars during ripening as well it is still unknown how

such metabolites are connected or interacting during

development and ripening stages in different grape vine

cultivars. In order to gain a broader and deeper insight on

metabolic composition of grapevine berry development

and to evaluate the extent to which metabolite levels vary

between wine grape cultivars and how they are interacting

with each other during ripening of the berries, we per-

formed a comparative non-targeted metabolic analysis by a

high-throughput metabolic profiling platform based on

GC–MS technology of six developmental stages of grape

berries from field-grown vines, starting with flowers and

finishing with mature berries samples of the cultivars CS

and Merlot (ME). Multivariate tools were utilized to inte-

grate and explore the measured data. In addition to com-

paring the resulting data directly via relative concentrations

of individual compounds, a more integrated view based on

metabolite–metabolite correlations by using a network

approach was used (Fukushima et al. 2011; Sakurai et al.

2011; Sweetlove and Fernie 2005; Toubiana et al. 2013).

2 Materials and methods

2.1 Plant material

Grapevine (V. vinifera cv CS and ME) berries at different

stages of development were collected from vines located in

Colchagua Valley, Chile, during two consecutive field

seasons (2008–2009 and 2009–2010). Corresponding to

their developmental stage, collected berries were separated

from their clusters and around 10–50 berries were pooled

together to produce a biological sample. We did not sep-

arate berry tissues, such as flesh, skin and seed. We

grouped the collected grapevine berry samples into six

developmental stages according to Coombe (1995) (see

Supplementary Fig. 1), where each stage composed of

around ten biological samples for each cultivar, five sam-

ples per year. Phenological stages analyzed and their cor-

responding numbers according to the ‘Modified Eichorn-

Lorenz classification system’ (Coombe 1995) and samples

from each cultivar were collected during the indicated days

post-anthesis (DPA). Flowering (EL-23, 0 DPA), Fruit

setting, (EL-29; Cabernet Sauvignon: 16 DPA; Merlot: 19

DPA), Pre-veraison, (EL-33; Cabernet Sauvignon: 43

DPA; Merlot 39 DPA), Veraison, (EL-35; Cabernet Sau-

vignon: 52 DPA; Merlot: 44 DPA), Post-veraison, (EL.36;

Cabernet Sauvignon: 60 DPA; Merlot: 50 DPA) and

Ripening (EL-38; Cabernet Sauvignon: 115 DPA; Merlot:

103 DPA). After collection, samples were immediately

frozen in liquid N2 and stored at -80 �C until processing.

For the purpose of metabolite analysis as well as metabolic

network reconstruction, we decided to consider these 6

stages as reference points and compare them to each other

between the two cultivars studied.

2.2 Metabolite extraction and analysis by GC–MS

Metabolic extraction and derivatization of metabolites

from whole grape berries for GC–MS analysis were per-

formed by using a modified method of the one previously

outlined by Lisec et al. (2006). 15 mg of fresh tissue were

mixed with 1 mL of extraction buffer (pre-cooled at

-20 �C), containing H2O, MeOH, CHCl3 (1:2.5:1), and

vortexed for 10 s. Deuterated cholesterol and 13C sorbitol

were spiked in the extraction buffer as internal standards in

order to identify potential chromatographic errors. Mix-

tures were subsequently placed in a shaker for 5 min at

4 �C. The homogenized material was centrifuged at

14000 rpm for 2 min and the supernatant transferred to

new tubes. 400 lL of pure water were added to the

supernatant, vortexed, and centrifuged at 14,000 rpm for

2 min. The polar (upper) phase was transferred and divided

in two aliquots, one for metabolite measurements, and the

other was kept as back-up and stored at -20 �C. A portion

of the first aliquot was diluted in a ratio of 1:20 for a

second injection to allow measurement of highly abundant

sugars. Both aliquots were dried out in a vacuum concen-

trator without heating. The first aliquot was dried in a

vacuum concentrator without heating. The derivatization

protocol was performed as described by Lisec et al. (2006).

Sample measurement order was randomized in order to

avoid experimental drifts. GC–MS data were obtained
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using an Agilent 7683 series autosampler (Agilent Tech-

nologies GmbH, Waldbronn, Germany), coupled to an

Agilent 6890 gas chromatograph—Leco7 Pegasus 2 time-

of-flight mass spectrometer (LECO, St. Joseph, MI, USA).

Identical chromatogram acquisition parameters, as those

previously described, were used (Weckwerth et al. 2004).

2.3 Metabolite data pre-processing and statistical

analysis

Raw GC–MS chromatograms were imported to Leco

ChromaTOF software (version 3.25), baseline corrected,

and exported to machine independent network Common

Data Form (netCDF) files. Peak-picking, retention time

alignment and metabolite library search were performed by

the TargetSearch package from bioconductor (Cuadros-

Inostroza et al. 2009) with the R environment (http://www.

r-project.org). Metabolites were manually annotated by

using Leco ChromaTOF software against an in-house ref-

erence library: The Golm Metabolome Database

(GMD@CSB.DB, Hummel et al. 2007). Metabolite data

were normalized by dividing each raw value by the median

of all measurements of the experiment for one metabolite.

After that, the data were log2 transformed before per-

forming statistical analysis. All data manipulation and

statistical tests were performed by using freely-available

packages together with custom R scripts. Briefly, hierar-

chical clustering analysis (HCA) was performed using

Euclidian distance and complete linkage on the metabolite

levels. Before performing HCA, we computed the median

level of each metabolite across replicates for each devel-

opmental stage and cultivar. Principal component analysis

(PCA) was carried out using the package pcaMethods

(Stacklies et al. 2007). The data were centered and unit-

variance scaled before the PCA computations. Partial least

squares (PLS) discriminant analysis was performed using

the package mixOmics (Lé Cao et al. 2009). The data was

centered at unit-variance scale, two components were

included in the models and they were validated by leave-

one-out cross-validation. To compare significant changes

across stages, we performed ANOVA first and, in case the

result ensued as significant, we applied Tukey Honest

significant differences to determine what stages were sig-

nificantly different from the others. To avoid multiple-

testing problems, we corrected the resulting p-values by the

false discovery rate method (Benjamini and Hochberg

1995). In all tests, we considered adjusted p-values lower

than 0.05 as significant.

A simplificated metabolic pathway of primary metabo-

lism was created to allow simultaneous visualization of all

grape developmental stage data, which was based on maps

taken from MapMan software (Usadel et al. 2009). A

custom python script was used to import the metabolite

data matrix into the pathway.

2.4 Network analysis

A metabolite network was constructed for each possible

cultivar-developmental stage combination, twelve net-

works in total (two cultivars, six stages). For each network,

10 samples and all measured metabolites were considered.

The procedure was the same for each network. The data

workflow is depicted in Supplementary Fig. 2. Firstly,

metabolite–metabolite correlation analysis was performed

by using Spearman’s rank correlation coefficient. To esti-

mate the correlation significance, we used the following

bootstrap method in which the metabolite matrices were

first randomly shuffled without keeping column or row

orders and then the correlations were computed. This

procedure was repeated 1000 times and a p value was

calculated based on the frequency of the observed r-values.

The resulting p-values where further corrected by applying

the Benjamini–Hochberg method (Benjamini and Hoch-

berg 1995). We used |r|[ 0.75 as a correlation threshold

for all networks, since the observed p-values were lower

than 0.001.

Correlation matrices were first transformed to adjacency

matrices by applying the previously established correlation

threshold. Network analysis was performed by using cus-

tom scripts within the R environment (http://www.r-pro

ject.org) and Cytoscape (http://www.cytoscape.org/). The

R-package igraph (Csardi and Nepusz 2006) was used

mainly for network manipulation and parameter calcula-

tion, whilst Cytoscape was used for visualization. All

network parameters were obtained by using the respective

igraph function, except the network cluster coefficient,

which was calculated as the average of the cluster coeffi-

cients (Cn) of its nodes (Dong and Horvath 2007). Network

topologies were analyzed by applying a goodness-of-fit test

for exponential and power-law distributions. Non-linear

least squares models were fitted to the cumulative degree

distribution of every network. Akaike’s information crite-

rion was used to obtain the likelihood of the fitted models.

To estimate network overlap significance, we used two

methods: Fisher’s exact test and network randomization. In

the latter case, two networks to be compared were ran-

domly rewired but conserving their original degree of

distribution. This was repeated 1000 times and the

observed frequency of edge overlap was recorded. An

estimated p-value was calculated based on the probability

of obtaining the original overlap by chance. Similarly, the

significance of average path difference between two net-

works was estimated by using the empirical average-path

difference distribution of the randomization procedure.
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3 Results

3.1 Structure of the experiment and data extraction

To gain information about primary metabolites during the

whole development process of grapevine berries, we measured

metabolite levels of two grape berry cultivars (CS and ME) by

using ametabolomics platform based on gas chromatography–

mass spectrometry (GC–MS) of polar extracts and the

R-package TargetSearch (see Sect. 2) to identify the metabo-

lites. The Golm Metabolome Database (GMD@CSB.DB,

Hummel et al. 2007), an in-house metabolite database com-

prising around 950 metabolites (Kopka et al. 2005), was uti-

lized as a reference library to search for metabolites. In total,

115 metabolites were obtained by this algorithm, which were

subsequently curated by manual inspection (Supplementary

Table 1). Metabolites were classified by chemical classes as

given by the GMD (Table 1). Considering the classified

metabolites, the most represented metabolite classes were

miscellaneous acids (21), sugars (19), and amino acids (19).

Metabolites that were partially annotated were classified as

unknown (20), and those that do not belong to any of the other

metabolite classes, according to the GMD, were denominated

as unclassified metabolites. The miscellaneous acids class

comprises different acid types, among those, dicarboxylic

acids, hydroxy acids, phenylpropanoic acids, and hexonic acids

were the most represented.

3.2 PCA analysis allow a separation of early

and late developmental stages in both cultivars

To have an overview of the data, we performed PCA on

every cultivar data set (Fig. 1). Considering only the first

two principal components, the explained variance was

similar in both cultivars, accounting for 65.22 % in CS, and

63.29 % in ME (Fig. 1a). A clear separation between the

earliest and latest developmental stages is observed for

both cultivars, however the early stages of development are

not well differentiated between both cultivars. The first two

stages (flowering and fruit setting) are better separated in

CS (Fig. 1a, upper panel) when compared to ME, where

only flowers show some separation, whilst fruit-setting,

pre-veraison, and veraison are overlapping. Since the

samples were harvested during two growth seasons, we

asked whether there is a year effect reflected on the PCA.

However, no separation was observed (data not shown),

therefore we decided to disregard the year factor and have

combined the results of both years. The metabolites that

drive the stage separation can be observed in the PCA

loading plot (Fig. 1b). Although these metabolites are the

same in both cultivars, they display different behavior in

each of them. For instance, in CS (upper panel), the main

contributing factor of principal component two is aspar-

agine, followed by unknown metabolite 15. In ME (lower

panel Fig. 2b), the role is inverted: unknown metabolite 15

is the most important factor followed by asparagine.

Among the factors that drive the separation of the first

principal component, which differentiate between early and

late developmental stages, unknown metabolite 9, allo-

inositol, fructose, glutamine, phenylalanine, threonate, and

rhamnose can be identified. These metabolites exhibit a

similar role in stage separation in both cultivars and follow

two opposite concentration patterns. On one side, aspar-

agine, phenylalanine, rhamnose, threonate and unknown 15

accumulate during the early stages and their levels are

much lower in berries during ripening (Fig. 2a), while

others like allo-inositol and metabolite unknown 9 accu-

mulate at later stages (Fig. 2b). Well known metabolites

present in grapevine berries that change their levels during

growth such as glucose, tartrate and malate had a rather

minor discriminating power (Fig. 2c).

3.3 Discrimination of cultivars by developmental

stages

PCA analysis of the determined metabolites revealed the

presence of discriminating factors which allow the sepa-

ration of the different developmental stages of a given

cultivar (Fig. 1). Performing PCA for discriminating the

same developmental stage betweeen both cultivars did not

allow to observe any separation of the samples by devel-

opmental stages in any of the respective score plots (data

not shown), although in some stages, a separation was

indeed observed in higher principal components.

To verify whether our metabolic analysis provided

enough information allowing the discrimination of each

Table 1 Number of metabolites within each class

Metabolite class Total identified metabolites

Amino acid 19

Fatty acid 4

Acid 22

Flavonoid 3

Miscellaneous 11

Sugar 19

Unclassified 17

Unknown 20

Total 115

The acid class comprises different acid sub-classes that had few

members each, among those, aromatic acids, hydroxy acids, dicar-

boxylic acids, phenylpropanoic acids. Similarly, the miscellaneous

class includes other compound classes which did not fit in any other

main classes and had few representatives, such as amides, polyols,

pyrimidine, and terpenoides. Unclassified metabolites are known

metabolites that are not annotated in a chemical class according to the

GMD database
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developmental stage when both cultivars are compared we

decided to use a supervised method as PLS. It turned out

that this method does allow the discrimination of both

cultivars in every developmental stage (see Supplementary

Fig. 3). In order to find the discriminant factors, we looked

for significant differences (p\ 0.05. twofold-change) of

the metabolite concentrations in each dataset (see Supple-

mentary Table 2). These results correlate with main load-

ings of the PLS regression (see Supplementary Table 3). In

post-veraison the most significant differences were

observed (12 significant changes, see Supplementary

Table 4). Many amino acids such as gaba, serine,

methionine, ornithine have higher mean concentrations in

ME compared to CS. Fruit setting was the stage where

fewer disparities between the cultivars were observed, only

citrate and unknown metabolite 18 were up-regulated in

CS, while glycolate was up-regulated in ME. Almost all

metabolites displayed differences in one or two stages,

while only two metabolites, galactinol and glycolate,

showed differences in three stages. This indicates that

while there are metabolites which discriminate both culti-

vars, these are only stage dependant, since no metabolite

was consistently different across the whole growth period.

3.4 Sugars and amino acids levels show opposite

behaviour during berry maturation

In order to illustrate the PCA results, we carried out HCA

on the data in order to identify metabolite patterns across

the developmental stages. To facilitate the pattern visual-

ization, we kept the order of the samples fixed, from early

to late stages, in both cultivars. The HCA reveals that,

overall, the two cultivars have similar metabolite patterns

with particular small differences in the distribution of some

compounds (see Supplementary Fig. 4). We identified the

following patterns that are summarized in Supplementary

Fig. 5. The first cluster is composed of metabolites that

increase their abundance along the growth curve during

post-veraison and ripening, most of them being sugars and

some amino acids such as proline, b-alanine, and aspar-

agine (see Supplementary Fig. 5A). The second cluster

comprises metabolites that decrease during grape devel-

opment, which contains mostly amino acids and polyami-

nes related compounds (see Supplementary Fig. 5B). An

important observation is that not all type of sugars show an

increase during grape development, as can be observed

with ribose, arabinose, rhamnose, and fucose (see

Fig. 1 PCA of primary metabolites of grape whole berry samples.

a PCA scores of the 115 primary metabolite data measured by GC–

MS. Grape cultivars are represented by a different panel as shown.

Developmental stages are indicated by different diamond sizes and

colors: FLW flowering, FS fruit setting, PRV pre-veraison, VR

veraison, PSV post-veraison, RP ripening. The explained variances of

principal components are shown in the upper-left corner. b PCA

loadings of the primary metabolite data. Metabolite classes are color

coded as shown in the upper-right panel. Metabolites that have a

major influence in the separation are named (Color figure online)
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Supplementary Fig. 5B). The HCA also shows that the

metabolites that contribute to the distinction of the growth

stages, as discussed previously in Fig. 1b, exhibit different

increasing (unknown metabolite 9, allo-inositol, and fruc-

tose; see Supplementary Fig. 5C) and decreasing (glu-

tamine, phenylalanine, threonate, and rhamnose; see

Supplementary Fig. 5B) patterns, as also deducible from

the PCA where they lie in opposite directions along prin-

cipal component 1 (Fig. 1b).

3.5 Fruit-setting and veraison are accompanied

by the largest number of changes in metabolite

concentration

Berry ripening is accompanied by massive biochemical and

physiological developmental changes which likely are also

accompanied by major changes on the metabolite level. We

thus examined the magnitude of metabolites changes

expressed in accumulation (up-regulated) or reduction

(down-regulated) of them during berry development com-

paring: (i) the metabolites variation of each stage to the

initial developmental stage (flowering, FLW) (Fig. 3a) and

(ii) the metabolite changes of a given stage to the preceding

ones (Fig. 3b). Contrasting the number of metabolites

changing in each stage to the initial developmental stage

(flowering), we observed that the number of metabolites

decreasing their concentration (down-regulated) is higher

than those increasing their concentration (Fig. 3a). This

behavior is exhibited in both cultivars. The number of

down-regulated metabolites increases when the latest

developmental stages (post-veraison and ripening) are

compared to the stage of flowering (55 and 47 in CS, and

31 and 37 in ME). Similarly, an increase of the number of

metabolites which accumulate (up-regulated) during the

development of grapevine berries was detected, starting

with 1 and 2 metabolites in CS and ME in the transition of

flowers to fruit setting and reaching 29 metabolites in both

CS and ME, respectively in ripening stages (Fig. 3a).

Evaluation of metabolites variation by comparing certain

stage to the directly previous ones allowed to establish

which of the stages shows the largest number of changes in

metabolism as compared to the previous growing stage

during grapevine berry development. The results in Fig. 3b

show some differences between both cultivars regarding to

the down- and up-regulated metabolite changes. While the

largest number of down regulated changes occurs in the

transition to fruit setting, veraison and post-veraison in CS,

in ME they materialize in the transition to fruit setting, pre-

Fig. 2 Metabolite levels of main discriminating factors of the PCA

(Fig. 2) in Cabernet Sauvignon (CS, red line) and Merlot (ME, blue

line). Time points correspond to the six developmental stages: FLW

flowering, FS fruit setting, PRV pre-veraison, VR veraison, PSV post-

veraison, RP ripening. Data are normalized to the median intensity

across all the samples. Values represent the mean ± standard

deviation. Metabolites are put into groups according to their profiles:

a accumulation in early stages, b accumulation in late stages, and

c known metabolites that change during growth but had lower

discriminating power (Color figure online)
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veraison and veraison. Up-regulated metabolite alteration

displays a similar behaviour in both cultivars, increasing

metabolites content in post-veraison and ripening.

Thus, the results comparing either the metabolites

changes of each developmental stage to metabolic profile

of flowers or to the directly previous ones suggest that the

largest biochemical changes going on during grapevine

berry development involved the reduction of a series of

compounds already present in the initial stages (flowering),

which essentially occurs in the switch to fruit setting, and

an accumulation of other substances which take place in

post-veraison and ripening in both cultivars.

To identify common regulated metabolites between both

cultivars for every developmental stage, pair wise overlaps

of increasing and decreasing metabolites were computed as

well as the overlap between the two cultivars. Results

displayed as Venn diagrams (see Supplementary Fig. 6A

and B) demonstrated the presence of common molecules

which are increasing or decreasing in a certain develop-

mental stages in both cultivars as well other which are

present in only one of the cultivar in a giving growth stage

(cultivar-specific substances).

Among the metabolites displaying a significantly

increase in fruit setting, pre-veraison and veraison and

similar behaviour in both cultivars was malate. Glucose,

fructose, glucaric acid-1,4-lactone, beta-D-fructofuranosyl,

and three unknown metabolites increased significantly in

post-veraison as well as ripening in both cultivars. Many

amino-acids decreased during growth, such as phenyl-ala-

nine, serine, and valine, as well as polyamines (spermine

and spermidine) in almost all stages.

In post-veraison, metabolites that increase their abun-

dance are mostly sugars: fructose, glucose, and glucopy-

ranoside, 1-O-methyl. On the other hand, the majority of

down-regulated metabolites are acidic substances and other

kinds of acids (mainly hydroxy and dicarboxylic acids).

Fig. 3 Number of significantly changing metabolites across devel-

opmental stages. a Each panel shows the number of significantly

changing metabolites (p\ 0.05, ANOVA) with respect to the first

stage (flowering) across developmental stages for Cabernet Sauvi-

gnon (upper panel) and Merlot (lower panel). b Number of significant

changes (p\ 0.05, ANOVA) with respect to the previous stage for

each cultivar, that is, fruit setting vs. flowers, pre-veraison vs. fruit

settings, and so on. Significantly increasing and decreasing metabo-

lites are represented by blue and red bars, respectively. In both

figures, the tables shown below summarize the total number of

changes (up plus down) for each cultivar (Color figure online)
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However, only three metabolites exhibited significant

down-regulation: glycerate, succinate and threonate in both

CS and ME (see Supplementary Tables 2 and 5).

3.6 Overview of metabolic changes by simplified

pathway representation

In order to obtain a more detailed overview about the

abundance of similarities and/or differences of the identi-

fied substances in each developmental stage of both culti-

vars, we compared the behaviour of some of the

metabolites in a simplified versions of primary metabolism

pathways by using Map Man tools (Usadel et al. 2009).

Figure 4 displays the observed changes by pathway map-

ping. In sucrose metabolism, sucrose, fructose, and glucose

exhibited a similar increasing trend observed in the two

cultivars during the different developmental stages. In the

TCA cycle, both cultivars basically exhibit similar

metabolite profiles, however some differences could be

observed: citrate and succinate significantly decreased after

veraison in both cultivars; but citrate decreased in ME

already in fruit setting, which was not observed in CS.

Malate showed an conserved tendence in both cultivars,

increasing in fruit setting and decreasing to normal levels

in post-veraison. However, a more significant decrease is

observed in CS in ripening stage.

With respect to amino acids content, most amino acids

such as serine, glycine, leucine, valine, isoleucine, and

alanine decreased their level in comparison to the amount

detected in the first stage. Only few amino acids display an

increase during grape development. Among them, orni-

thine increased in pre-veraison and veraison in both culti-

vars while b-alanine, asparagine and proline rise in post-

veraison and ripening phases. A unique observation in ME

Fig. 4 Primary metabolism pathways of measured metabolites

Cabernet Sauvignon (CS) and Merlot (ME). Represented pathways

are simplified versions of the tricarboxylic acid (TCA) cycle,

glycolisis, amino acid synthesis, and sucrose synthesis. Within each

box, rows represent cultivars (upper row: CS; lower row: ME) and

each column is a grape developmental stage (from left to right:

flowering, FLW; fruit setting, FS; pre-veraison, PRV; veraison, VR;

post-veraison, PSV and ripening, RP) as shown in the upper left

corner. Average metabolite intensity is color coded according the

scale in the upper left corner. Amino acids, sugars, and non-measured

metabolites are displayed in blue, green, and gray colored font,

respectively (Color figure online)
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is that GABA increased during berry ripening, which was

not observed in CS (also seen in Supplementary Table 4).

The polyamines spermidine and spermine exhibited a

similar decreasing trend in both cultivars. In particular,

spermine significantly decreased after flowers in both cul-

tivars, whereas spermidine started to decrease in veraison

in both CS and ME.

3.7 Network analysis shows that fruit setting stage

displays the highest network density

In addition to comparing the resulting data directly via

significant relative concentrations changes of individual

compounds, we decided to use a more integrated approach

based on metabolite–metabolite correlation networks

(CNs). A common characteristic frequently found in

biological networks is that their degree distribution fol-

lows a power law (Watts and Strogatz 1998; Albert and

Barabasi 2000; Arita 2005). These types of networks, also

called scale-free, are characterized by possessing highly

connected nodes (hubs) and that most nodes can be reach

from other nodes by a small number of steps, and sub-

sequently they normally display low average shortest path

length. To test whether the reconstructed networks were

scale-free, we fitted exponential and power law distribu-

tions to the corresponding degree distribution (see mate-

rials and methods), and based on the resulting p-values

(p\ 0.0005), both distributions were very likely. How-

ever, a further analysis by Akaike’s information criterion

score suggested that power-law distributions provided a

better fit. This result may suggest a biological organiza-

tion of the reconstructed grapevine metabolic networks, in

which few metabolites, hubs, are essential for the network

connectivity (Jeong et al. 2001; Giot et al. 2003). The data

analysis considering two parameters from the basic net-

work properties calculated (Table 2) such as the number

of edges and network density, revealed that within each

cultivar, networks associated to fruit setting exhibit by far

the highest density and biggest number of edges, and in

consequence, they also possess the lowest number of

isolated nodes and the smallest diameters. Higher network

density can be interpreted as a more constrained meta-

bolism which would suggest a higher metabolic control

during this major developmental shift (Supplementary

Fig. 7). Early developmental stages networks, namely

flowers and fruit setting, have higher density and cluster

coefficient, in comparison with the later stages (post-

veraison and ripening) in the selected cultivars. The

middle stages (pre-veraison and veraison) lie somehow in

between regarding density with the ME veraison network

being the only exception (Supplementary Fig. 7). All

networks exhibit a small average path length, which is in

agreement with said property of scale-free networks

(Table 2).

3.8 A significant proportion of edges is conserved

between different developmental stages

Despite the fact that the stage specific networks differ in

general network properties such as network densities, there

is a significant overlap between the metabolite networks. In

CS, the overlap ranges from 3 to 35 %, depending on the

stage taken as reference (see Supplementary Table 6A).

Although these percentages are rather low, they were

Table 2 Network properties of metabolite networks per developmen-

tal stage. The number of edges and network density reveal that network

associated to fruit setting exhibit by far the highest density and number

of edges. High network density can be interpreted as amore constrained

metabolismwhich would suggest a higher metabolic control during this

developmental shift. See Materials and Methods for details

Cultivars Developmental

stages

Connected

nodes

Isolated

nodes

Edges Connected

components Diameter Average

path length

Network

density

Cluster

coefficient

Cabernet Flowers 70 45 154 9 9 3.341 0.023 0.252

Sauvignon FruitSetting 94 21 625 3 7 2.463 0.095 0.424

Pre-Veraison 66 49 86 9 9 3.889 0.013 0.158

Veraison 55 60 66 11 6 2.637 0.010 0.122

Post-Veraison 67 48 72 15 9 2.660 0.011 0.142

Ripening 62 53 67 17 5 1.725 0.010 0.133

Merlot Flowers 79 36 183 7 8 3.489 0.028 0.270

FruitSetting 89 26 455 3 8 2.945 0.069 0.366

Pre-Veraison 59 56 61 15 6 2.802 0.009 0.149

Veraison 76 39 276 5 9 3.417 0.042 0.285

Post-Veraison 62 53 86 13 7 3.129 0.013 0.145

Ripening 59 56 52 15 6 2.294 0.008 0.093
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highly significant as demonstrated by Fisher’s exact test

(p\ 0.001). Few exceptions of less significant overlaps are

flowers versus ripening, and pre- versus post-veraison (both

p\ 0.1). The only non significant overlap was observed

between flowers and post-veraison. In ME, all network

overlaps are significant, with the exception (and different

from CS) of ripening versus pre-veraison and veraison (see

Supplementary Table 6B).

3.9 Most abundant sugars such as glucose, fructose

and sucrose are of lower importance as based

on centrality measures

To identify the most important metabolites as a function of

the variety and developmental stage, we performed a

common approach to answer this question by determining

the so called centrality measures (Dong and Horvath 2007).

A simple centrality measure is the degree of the node,

which counts the number of its connections. A more

sophisticated measure is the betweenness centrality.

Betweenness centrality of a node n is defined as the pro-

portion of shortest paths between two other nodes that pass

through n (Brandes 2001). By using these centrality mea-

sures, we identified metabolites that exhibited high degree

and betweenness in every network. The metabolites dis-

playing the highest betweenness centrality are displayed in

Supplementary Table 7A (a full list for all metabolites is

shown in Supplementary Table 8). As a general result we

observed that significant metabolite abundance changes do

not correlate with high betweenness or node degree again

emphasising once more that network analysis and single

compound centered analysis identify different properties.

One unexpected result of this analysis is that the most

abundant sugars during berry development, such as glucose,

fructose and sucrose, do neither exhibit high degrees nor high

betweenness coefficients in nearly all networks for both

cultivars (see Supplementary Table 7B), with the

notable exceptions of glucose in CS-veraison and fructose in

ME-veraison. Fucose, on the other hand, seems to be a very

important component of every network inME, due to its high

degree and betweenness (see Supplementary Table 7 among

top 20 metabolites), which can also be observed in Fig. 5,

where its neighborhood is illustrated. This prominent posi-

tion of fucose in case of CS was only conserved for the fruit-

setting and pre-veraison stages (Fig. 5, Supplementary

Table 7A). Cellobiose, glucose-6-p and trehalose showed

high betweenness and degree coefficients during the early

stages of development in both cultivars with cellobiose dis-

playing the highest betweenness for the flower stage. Tre-

halose and glucose-6-p sugar presented again high

betweenness during later stages, but at different develop-

mental stages for the two cultivars (post-veraison in CS and

veraison ME, in Supplementary Table 7).

Amino acids show high betweenness and degree coef-

ficients at the early stages for both cultivars, namely

flowering and fruit settings. For most amino acids these

coefficients decreased during later stages, with the excep-

tions of a few amino acids that showed very high

betweenness such as alanine in ME pre-veraison (see

Supplementary Fig. 8A), phenylalanine in CS-post-ver-

aison (see Supplementary Fig. 8B), and methionine in CS-

veraison (see Supplementary Fig. 8C). In ripening, a

cluster of amino acids was obtained in CS, having iso-

leucine as central node (see Supplementary Fig. 9A),

which was not observed in ME, where amino acids were

dispersed (see Supplementary Fig. 9B).

4 Discussion

4.1 Primary metabolite changes allow

for the discrimination between different

developmental stages of grapes of a given

cultivar

The application of an untargeted metabolomics approach

based on GC–MS to study grape berry development has

allowed the identification and quantification of 115

metabolites during different stages from flowering until

ripening of two grapevine cultivars. This large-scale

comparative study provides a more comprehensive view on

the major and important pathways related to primary

metabolism which may be involved in fruit development,

thus offering a better understanding of berry development

and ripening biochemistry. The results obtained from the

analysis of two cultivars, used worldwide for wine pro-

duction, contribute with novel information and comple-

ments the limited data available by using untargeted

metabolomic approaches (Toffali et al. 2011, Torniellei

et al. 2012; Ali et al. 2011; Dai et al. 2013; Agudelo-

Romero et al. 2013a; Son et al. 2014; Teixeira et al. 2014)

for dilucidating metabolic changes involved in growth,

development and ripening of grapevine berries.

The metabolism analysis of both varieties (CS and ME)

revealed that grape cultivars undergo several changes in

primary metabolite concentration during berry develop-

mental progression. The content and presence of primary

metabolites alone enable to discriminate between the grape

developmental stages of a given cultivar, as demonstrated

by PCA in which the earliest stages can be clearly distin-

guished from the latest ones (Fig. 1), or between both

cultivars at a determined stage as shown by PLS (see

Supplementary Fig. 3). This pattern was observed in both

grape cultivars. The putative biomarkers, discriminating

the developmental stages of both cultivars, were observed

to either increase or decrease in abundance at specific
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Fig. 5 Neiborhood of fucose according to the reconstructed networks

shown in Supplementary Fig. 6 for Cabernet Sauvignon (CS) and

Merlot (ME) and for each developmental stage (FLW-RP). In each

network, nodes represent metabolites and edges depict significant

positive (blue) or negative (red) correlations (|r|[ 0.75, p\ 0.001).

Metabolites with significant changes (p\ 0.05) respect to the first

stage (FLW) are formatted in bold font. Node size is proportional to

its degree and its color represent metabolite classes (according to

Table 1) (Color figure online)
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developmental phases. Thus, asparagine, phenylalanine,

rhamnose and unknown metabolite 15 act as the best dis-

criminating factors for early stages whereas allo-inositol

and the unknown metabolite 9 might represent markers to

separate late stages such as ripening. Well-known sub-

stances accumulated at particular developmental steps and

described as important players in biochemical and physi-

ological processes of grapevine berries like glucose, malate

and tartrate (Ruffner and Hawker 1977; Davies and

Robinson 1996; Robinson and Davies 2000; Coombe and

McCarthy 2000; Conde et al. 2007; Martı́nez-Esteso et al.

2013) allow for the discrimination between stages within a

cultivar (the levels of glucose and fructose increase, and

are one of the main contributors in the PCA Fig. 1b), but

they do not enable us to differentiate between cultivars at a

given stage (e.g., FLW-CA vs FLW-ME, Fig. 1a).

4.2 The main changes in primary metabolites occur

in fruit setting and post-veraison

in both cultivars

Another similarity between the cultivars was the number of

significant metabolite changes between developmental

stages, which increased during the growth period in com-

parison to the first developmental stage and exhibited a

similar patternwhen the comparisonwas performed between

continuous stages (Fig. 3). The initial chemical composition

detected in both cultivars at flowering period undergoes

variations during the different stages until ripening. How-

ever, the larger changes in metabolite concentration occur in

fruit setting and post-veraison in both cutlivars (Fig. 3a and

b). Fruit setting is characterized by the beginning of sig-

moidal growth phase and cell division. Similarly, post-ver-

aison is characterized by the resume of growth, softening of

berries and accumulation of sugars (Coombe and McCarthy

2000; Dai et al. 2013), which involve several biochemical

and physiological modifications associated to changes in the

levels (increasing or decreasing) of particular metabolites.

Our results demonstrate that significant metabolite changes

occur at specific stages of the development of grapevine

berries and such metabolic changes are expressed mainly by

a down regulation of different substances related to primary

metabolism.

Many of the primary metabolites that changed their

concentration have been already extensively described in

the literature. For instance, sugars showed a significant

increase beginning with veraison in both cultivars. Malic

acid peaked its concentration around veraison and started

to decrease in post-veraison and ripening (Conde et al.

2007). Tartaric acid exhibits a decrease in concentration

around veraison in both cultivars (Pilati et al. 2007). Amino

acids (serine, valine, leucine, isoleucine) displayed a peak

in flowers and strong decrease in post-veraison and

ripening, while asparagine, proline and b-alanine showed a

increase in post-veraison and in ripening. This seems to be

different from other reported studies in another Vitis spe-

cies, in Vitis rotundifolia, where amino acids contents

peaked in veraison, although proline and b-alanine showed
a consistent behavior (Lamikanra and Kassa 1999). Our

results demonstrated that the metabolites content detected

at early stages (flowering) in both cultivars is altered during

the developmental and ripening process and that the main

changes are related to a reduction (down regulation) of

their amounts. This suggests that a catabolic activity is

acting upon these metabolites leading to a reduction on

their levels which may be required to allow the action of

other metabolic mechanism for the production of other

classes of molecules needed for development and ripening

of the berries. Thus, the content of different classes of

sugars, aminoacids and polyamines are reduced as the

course of maturation progresses (Fig. 4). Interestingly,

levels of polyamines like spermidine and spermine are

higher at earlier stages (flowering) and decreased during

grape ripening in both CS and ME. Similar results have

been recently reported for the development of Trincadeira

berries where the reduction of polyamines levels is

accompanied by an up-regulation of genes involved in the

catabolism of polyamines suggesting a role of polyamine

catabolism in grape ripening (Agudelo-Romero et al.

2013b, 2014).

4.3 Network analysis exhibited different numbers

of edges, density, and other network topology

parameters depending on the developmental

stage and on the cultivar

We described a metabolite CNs analysis for cultivars CS

and ME in every developmental stage in order to gain a

broader insight into how the measured metabolites are

related to each other in both cultivars during the berry

growth process. CN enables the integration of information

of diverse backgrounds (e.g., metabolites, physiological

traits or genes), considering key features allowing for the

analysis of coordinated changes of metabolites based on

correlation coeficients. CN has become an increasingly

popular tool to represent the relationships of metabolites

(Toubiana et al. 2013; Hochberg et al. 2013). The main

observation was that the degree distribution of all networks

followed a power-law, which is a intrinsic property of

‘‘scale-free’’ networks (Albert and Barasi 2000; Arita 2005;

Watts and Strogatz 1998) in which few nodes (so-called

hubs) are responsible for most of the network connectivity.

This allows us to identify important primary metabolites of

a network by looking at their degree. In addition to that, we

also identified metabolites with high betweenness central-

ity. Such nodes may be regarded as important for transport
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and communication between disjoint sections of a network

(Martin-Gonzalez et al. 2010). Another result was that the

metabolite networks exhibited different numbers of edges,

density, and other network topology parameters depen-

dending on the developmental stage and on the cultivar,

which may suggest different regulatory mechanism

(Fig. 5a). For instance, in CS a marked increase in the

coordinated metabolic activities is observed mainly in one

specific stage (fruit setting) whereas in ME a very dense

network can be observed in fruit setting and in veraison.

Furthermore, the CN analysis highlighted the structural

role of central metabolites. For instance, most amino acids

displayed high degree and betweenness in the early

developmental stages, specifically during flowering and

fruit-setting. Glucose and fructose exhibited relatively high

betweenness only during veraison in CS and ME. This

might be related with the fact that the latter takes more time

to ripe, and the accumulation of sugar might have started

later. The network approach does not rely on the identifi-

cation of metabolite concentration changes, but rather on

the network properties of the metabolite–metabolite inter-

action, which might complement the information obtained

with the previous (classical) approach. The increased net-

work density and connectedness observed at certain stages,

specifically at fruit setting in both cultivars, shows that

fucose is playing an important connecting role in both

cultivars with a higher association grade in ME (flowering,

fruit setting and veraison) than in CS (mainly in fruit set-

ting) (Fig. 5b).

It is of interest to note that significant changes of fucose

were not observed in any of the developmental stages, in

particular during fruit-setting, were its concentration was

around average in both cultivars (Supplementary Fig. 5B),

but in contrast it showed a high node degree in both cul-

tivars, which might mean that fucose is an essential

metabolite in that stage (Jeong et al. 2001). This finding

would have not been possible just by looking at concen-

tration changes. Fucose is a hexose deoxy sugar with the

chemical formula C6H12O5 that is present in a wide variety

of organisms and has been shown its role on different

biological events (Becker and Lowe 2003; Wijesinghe and

Jeon 2012). Different studies have reported the influence of

fucose obtained from algae on plant defense mechanism

enhancing protection against pathogens (virus, fungi) and

acting as an elicitor by activating salycilic acid, jasmonic

acid and ethylene signaling pathways at systemic level

(Chong et al. 2002; Klarzynski et al. 2003; Sels et al. 2008;

Vera et al. 2011). If this metabolite is playing a role in the

regulation of primary metabolites changes during grape

berry development remains to be demonstrated.

Recently, studies using a systems strategies for com-

bining plant transcriptome and GC–MS metabolomic data

to develop associations in tomato (Mounet et al. 2009;

Enfissi et al. 2010; Osorio et al. 2011) or grape (Carrari

et al. 2006; Deluc et al. 2007; Zamboni et al. 2010; Osorio

et al. 2011; Dai et al. 2013) have provided novel insights

into the crucial influence of changes in primary metabolites

and on fruit ripening and quality, allowing the identifica-

tion of similar and distinct regulation at the gene and

metabolite levels between nonclimateric and climateric

fruits (Osorio et al. 2012; Biais et al. 2014). The combi-

nation of this information with metabolite levels provides a

better understanding about relationships between metabo-

lism, fruit development, and maturation. Correlation-based

network analysis highlighted a dense degree of connec-

tivity, building stage-specific metabolic modules, mainly

during early to mid grapevine berry ripening similar to

other nonclimateric (strawberry; Fait et al. 2008) or cli-

materic (tomato pericarp: Ursem et al. 2008) fruits. The

elements (metabolites) allowing such degree of connec-

tivity are probably different across the cultivars, but this

type of evidence suggests some common mechanism

among nonclimateric and climacteric fruit at the basis of

metabolic regulation involving a high connectivity of pri-

mary metabolites mainly in early developmental stages.

Furthermore, application of new strategies for analysis of

publicly available metabolomics data from nonclimateric

and climateric fruits as STATIS (an extension to PCA

combined with pathway overenrichment analysis) has

allowed the identification of metabolic processes whose

behavior is similarly affected during fruit development and

maturation across species (Klie et al. 2014).

One of the disadvantages of using total correlation, as

performed in our study, is that it is not possible to dis-

tinguish direct and indirect interactions between two

metabolites, in other words, a significant correlation

between them may originate due to the interaction of a

third metabolite and not due an actual direct relationship.

A method to circumvent this problem is partial correla-

tion, defined as the correlation of two variables condi-

tioned to a third variable (De la Fuente et al. 2004), which

may help in excluding such indirect interactions. Although

partial correlation does not reveal causal relationships,

this approach could be a potential improvement to our

study towards the uncovering of the true metabolite

interactions.

5 Concluding remarks

Vitis vinifera cultivars undergo a highly coordinated

metabolic shift of metabolites associated to primary

metabolism during the stages involved in growth, devel-

opment and ripening of berries. The changes are charac-

teristics for each stage, the most pronounced ones occuring

at fruit setting and pre-veraison. Most of the changes are
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associated to a reduction of the levels of the metabolites

present in the earlier corresponding stage revealing a

required catabolic activity of primary metabolites to allow

grape berry ripening and synthesis of other types of

molecules. Network analysis demonstrated that the net-

work connectivity of primary metabolites depends on stage

and cultivar, suggesting differences in metabolism regula-

tion in CS and ME as the maturity processes progress.

Furthermore, network analysis represents an appropriate

method to display the association between primary

metabolites during berry developmental processes among

different grapevine cultivars and for identifying potential

biologically relevant metabolites.
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Martı́n-González, A. M., Dalsgaard, B., & Olesen, J. M. (2010).

Centrality measures and the importance of generalist species in

pollination networks. Ecological Complexity, 7, 36–43.

Mounet, F., Moing, A., Garcı́a, V., Petit, J., Maucourt, M., Deborde,

C., et al. (2009). Gene and metabolite regulatory network

analysis of early developing fruit tissues highlights new candi-

date genes for the control of tomato fruit composition and

development. Plant Physiology, 149, 1505–1528.
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