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Background: Analysis of placental genes could unravel maternal-fetal complications.

However, inaccessibility to placental tissue during early pregnancy has limited this effort.

We tested if exosomes (Exo) released by human placenta in the maternal circulation

harbor crucial placental genes.

Methods: Placental alkaline phosphate positive exosomes (ExoPLAP) were enriched

from maternal blood collected at the following gestational weeks; 6–8th (T1), 12–14th

(T2), 20–24th (T3), and 28th−32nd (T4). Nanotracking analysis, electron microscopy,

dynamic light scattering, and immunoblotting were used for characterization. We used

microarray for transcriptome and quantitative PCR (qPCR) for gene analysis in ExoPLAP.

Results: Physical characterization and presence of CD63 and CD9 proteins confirmed

the successful ExoPLAP enrichment. Four of the selected 36 placental genes did not

amplify in ExoPLAP, while 32 showed regulations (n = 3–8/time point). Most genes

in ExoPLAP showed significantly lower expression at T2–T4, relative to T1 (p < 0.05),

such as NOS3, TNFSF10, OR5H6, APOL3, and NEDD4L. In contrast, genes, such as

ATF6, NEDD1, and IGF2, had significantly higher expression at T2–T4 relative to T1.

Unbiased gene profiling by microarray also confirmed expression of above genes in

ExoPLAP-transcriptome. In addition, repeated measure ANOVA showed a significant

change in the ExoPLAP transcriptome from T2 to T4 (n = 5/time point).

Conclusion: Placental alkaline phosphate positive exosomes transcriptome changed

with gestational age advancement in healthy women. The transcriptome expressed

crucial placental genes involved in early embryonic development, such as actin

cytoskeleton organization, appropriate cell positioning, DNA replication, and B-cell

regulation for protecting mammalian fetuses from rejection. Thus, ExoPLAP in maternal

blood could be a promising source to study the placental genes regulation for

non-invasive monitoring of placental health.
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INTRODUCTION

Placental development is an exceptionally coordinated cycle
directed by various variables, such as hormones, development
factors, protein kinases, growth factors, protein kinases,
transcription factors, gap junction proteins, and intracellular
proteases (1). Expression analyses on intrauterine growth
restriction (IUGR)-associated placenta have provided further
insight into the role of genes associated with oxidative stress and
immune tolerance in cause or response to the development of
growth phenotypes (2). Accordingly, the power of placental
analysis to unravel maternal-fetal complications is well
acknowledged. However, the limited material availability
has seriously affected our understanding of the placental
response or adaptation during early pregnancy. Thus, the clinical
management of the two biggest challenges in antenatal care,
prematurity, and pre-eclampsia, is still a challenge. In the last
decade, organoids have emerged as novel models for biomedical
research. They are small self-organized 3D tissue cultures
derived from stem cells that mimic tissue type, such as blastoid,
endometrium, and trophoblast tissues. They provide useful
models for studying the process, such as embryo implantation,
female reproductive tract, and disease modeling. At present,
the main ECM used in the endometrium organoid culture
is matrigel to facilitate organoids in fully mimicking their
counterparts in vivo tissues. In addition, it is known that the
present endometrium organoid culture mainly pays attention to
epithelial cells, but focuses less on other types of cells, such as
stromal cells, vascular endothelial cells, and immune cells, which
are critical for disease development (3).

In the circulation, tissue-derived nanovesicles (aka Exo) have
gained substantial research attention as a liquid biopsy approach.
They are different than microvesicles which are found in blood
circulation both, in terms of size and biogenesis. Size of the
microvesicles ranges between 0.1 and 1.0µm, they are shed
by the outward blebbing of the plasma membrane. While
Exo are spherical lipid-bilayer vesicles of 30–100 nm diameter,
secreted from cells into the extracellular environment upon the
fusion of multivesicular bodies containing intraluminal vesicles
with the plasma membrane (4, 5). The Exo released by the
human placenta in the maternal circulation can be differentiated
by placental-specific alkaline phosphatase (PLAP) protein on
their surface (6). Moreover, the numbers of these PLAP-
expressing Exo inmaternal blood correlated nicely with increased
gestation periods across normal pregnancy (6, 7). Their numbers,
however, were found to vary in mothers with pregnancy-
related issues, such as gestational diabetes, pre-eclampsia, or
suboptimal fetal growth relative to a healthy pregnancy (7–9).
These PLAP+ve Exo (ExoPLAP) have been demonstrated to
exhibit immunomodulatory properties (5). Exo obtained from
placental perfusate or extravillous cells have also been studied
(6, 10, 11).

Together, these studies suggest that ExoPLAP could reflect the
placental tissue response or adaptation during early pregnancy.
However, studies analyzing placental-derived Exo to monitor
change in placental gene regulation during healthy pregnancy
are lacking. We isolated ExoPLAP from maternal blood

samples, collected at the following gestational weeks; 6–8th
(first trimester), 12–14th (early-second trimester), 20–24th (late
second trimester), and 28th−32nd (mid-third trimester) to study
the expression and regulation of a few placental gene, manually
curated from the literature. Additionally, an unbiased gene
profiling was performed to further confirm the expression of
these genes in the ExoPLAP transcriptome.

MATERIALS AND METHODS

Sample Collection and Biochemical
Screening
A prospective cohort of pregnant women, who visited the
Obstetrics and Gynecology department for routine antenatal
care were enrolled after written informed consent. The studies
involving human participants were reviewed and approved by
the Human Ethics Committee of Sanjay Gandhi Postgraduate
Institute of Medical Sciences (Ref. no: IEC-2017-9-EMP-95,
dated September 16, 2019). The women were followed during
their periodic antenatal visits. Gestational age was estimated
based on the first day of their last menstrual period and
confirmed by transvaginal ultrasound at the recruitment (i.e.,
∼6–8 weeks). All women included in this study were free
of apparent infections within the uterus or amniotic cavity,
and all pregnancies were singletons. Obstetrical history and
physical findings were recorded regarding previous spontaneous
abortions, previous pregnancies, hypertension, gestational
diabetes, and preeclampsia to confirm healthy pregnancy.

Peripheral venous blood sample (5ml) was taken at the
following gestation weeks, 6–10th (T1), 12–14th (T2), 20–24th
(T3), and 28th−32nd (T4). Samples were collected in ethylene
diamine tetraacetic acid (EDTA)-treated tubes (BD Vacutainer R©

Plus plastic plasma tube) and plain tubes (BD Vacutainer R©

Plus, NJ, USA), from which plasma and serum (for biochemical
analysis) were obtained respectively by centrifugation at 3,000
rpm at 4◦C for 10min and stored in aliquots at −80◦C until
further processing. Samples collected at different gestation weeks
were used for reverse transcription PCR (RT-PCR) (n= 3–8/time
point). For transcriptome profiling ExoPLAP from longitudinally
collected maternal samples from five different women (n =

5/time point) were used.

Biochemical Screening for Aneuploidies
Serum levels of free beta-human chorionic gonadotrophin (beta-
hCG) and pregnancy-associated plasma protein A (PAPP-A)
hormones were estimated in maternal blood collected between
10th and 13th gestation weeks. Following hormones were
estimated between 15th and 20th gestation weeks; Alpha-
fetoprotein (AFP), Human chorionic gonadotropin (hCG),
Inhibin A, and Unconjugated Estriol (UE). All the hormones
were estimated by a chemiluminescence based assay (Immulite
1000, M/s Siemens Ltd., USA). Prisca software was used to
calculate the risk for aneuploidies (Trisomy 13, 18, and 21)
and risk for neural tube defects. For risk calculation, data
of the ultrasound findings examining the nuchal translucency,
nasal bone, and crown rump length were used in addition to
biochemical estimations.
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Exosome Isolation and Characterization
First the plasma Exo were isolated using differential
centrifugation as described by us previously (12–15). The
pellet containing plasma Exo was then incubated with
fluorescein isothiocyanate (FITC) conjugated anti-Placental
alkaline phosphatase antibody for ExoPLAP enrichment for
capture. After the incubation, the samples were ultracentrifuged,
washed, and incubated with anti-FITC conjugated magnetic
microbeads. The bead-antibody-Exo complex was separated
through the appropriate column, followed by washing through
centrifugation of the eluted complex. The enriched pellet was
dissolved in 30 µl buffer. Blood from women without placenta
(non-pregnant women) was used to demonstrate the specificity
of the enrichment process.

Nanotracking Analysis (NTA) and Dynamic
Light Scattering Analysis
Size distribution and concentration of Exo were analyzed by
nanoparticle tracking analysis (NTA) using the NanoSight
NS300 (Malvern Instruments Ltd., UK) at the Central
Analytical Research Facility of the Indian Institute of
Toxicological Research, Lucknow, according to the instruction of
manufacturer. In addition, dynamic light scattering (DLS) using
a Nano Zetasizer (Malvern Instruments Ltd., UK) was performed
as per the manufacturers protocol. The Gaussian fitting, mean
value, and SD were calculated and compared using Origin Pro
9.0.0 (Origin Lab Corp, MA, USA).

Transmission Electron Microscopy (TEM)
The ExoPLAP samples were prepared by dissolving in 2.5%
(w/v) glutaraldehyde in cacodylate buffer. The prepared samples
were then applied to a continuous carbon grid and negatively
stained with 2% (w/v) uranyl acetate. The samples were examined
by transmission electron microscope in the Central Analytical
Research Facility of the Indian Institute of Toxicological
Research, Lucknow, India.

Immunoblotting
Exosomal protein samples were subjected to immunoblotting
as described by us previously (12, 14). The immunoblotting
was performed using antibodies against CD63, CD9, and PLAP
(Abcam). Images were acquired on a ChemiDoc imaging system
(Universal Hood III, BIO-RAD, CA, USA).

RNA Extraction and Real-Time
Quantitative PCR
RNA from ExoPLAP samples were isolated by RNAeasy kit
(Qiagen India Pvt. Ltd, Delhi, India) as per manufacturer
protocol. The quantity was checked by Nanodrop ND2000
(Thermo Fisher Scientific, Pittsburgh, PA, USA). For real time
quantitative PCR (qRT-PCR), in vitro transcribed RNA was
used. In vitro transcription was performed as described by us
previously (16). In brief, in vitro transcribed RNA (100 ng) was
subjected to cDNA synthesis using a high-capacity cDNA reverse
transcription kit (Applied BioSystems, MA. USA). Relative gene
expression was estimated by qPCR SYBR green PCR master
mix (Takara Bio., Japan). Fold expression was calculated by

2–1CT method using 18S rRNA as an endogenous control.
Supplementary Table 1 shows the sequences of the primers used.

Microarray Analysis
RNA from ExoPLAP were subjected to microarray analysis
using the instruction of manufacturer (Thermo Fisher Scientific).
Transcriptome Analysis Console (version 4.0.0.25, Applied
Biosystems) was used for the screening of differentially expressed
genes among the three-gestational time points. The output
files (.CEL) were analyzed by repeated measure ANOVA
method of gene expression analysis in the settings. Repeated
measures applied on each sample IDs, background correction,
quantile, normalization, description, and log2 value conversion
were done using the RMA+DABG algorithm. The principal
component analysis (PCA) based on limma R/Bioconductor
software package for integrative analysis of large-scale gene
expression data was performed to assess the total similarities
and disparities among the samples at the three time points (T2–
T4) in the log-transformed expression ratios of genes. Minimum
50% of biological replicates displayed gene strength greater than
their equivalent local background, the genes were constructed
as expressed.

Statistical Analysis
For statistical analysis, GraphPad Prism 8 was used. The
significance of the mean was calculated using one-way ANOVA,
followed by pair-wise comparison with T1; p < 0.05 was
considered significant. The statistical analyses of the microarray
were performed by Transcriptome Analysis Console software.
Eventually, all statistically tested genes were filtered to acquire the
significant ones for the differential gene expression analysis and
formation of hierarchical clustering with a cut-off false discovery
rate (FDR) F-test of <0.01.

RESULTS

Characterization of ExoPLAP From
Pregnant Women With Healthy Pregnancy
Placental alkaline phosphate positive exosomes were isolated
from the plasma samples of pregnant women (n = 10) at the
following mean gestational weeks; 8 (T1), 14 (T2), 22 (T3), and
31 weeks (T4). Maternal serum biochemistry was done to assess
any risk for fetal aneuploidies in the study participants (Table 1).

The electron microscopy and Dynamic Light Scattering
analysis confirmed the expected physical characteristic of the
ExoPLAP (Figures 1B,C). In addition, NTA, demonstrating the
exosome sizes ranging from 100 to 200 nm in diameter is shown
in (Figure 1A). Immunoblotting showed the presence of protein
bands specific for exosomal-marker protein, CD63, and CD9
(second lane of Figure 1D) in the ExoPLAP samples collected
from blood of pregnant women. However, the absence of CD63
and CD9 proteins bands in the last lane of Figure 1C indicate
that the anti-PLAP antibody failed to enrich any ExoPLAP from
the total exosome collected from women without placenta (non-
pregnant women), this confirms the specificity of ExoPLAP
enrichment method.
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TABLE 1 | Maternal serum biochemistry and demographics.

Mean (SD) Healthy reference range

Risk for aneuploidies

Gestational age at sample collection for 1–4 parameters (weeks) 17.9 (1.72) 14–22+6

1. Alpha-fetoprotein (AFP) (ng/ml) 52.45 (19.29) 5.4–501

2. Unconjugated Estriol (UE3) (ng/ml) 1.145 (0.62) 0–11

3. Human chorionic gonadotropin (hCG) (mlU/ml) 20,496.7 (8,984.63) 2,223–200,230

varies with GA(14–22)

4. Inhibin A (Inh-A) (pg/ml) 287.705 (137.69) 236.78–373.33

varies with GA(14–22)

Gestational age at sample collection and ultrasound for 5–8 parameters (weeks) 12 (0) 10–13

5. Pregnancy-associated plasma protein A (PAPP-A) (mlU/ml) 4.57 (2.27) 0.1–32.3

6. Free beta-human chorionic gonadotrophin fb-hCG (ng/ml) 11.31 (13.56) 5.6–388.7

7. Crown rump length by ultrasound 62.7 (0.72) 24–84

8. Nuchal translucency MoM by ultrasound 0.68 (0.190)

Risk for trisomy 18 <1:10,000 <1:100

Risk for trisomy 21 <1:10,000 <1:250

Risk for neural tube defects (NTD) (MoM AFP) 0.922 (0.33) AFP MoM <2.5

Demographics

Age at the time of enrolment (yrs) 28.3 (5.18)

Gestational week at the time of delivery (weeks) 37.16 (0.75)

Gravidity 1.83 (0.98)

Parity 1.5 (0.54)

Data are presented as mean (SD).

Regulation of Pregnancy-Associated
Genes in the ExoPLAP During Healthy
Pregnancy
The expression of 36 pregnancy-associated genes, selected from
the literature, was analyzed in the ExoPLAP at four key
gestational time points (n = 3–8/time point). Four genes,
i.e., GNAS, IL-10, IL-13, and ORC5 did not amplify in these
samples, however, 20 out of remaining 32 genes had higher
transcript abundance in the ExoPLAP at the first trimester (T1) of
pregnancy, including eight imprinted genes. The imprinted genes
include PHLDA2, DLK1, MEG3, PEG3, PEG10, GRB10, H19, and
CDKNIC (Figure 2), these had significantly lower expression at
the second or third trimester (T2–T4); relative to T1, (p < 0.05).
Unlike these, the ninth imprinted gene analyzed in our study,
IGF2, had significantly higher transcript abundance at the T3
time point, relative to T1 (Figure 2).

In addition, 19 other selected genes, which follow Mendelian
inheritance, showed a trend similar to those of the eight
imprinted genes except NRF1, NOS3, DRP1, and ITGAV genes
(Figure 2). NRF1 transcript levels had increased at T4 more than
its level at T1 (p < 0.05). While for NOS3, the DRP1 genes had
significantly lower expression at second and third trimester time
points (T2, T3, and T4) relative to the first trimester (T1). The
transcript levels were lower at the second trimester time points
for the rest of the genes and remained lower at T4, relative to T1.
These include PGC1A, ND5, NRF2,MFN1, OPA1, KCNG4, TIMP,
TNFSF10, KCNH2, OR5H6, APOL3, NEDD4L, TGFβRIII, and
BLNK. Nine of these genes are mitochondrial metabolic genes,
such as, PGC1α, MFN1, NRF2, OPA1, DRP1, andND5 (Figure 2).

On the other hand, the mRNA levels of the remaining five
genes, such asATF6, NEDD1, S15, and FIS1, had lower expression
at T1, relative to T2 (p < 0.05, Figure 2). ATF6 had the higher
expression at T4, relative to T1.

Change in Transcriptome Profile of the
ExoPLAP With Pregnancy Progression
Transcriptome profiling of ExoPLAP was performed at T2, T3,
and T4 time points using longitudinally collected samples from
5 different women (n = 5/time point). All the 36 selected genes
were found to express in the transcriptome of ExoPLAP. The
PCA for the overall structure of the analyzed dataset indicated
a clear separation among three different gestational time points
(T2, T3, and T4). There was a variance of 43.4% using component
1 (PCA1), and 33.5% using component 2 (PCA2) (Figure 3A).
The sample from the same gestational time point lies in proximity
to each other. Analysis showed that relative to the T1 time
point, 4,590 genes were differentially regulated at T2 time points,
respectively (F-test ≤0.05, Figure 3B). This set of genes included
both assigned and unassigned genes. Figure 3B shows the heat
map with hierarchical cluster analysis of the gene expression of
these 502 genes (p ≤ 0.01). According to their site of occurrence,
all the gene sets were further categorized.

DISCUSSION

The placenta plays a pivotal role in bringing out maternal
physiological changes and fetal development during pregnancy.
In this study, we tested if circulating ExoPLAP in the maternal
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FIGURE 1 | Isolation of placental alkaline phosphate positive exosomes (ExoPLAP) from maternal plasma. Size distribution and concentration of the exosomes as

analyzed by (A) nanoparticle tracking analysis (NTA) and (B) dynamic light scattering (C) transmission electron micrograph of ExoPLAP-Ab complex captured on anti

FITC-coated magnetic beads. (D) Immunoblot for CD63 and CD9 specific protein band in total plasma exosomes (TE), and in samples enriched from TE using

ant-PLAP antibody (PE) in pregnant women (Preg) and non-pregnant women (Non-Preg) women. Full image of blot is submitted as Supplementary Material.

blood could be used to study the temporal changes in placental
gene regulation during pregnancy. We analyzed the expression
and regulation of a few selected pregnancy-associated placental
genes in ExoPLAP at key gestational weeks. The expression of
the literature-selected genes in the ExoPLAP transcriptome was
confirmed by an unbiased gene profiling. Besides, a clear change
in the ExoPLAP transcriptome profile was noticed among the
three gestational time points T2, T3, and T4.

Maternal serum biochemistry indicated low/no risk for fetal
aneuploidies in the study participants. In addition, maternal-fetal

outcomes further confirmed that the samples studied were from
healthy pregnancies.

The 36 pregnancy-associated genes selected in our study were
curated from the literature based on their reported role in early
pregnancy progression. These genes are shown to have a key role
in signal transduction, cell communication, apoptosis, nucleic
acid metabolism, metabolism, energy pathway, ion transport,
mitochondrial organization, and biogenesis. Furthermore, 32
genes (of 36) showed a good amount of expression in ExoPLAP,
while four of the selected genes could not be amplified, such as
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FIGURE 2 | The mRNA expression of genes analyzed in the ExoPLAP in healthy pregnancy. Scatter plots with bar graph to show the fold expression of genes at the

following mean gestational weeks, 8th (T1), 14th (T2), 22nd (T3), and 31st (T4). The dots in the scatter plot represents individual values, and bar graph shows mean ±

SEM at each gestational week. Fold expression was estimated by quantitative PCR (qPCR) using calculated by 2–1CT method using 18S rRNA as an endogenous

control. *p < 0.05 was considered significant by One-way ANOVA followed by Dunnett’s post-hoc test for comparisons relative to T1 (n = 3–8/gestational week).
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FIGURE 3 | Change in the ExoPLAP-transcriptome with gestational age advancement in healthy pregnancy. (A) Principal components analysis (PCA) shows a

significant distinction among all samples and indicated a clear separation among the three gestational time points, (mean gestational age, 14th (T2), 21st (T3), and

32nd (T4) weeks. (B) Heat map representing expression profiling of identified differentially regulated genes (p < 0.01) among the three different gestational time points

by repeated measure ANOVA (n = 5/gestation week).
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GNAS, IL-10, IL-13, and ORC5. Most of the amplified genes were
found to have a higher abundance in the first trimester ExoPLAP
than the rest of the time points. These include OR5H6 (Olfactory
receptor family 5-member gene 6), ITGAV (Alpha V integrins),
BLNK (B-linker protein), Apolipoprotein L3 (APOL3), TRAIL
(TNF-related apoptosis-inducing ligand), and ND5 (NADH-
ubiquinone oxidoreductase chain 5). OR5H6 has a role in
appropriate cell positioning, an essential pathway/process during
human embryogenesis in the first and early second trimesters
(17). OR5H6 may help to facilitate appropriate cell positioning
and cell recognition during human embryogenesis (18, 19).

Besides, BLNK, a required component for B-cell development
(18), has been suggested to regulate the developing maternal
immune response of conceptus and could help protect a
mammalian fetus bearing paternal alloantigens from rejection
(20). Animal studies showed the role of BLNK in regulating
B-cell function during conceptus attachment to the uterine
endometrium. The other gene in this cluster is ITGAV, which
plays an essential role during early pregnancy in the actin
cytoskeleton and DNA replication (21, 22). It may be crucial
for uterine receptivity in early pregnancy and during labor to
facilitate the required syncytium formation (23, 24).

Angiogenesis is another important event during early
placental development. A hypoxic environment in the early
first trimester of pregnancy favors angiogenesis in the placenta.
APOL3 mRNA had a higher abundance in the T1 ExoPLAP
relative to T2 and T3 time points. APOL3, a regulator of
angiogenesis and endothelial tube formation, may act via
ERK1/2, FAK, and Akt signaling (25). It may have a role in the
early onset of preeclampsia (26).

With the progression of pregnancy toward the second
trimester, extensive vascularization and placental mass expansion
become crucial. During this time, the fetal vessels undergo
extensive branching for placental development to meet the
growing needs of the fetus. However, avoiding vascular
complications becomes necessary due to excessive endoplasmic
reticulum (ER) stress in the placenta (27). Hence, a lower
expression of the NOS3 and potassium voltage (Kv) gated
channel genes in the ExoPLAP may indicate a feedback response
of the placenta to avoid such vascular complications (28).
Nevertheless, altered expression of Kv may have an association
with preeclampsia (29), intrauterine fetal death (30), genetic
predisposition like sudden infant death syndrome (31), and
congenital heart disease (32). Thus, we anticipate a gradual
decrease in NOS3, KCNH2, and KCNG4 gene expressions in the
second trimester ExoPLAP.

We found a substantial TRAIL expression in the ExoPLAP
from the first trimesters and their gradual reduction in the second
trimester and third trimester. High expression of these genes
in the first-trimester ExoPLAP may indicate the physiological
need to develop tolerance toward the developing fetus (33),
which could have been an important implication to pregnancy
immunotolerance and fetal protection from viral infection (34).

Besides, TIMP-1, an endogenous inhibitor of MMPs, is
associated with the integrity of the fetal layer until labor (35).
Decreased TIMP-1 levels in the amniotic fluid with enhancing
gestation period resulted in a marked increase in MMP-9 before

the labor onset (36). We found a higher transcript abundance of
TIMP-1 in the first trimester of ExoPLAP.

Toward the end of the first trimester (between 10 and 12
weeks of gestation), the fully established maternal intra-placental
circulation led to a burst of oxidative stress in the placenta.
Mitochondrial-encoded oxidative phosphorylation genes were
associated with the oxidative stress challenged IUGR placentas
(37). Excessive placental oxidative stress could be a factor
of early pregnancy failure and preeclampsia in later stages.
Thus, the gradual reduction in the expression of oxidative
stress-associated genes, such as ND5 between the first and
second trimester in ExoPLAP observed in our study may
indicate a prerequisite adaptation of the placenta to avoid
excessive oxidative stress response. ND5 protein is a subunit
of NADH dehydrogenase (ubiquinone) in the mitochondrial
inner membrane. Besides, ND5, reduced expression of a few
other genes associated with oxidative stress signaling gene
pathway, such as NADH:ubiquinone oxidoreductase (NDUFs)
and TNFSF10 (38), was observed in the second-trimester
ExoPLAP relative to the first trimester.

Unlike the above genes, transcript levels of a few of the
identified genes were found to increase toward the late second
or third-trimester ExoPLAP, such as NEDD1, S15, ATF6, and
NRF1. NEDD1Neural precursor cell expressed developmentally
downregulated protein1 (NEDD1) plays a vital role in proper
cell positioning (39, 40). The other gene, ADCY5, is one of the
most abundant members of the adenylate cyclase family. It plays
a role in uterine quiescence and labor initiation in mice (41).
Although its significance in human placenta development is still
unclear, a recent study associated ADCY5 gene polymorphism
with glucose metabolism during pregnancies in non-European
descent populations (42). Cyclic AMP-dependent transcription
factor ATF6 was another gene that had low abundance in the first
trimester ExoPLAP. The probable reason for its reduced levels is
to avoid vascular complications due to excessive ER stress and
impaired nitric oxide pathway in early pregnancy (43).

During early placental development, genetic input for fetal
growth, through the process of genomic imprinting, is an
essential determinant of severe pregnancy complications, such
as fetal growth restriction. Thus, we determined the temporal
expression of a few imprinted genes in ExoPLAP. Evaluating the
parent of origin was, however, beyond the scope of this study.

We detected the expression of imprinted genes in ExoPLAP
mRNA levels; all the imprinted genes that we studied,
except IGF2, were upregulated in the first trimester-ExoPLAP.
Maternally expressed PHLDA2 and CDKN1C genes are located
on the centromeric domain of the Chr11p15 imprinting cluster.
PHLDA2 encodes a 144 amino acid long protein with a
Pleckstrin-homology (PH) domain and binds with membrane
phosphatidylinositol phosphate lipids (44). It acts as a cell-
signaling protein and a negative growth suppressor, useful to
predict birth weight (44, 45). In comparison, CDKN1C encodes
a cyclin-dependent kinase inhibitor that negatively regulates
cell proliferation and is highly expressed in P-TGCs, glycogen
cells, fetal endothelium, syncytiotrophoblast (ST), and some
larger S-TGC nuclei dynamically during mid-to-late placental
development (46). The DLK1 gene is, however, a paternally
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expressed gene located in the human chromosome 14q32
imprinting cluster.DLK1 encodes a transmembrane glycoprotein
with six epidermal growth factors like repeat motifs, known to act
as a growth promoter and is involved in adipogenesis (47, 48).
The rest of the imprinted genes that we studied could come from
either parent; these include GRB10, MEG3, PEG 10, IGF2, and
H19. GRB10 is expressed in the fetal endothelium. The maternal
inheritance of a disrupted GRB10 (growth factor receptor-
bound protein 10) allele results in placental and embryonic
overgrowth (49).

In contrast, the paternal transmission of a disrupted GRB10
is associated with placental and embryonic growth retardation
that persists into adulthood (50). Similarly, maternal inheritance
of the Meg3 deletion gene has been associated with loss of
imprinting (LOI) of adjacent genes. It results in neonatal death
but with apparently normal placental development (51).

While paternal inheritance of the same MEG3 deletion was
associated with impaired fetal and placental growth, the PEG 10
gene was also found in higher abundance in the first trimester
ExoPLAP. Its paternal inheritance results in relatively normal
placental development until∼E8.5 in mice (52).

In addition, we studied one more pair of interesting,
imprinted genes, IGF2 and H19, as they have been reported
to have a reciprocal expression in the placenta. IGF2 and H19
imprinted gene clusters are located on human chromosome
11p15. Their reciprocal imprinting is controlled by differential
methylation of imprinting control region 1 (ICR1), which is
normally only methylated on the paternal allele (48). The
unmethylated maternal ICR1 allows the binding of the CTCF
transcription factor, blocking the access of IGF2 promoters to
the H19 downstream enhancers, resulting in the activation of
H19 expression. Decreased IGF2 expression in the placenta has
been associated with growth-restricted SRS cases (53). Our study
found a significant rise in fold expression of H19 at the first
trimester relative to the second or third trimester. In contrast,
IGF2 had higher expression in the second trimester than the other
two trimesters ExoPLAP.

CONCLUSION

We have, for the first time showed a change in ExoPLAP
transcriptome with gestation advancement in healthy
pregnancies. In addition, we demonstrated the expression
of pregnancy-associated placental genes in the ExoPLAP
transcriptome. Thus, ExoPLAP in the maternal blood could
serve as a non-invasive source of pregnancy-associated placental

genes for placental health monitoring during pregnancy. Future
studies on the ExoPLAP transcriptome in unhealthy pregnancies
are warranted.
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