# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1-(Morpholin-4-yl)-4-(2-nitrophenyl)spiro[azetidine-3,9'-xanthen]-2-one

#### Zeliha Atioğlu,<sup>a</sup> Mehmet Akkurt,<sup>b</sup>\* Aliasghar Jarrahpour,<sup>c</sup> Roghayeh Heiran<sup>c</sup> and Namık Özdemir<sup>d</sup>

<sup>a</sup>Ilke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, <sup>b</sup>Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, <sup>c</sup>Department of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and <sup>d</sup>Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 9 June 2014; accepted 10 June 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.098; data-to-parameter ratio = 17.5.

In the title compound,  $C_{22}H_{21}N_3O_5$ , the  $\beta$ -lactam (azetidin-2one) ring is nearly planar [maximum deviation = 0.010 (1) Å] and makes dihedral angles of 69.22 (5), 55.32 (5) and 89.42 (4)° with the least-squares planes formed by the four C atoms of the morpholine ring, which adopts a chair conformation, the benzene ring and the xanthene ring system, respectively. In the crystal, C-H···O hydrogen-bond contacts connect neighbouring molecules into infinite zigzag chains running parallel to the *b* axis.

#### **Related literature**

For general background to  $\beta$ -lactams, see: Arya *et al.* (2014); Ebrahimi & Jarrahpour (2014); Singh & Sudheesh (2014); Zeng *et al.* (2014); Zarei *et al.* (2013); Jarrahpour & Ebrahimi (2010); Mehta *et al.* (2010); Singh *et al.* (2011). For geometric analysis, see: Cremer & Pople (1975); Nardelli (1995). For similar structures, see: Akkurt *et al.* (2008*a*,*b*); Yalçın *et al.* (2009); Çelik *et al.* (2009*a*,*b*, 2014).



V = 2199.97 (18) Å<sup>3</sup>

 $0.50 \times 0.44 \times 0.40 \text{ mm}$ 

13801 measured reflections

5223 independent reflections

3421 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Mo  $K\alpha$  radiation

 $\mu = 0.10 \text{ mm}^-$ 

T = 296 K

 $R_{\rm int} = 0.195$ 

299 parameters

 $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.11 \text{ e } \text{\AA}^{-3}$ 

Z = 4

#### **Experimental**

Crystal data  $C_{25}H_{21}N_3O_5$  $M_r = 443.45$ 

 $M_r = 443.43$ Monoclinic,  $P2_1/c$ a = 9.4272 (5) Å b = 18.8525 (8) Å c = 12.4345 (6) Å  $\beta = 95.443$  (4)°

#### Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002)  $T_{min} = 0.956, T_{max} = 0.974$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.098$ S = 1.005223 reflections

5225 Tellections

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$                            | $D - \mathbf{H} \cdot \cdot \cdot A$   |
|-------------------------------------------------------------------------------------------------|----------------------|-------------------------|-----------------------------------------|----------------------------------------|
| $\begin{array}{c} C3-H3\cdots O3^{i}\\ C6-H6\cdots O1^{ii}\\ C11-H11\cdots O2^{iii}\end{array}$ | 0.98<br>0.93<br>0.93 | 2.55<br>2.56<br>2.50    | 3.5310 (16)<br>3.3828 (17)<br>3.389 (2) | 174<br>148<br>159                      |
| Symmetry codes:<br>-x + 2, -y + 1, -z +                                                         | (i) $-x + 1$         | y, -y + 1, -z + 1       | ; (ii) $x, -y$ -                        | $+\frac{3}{2}, z - \frac{1}{2};$ (iii) |

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).



Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5411).

#### References

- Akkurt, M., Jarrahpour, A., Ebrahimi, E., Gençaslan, M. & Büyükgüngör, O. (2008a). Acta Cryst. E64, 02466–02467.
- Akkurt, M., Karaca, S., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2008b). Acta Cryst. E64, 0902–0903.
- Arya, N., Jagdale, A. Y., Patil, T. A., Yeramwar, S. S., Holikatti, S. S., Dwivedi, J., Shishoo, Ch. J. & Jain, K. S. (2014). *Eur. J. Med. Chem.* 74, 619–656.
- Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009a). Acta Cryst. E65, o501–o502.
- Çelik, Í., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009b). Acta Cryst. E65, 02522–02523.
- Çelik, Í., Akkurt, M., Jarrahpour, A., Heiran, R. & Özdemir, N. (2014). Acta Cryst. E70, 0369–0370.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Ebrahimi, E. & Jarrahpour, A. (2014). Iran. J. Sci. Technol. 38A1, 49-53.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jarrahpour, A. & Ebrahimi, E. (2010). Molecules, 15, 515-531.
- Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singh, G. S., D'hooghe, M. & De Kimpe, N. (2011). Tetrahedron, 67, 1989– 2012.
- Singh, G. S. & Sudheesh, S. (2014). Arkivoc, i, 337-385.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Yalçın, Ş. P., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, 0626–0627.
- Zarei, M., Karimi-Jaberi, Z. & Movahedi, A. (2013). Synth. Commun. 43, 728–734.
- Zeng, X.-H., Wang, H.-M., Yan, Y.-M., Wu, L. & Ding, M.-W. (2014). Tetrahedron, 70, 3647–3652.

# supporting information

Acta Cryst. (2014). E70, o772-o773 [doi:10.1107/S1600536814013464]

# 1-(Morpholin-4-yl)-4-(2-nitrophenyl)spiro[azetidine-3,9'-xanthen]-2-one

### Zeliha Atioğlu, Mehmet Akkurt, Aliasghar Jarrahpour, Roghayeh Heiran and Namık Özdemir

#### 1. Comment

2-Azetidinones, commonly known as  $\beta$ -lactams, constitute a most important class of antibiotics in both human and veterinary medicine (Arya *et al.*, 2014; Singh & Sudheesh, 2014; Zeng *et al.*, 2014; Zarei *et al.*, 2013). In addition to their well recognized antibiotic activity,  $\beta$ -lactams exhibit various other biological activities such as thrombin, human, HIV-1 protease, human leukocyte elastase, cholesterol absorption inhibition and antifungal, anticancer, antidiabetic and potential antimalarial properties (Mehta *et al.*, 2010; Singh *et al.*, 2011; Ebrahimi & Jarrahpour, 2014). The synthesis and chemistry of spiro-fused 2-azetidinones has grown steadily over the years and many newly synthesized spiro-fused 2-azetidinones have been reported in the literature (Jarrahpour & Ebrahimi, 2010; Singh *et al.*, 2011).

The  $\beta$ -lactam (azetidin-2-one) ring of the title compound (I, Fig. 1) is nearly planar, with a maximum deviation of -0.010 (1) Å for C1 from the mean plane. Atom O1 lies almost in the  $\beta$ -lactam plane, with a deviation of 0.069 (1) Å. The  $\beta$ -lactam ring makes a dihedral angle of 55.32 (5)° with the benzene ring C16—C21.

The xanthene ring system is V-shaped, with a dihedral angle between the (C4–C9) and (C10–C15) benzene rings of 19.07 (7)°. Its central ring, C2/C4/C9/O2/C10/C15, is not planar, with puckering parameters:  $Q_T = 0.2438$  (13) Å,  $\theta = 98.1$  (3)° and  $\varphi = 2.0$  (3)° (Cremer & Pople, 1975).

The mean plane of the xanthene ring system forms dihedral angles of 89.42 (4), 43.44 (3) and 22.80 (5)° (Nardelli, 1995), with the  $\beta$ -lactam ring, the benzene ring (C16–C21) and the least-squares plane formed by the four C atoms of the morpholine ring (N2/O5/C22–C25), respectively.

The bond lengths and angles in (I) are comparable with those observed in similar compounds that we have reported previously (Akkurt *et al.*, 2008*a*,*b*; Çelik *et al.*, 2009*a*,*b*; Çelik *et al.*, 2014; Yalçın *et al.*, 2009).

In the crystal structure, molecules are linked by C—H···O hydrogen contacts (Table 1) into infinite zigzag chains running parallel to the *b* axis. Figs. 2, 3 and 4 show the projections along the *a*, *b* and *c* axes of the crystal packing of (I), respectively.

#### 2. Experimental

A mixture of *N*-(2-nitrobenzylidene)morpholin-4-amine (0.24 g, 1.00 mmol), 9*H*-xanthen-9-carboxylic acid (0.34 g, 1.50 mmol), tosyl chloride (0.28 g, 1.50 mmol) and triethylamine (0.25 g, 2.50 mmol) was stirred in dry CH<sub>2</sub>Cl<sub>2</sub> at room temperature. After 24 h, the mixture was washed with HCl 1 M (20 ml), saturated NaHCO<sub>3</sub> (20 ml), brine (20 ml), dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent was evaporated to give the crude product which was purified by column chromatography (eluent 2:1 n-hexane/EtOAc) as light yellow crystalline solid (yield 41%). mp: 471- 473 K. IR (KBr, cm<sup>-1</sup>): 1759 (CO,  $\beta$ -lactam), 1346, 1523 (NO2). <sup>1</sup>H-NMR (CDCl3)  $\delta$  (p.p.m.): 3.52–3.76 (CH<sub>2</sub> morpholine ring, m, 8H), 5.38 (H-3, s, 1H), 6.62–8.10 (ArH, m, 12H). <sup>13</sup>C-NMR (CDCl<sub>3</sub>)  $\delta$  (p.p.m.): 53.8 (CH<sub>2</sub>—N), 61.4 (C-3), 66.8 (CH<sub>2</sub>—O), 73.9 (C-4), 114.9, 116.8, 116.9, 120.5, 122.2, 123.9, 124.8, 125.1, 127.8, 128.9, 129.3, 129.5, 131.1, 133.1, 147.5, 152.1, 152.3 (aromatic carbons), 169.7 (CO,  $\beta$ -lactam). Anal. calcd for C<sub>25</sub>H<sub>21</sub>N<sub>3</sub>O<sub>5</sub>: C 67.71, H 4.77, N 9.48%. Found: C 67.80, H 4.66, N

9.45%.

#### 3. Refinement

All H atoms were positioned geometrically and were refined using a riding model, with C—H = 0.93 (aromatic), 0.97 Å (methylene) 0.98 Å(methine), respectively, and  $U_{iso}(H) = 1.2 U_{eq}(C)$ . Reflections (1 4 1), (0 3 2), (-1 2 2), (-2 0 2), (1 3 0) and (1 5 0) were omitted due to the large disagreement between  $F_{obs}$  and  $F_{calc}$ . Owing to the poor quality of the crystal, the data obtained were rather poor and the value of  $R_{int}$  remained high (0.195).



#### Figure 1

The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.



## Figure 2

Hydrogen bonding and molecular packing of (I) viewed along the *a* axis. Only H atoms involved in H bonding are shown.



### Figure 3

Hydrogen bonding and molecular packing of (I) viewed along the *b* axis. Only H atoms involved in H bonding are shown.



## Figure 4

Hydrogen bonding and molecular packing of (I) viewed along the *c* axis. Only H atoms involved in H bonding are shown.

#### 1-(Morpholin-4-yl)-4-(2-nitrophenyl)spiro[azetidine-3,9'-xanthen]-2-one

#### Crystal data

C<sub>25</sub>H<sub>21</sub>N<sub>3</sub>O<sub>5</sub>  $M_r = 443.45$ Monoclinic,  $P2_1/c$ Hall symbol: -P 2ybc a = 9.4272 (5) Å b = 18.8525 (8) Å c = 12.4345 (6) Å  $\beta = 95.443$  (4)° V = 2199.97 (18) Å<sup>3</sup> Z = 4

#### Data collection

| Stoe IPDS 2                                       | $T_{\rm min} = 0.956, \ T_{\rm max} = 0.974$                    |
|---------------------------------------------------|-----------------------------------------------------------------|
| diffractometer                                    | 13801 measured reflections                                      |
| Radiation source: sealed X-ray tube, 12 x 0.4     | 5223 independent reflections                                    |
| mm long-fine focus                                | 3421 reflections with $I > 2\sigma(I)$                          |
| Plane graphite monochromator                      | $R_{\rm int} = 0.195$                                           |
| Detector resolution: 6.67 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.9^\circ, \ \theta_{\rm min} = 2.0^\circ$ |
| $\omega$ scans                                    | $h = -12 \rightarrow 8$                                         |
| Absorption correction: integration                | $k = -24 \rightarrow 24$                                        |
| (X-RED32; Stoe & Cie, 2002)                       | $l = -16 \rightarrow 16$                                        |
| Refinement                                        |                                                                 |
| Refinement on $F^2$                               | Hydrogen site location: inferred f                              |

| Refinement on $F^2$             | Hydrogen site location: inferred from                        |
|---------------------------------|--------------------------------------------------------------|
| Least-squares matrix: full      | neighbouring sites                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.045$ | H-atom parameters constrained                                |
| $wR(F^2) = 0.098$               | $w = 1/[\sigma^2(F_o^2) + (0.0511P)^2]$                      |
| S = 1.00                        | where $P = (F_o^2 + 2F_c^2)/3$                               |
| 5223 reflections                | $(\Delta/\sigma)_{ m max} < 0.001$                           |
| 299 parameters                  | $\Delta  ho_{ m max} = 0.15 \ { m e} \ { m \AA}^{-3}$        |
| 0 restraints                    | $\Delta  ho_{ m min} = -0.11  \mathrm{e}  \mathrm{\AA}^{-3}$ |
|                                 |                                                              |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F(000) = 928

 $\theta = 1.6 - 28.4^{\circ}$ 

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

 $D_{\rm x} = 1.339 {\rm Mg} {\rm m}^{-3}$ 

Block, light yellow

 $0.50 \times 0.44 \times 0.40 \text{ mm}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 14473 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|    | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|----|--------------|-------------|--------------|-----------------------------|--|
| 01 | 0.56523 (11) | 0.77674 (4) | 0.39775 (8)  | 0.0607 (3)                  |  |
| O2 | 0.88039 (12) | 0.56659 (6) | 0.40826 (8)  | 0.0725 (4)                  |  |
| O3 | 0.59829 (13) | 0.48451 (5) | 0.40169 (9)  | 0.0738 (4)                  |  |
| 04 | 0.6611 (2)   | 0.42173 (8) | 0.27221 (13) | 0.1293 (7)                  |  |
| 05 | 0.05898 (13) | 0.80037 (7) | 0.43054 (10) | 0.0862 (5)                  |  |

| N1         | 0.40654 (11)               | 0.68165 (5)                | 0.36241 (8)                | 0.0475 (3) |
|------------|----------------------------|----------------------------|----------------------------|------------|
| N2         | 0.26494 (11)               | 0.70325 (5)                | 0.37024 (8)                | 0.0504 (3) |
| N3         | 0.58819 (15)               | 0.46781 (6)                | 0.30725 (11)               | 0.0673 (5) |
| C1         | 0.53326 (14)               | 0.71537 (6)                | 0.38183 (9)                | 0.0459 (4) |
| C2         | 0.61723 (13)               | 0.64499 (6)                | 0.38092 (9)                | 0.0439 (4) |
| C3         | 0.46359 (13)               | 0.60880 (6)                | 0.36101 (9)                | 0.0444 (4) |
| C4         | 0.71522 (13)               | 0.63736 (6)                | 0.29281 (9)                | 0.0450 (4) |
| C5         | 0.68634 (14)               | 0.66829 (7)                | 0.19146 (10)               | 0.0527 (4) |
| C6         | 0.77624 (16)               | 0.65986 (8)                | 0.11144 (11)               | 0.0610 (5) |
| C7         | 0.89724 (16)               | 0.61957 (8)                | 0.13129 (12)               | 0.0648 (5) |
| C8         | 0.92974 (16)               | 0.58875 (8)                | 0.23033 (12)               | 0.0665 (5) |
| C9         | 0.83854 (14)               | 0.59821 (7)                | 0.31040 (10)               | 0.0536 (4) |
| C10        | 0.81733 (15)               | 0.58925(7)                 | 0 49807 (10)               | 0.0554(4)  |
| C11        | 0.81755(17)<br>0.88545(17) | 0.56948(9)                 | 0.59700(12)                | 0.0697 (6) |
| C12        | 0.83068(17)                | 0.59109 (8)                | 0.68992(12)                | 0.0668(5)  |
| C13        | 0.00000(17)<br>0.71169(18) | 0.63341(7)                 | 0.68493(11)                | 0.0631(5)  |
| C14        | 0.64380(16)                | 0.65115(7)                 | 0.58589 (10)               | 0.0051(9)  |
| C15        | 0.69405(14)                | 0.62872(6)                 | 0.38989(10)<br>0.48998(10) | 0.0335(4)  |
| C16        | 0.02403(14)<br>0.42467(13) | 0.56881 (6)                | 0.48998(10)<br>0.25733(10) | 0.0403(4)  |
| C17        | 0.42407(15)<br>0.48204(15) | 0.50353(6)                 | 0.23735(10)<br>0.23145(10) | 0.0477(4)  |
| C18        | 0.43294(13)<br>0.44357(19) | 0.30333(0)<br>0.46854(8)   | 0.23143(10)<br>0.13552(12) | 0.0550(4)  |
| C10        | 0.44337(19)<br>0.34418(10) | 0.40834(8)                 | 0.15552(12)                | 0.0091(0)  |
| C20        | 0.34410(19)<br>0.28575(18) | 0.49821(9)<br>0.56245(10)  | 0.00100(12)<br>0.08314(12) | 0.0749(0)  |
| C20        | 0.28575(18)<br>0.22615(15) | 0.50243(10)                | 0.00314(12)<br>0.17032(11) | 0.0730(0)  |
| C21<br>C22 | 0.32013(13)<br>0.23610(17) | 0.39701(8)<br>0.71132(8)   | 0.17932(11)<br>0.48318(11) | 0.0003(3)  |
| C22        | 0.23010(17)<br>0.08301(10) | 0.71132(8)<br>0.73546(10)  | 0.40310(11)<br>0.48550(15) | 0.0040(3)  |
| C23        | 0.0851(19)                 | 0.75340(10)<br>0.70140(11) | 0.40339(13)                | 0.0822(7)  |
| C24        | 0.0631(2)<br>0.22701(10)   | 0.79149(11)<br>0.77026(8)  | 0.32136(13)<br>0.21261(12) | 0.0903(7)  |
| C25        | 0.23701 (19)               | 0.77030 (8)                | 0.31201(12)                | 0.0712(0)  |
| П3<br>115  | 0.44030                    | 0.58100                    | 0.42410                    | 0.0550*    |
| ПЗ         | 0.00420                    | 0.09330                    | 0.17730                    | 0.0030*    |
| HO         | 0.75520                    | 0.08130                    | 0.04450                    | 0.0730*    |
| H/         | 0.95760                    | 0.61320                    | 0.07710                    | 0.0780*    |
| Hð         | 1.01210                    | 0.56180                    | 0.24380                    | 0.0800*    |
| HII        | 0.96/50                    | 0.54180                    | 0.60040                    | 0.0840*    |
| H12        | 0.8/440                    | 0.57700                    | 0.75670                    | 0.0800*    |
| H13        | 0.67740                    | 0.64990                    | 0.74800                    | 0.0760*    |
| HI4        | 0.56200                    | 0.67890                    | 0.58290                    | 0.0670*    |
| H18        | 0.48450                    | 0.42510                    | 0.12130                    | 0.0830*    |
| H19        | 0.31650                    | 0.47480                    | -0.00280                   | 0.0900*    |
| H20        | 0.21860                    | 0.58300                    | 0.03290                    | 0.0880*    |
| H21        | 0.28560                    | 0.64080                    | 0.19200                    | 0.0730*    |
| H22A       | 0.30050                    | 0.74600                    | 0.51880                    | 0.0770*    |
| H22B       | 0.25040                    | 0.66650                    | 0.52080                    | 0.0770*    |
| H23A       | 0.02040                    | 0.69950                    | 0.45230                    | 0.0990*    |
| H23B       | 0.06300                    | 0.74100                    | 0.56000                    | 0.0990*    |
| H24A       | 0.06510                    | 0.83550                    | 0.28260                    | 0.1090*    |
| H24B       | 0.02210                    | 0.75530                    | 0.28850                    | 0.1090*    |
| H25A       | 0.25350                    | 0.76480                    | 0.23730                    | 0.0850*    |

# supporting information

| H25B     | 0.30070           | 0.                | 80690       | 0.34390     | 0.0850*                |                        |
|----------|-------------------|-------------------|-------------|-------------|------------------------|------------------------|
| Atomic a | lisplacement para | ameters ( $Å^2$ ) |             |             |                        |                        |
|          | $U^{11}$          | U <sup>22</sup>   | $U^{33}$    | $U^{12}$    | <i>U</i> <sup>13</sup> | <i>U</i> <sup>23</sup> |
| 01       | 0.0664 (6)        | 0.0398 (4)        | 0.0748 (6)  | -0.0032 (4) | 0.0010 (5)             | -0.0022 (4)            |
| O2       | 0.0706 (7)        | 0.0878 (7)        | 0.0609 (6)  | 0.0346 (6)  | 0.0163 (5)             | 0.0220 (5)             |
| O3       | 0.0973 (9)        | 0.0551 (6)        | 0.0684 (6)  | 0.0094 (5)  | 0.0043 (6)             | 0.0026 (5)             |
| O4       | 0.1586 (16)       | 0.1034 (10)       | 0.1227 (11) | 0.0737 (10) | -0.0035 (10)           | -0.0381 (8)            |
| 05       | 0.0755 (8)        | 0.0936 (8)        | 0.0909 (8)  | 0.0321 (6)  | 0.0160 (6)             | -0.0121 (7)            |
| N1       | 0.0447 (6)        | 0.0409 (5)        | 0.0574 (6)  | 0.0033 (4)  | 0.0068 (4)             | -0.0024 (4)            |
| N2       | 0.0436 (6)        | 0.0549 (6)        | 0.0531 (6)  | 0.0091 (5)  | 0.0072 (4)             | -0.0030 (5)            |
| N3       | 0.0818 (9)        | 0.0435 (6)        | 0.0781 (9)  | 0.0063 (6)  | 0.0150 (7)             | -0.0064 (6)            |
| C1       | 0.0496 (7)        | 0.0411 (6)        | 0.0469 (6)  | -0.0007 (5) | 0.0039 (5)             | 0.0007 (5)             |
| C2       | 0.0447 (7)        | 0.0385 (6)        | 0.0487 (6)  | -0.0007 (5) | 0.0057 (5)             | 0.0010 (5)             |
| C3       | 0.0455 (7)        | 0.0391 (6)        | 0.0496 (6)  | 0.0004 (5)  | 0.0093 (5)             | -0.0006 (5)            |
| C4       | 0.0441 (7)        | 0.0401 (6)        | 0.0512 (7)  | -0.0027 (5) | 0.0061 (5)             | 0.0021 (5)             |
| C5       | 0.0507 (8)        | 0.0522 (7)        | 0.0549 (7)  | 0.0017 (6)  | 0.0033 (6)             | 0.0068 (6)             |
| C6       | 0.0670 (10)       | 0.0655 (8)        | 0.0514 (7)  | -0.0037 (7) | 0.0104 (7)             | 0.0098 (6)             |
| C7       | 0.0629 (9)        | 0.0732 (9)        | 0.0613 (8)  | 0.0010 (7)  | 0.0224 (7)             | 0.0042 (7)             |
| C8       | 0.0559 (9)        | 0.0780 (9)        | 0.0680 (9)  | 0.0149 (7)  | 0.0182 (7)             | 0.0120 (7)             |
| C9       | 0.0512 (8)        | 0.0549 (7)        | 0.0557 (7)  | 0.0056 (6)  | 0.0097 (6)             | 0.0095 (6)             |
| C10      | 0.0553 (8)        | 0.0580 (7)        | 0.0533 (7)  | 0.0044 (6)  | 0.0079 (6)             | 0.0104 (6)             |
| C11      | 0.0618 (10)       | 0.0788 (10)       | 0.0678 (9)  | 0.0127 (7)  | 0.0022 (7)             | 0.0209 (8)             |
| C12      | 0.0745 (11)       | 0.0693 (9)        | 0.0543 (8)  | -0.0103 (8) | -0.0062 (7)            | 0.0119 (7)             |
| C13      | 0.0820 (11)       | 0.0556 (8)        | 0.0514 (8)  | -0.0096 (7) | 0.0054 (7)             | -0.0032 (6)            |
| C14      | 0.0644 (9)        | 0.0490 (7)        | 0.0530 (7)  | -0.0001 (6) | 0.0047 (6)             | -0.0043 (6)            |
| C15      | 0.0483 (7)        | 0.0411 (6)        | 0.0498 (7)  | -0.0037 (5) | 0.0036 (5)             | 0.0022 (5)             |
| C16      | 0.0472 (7)        | 0.0465 (6)        | 0.0511 (7)  | -0.0076 (5) | 0.0138 (5)             | -0.0034 (5)            |
| C17      | 0.0606 (8)        | 0.0454 (6)        | 0.0569 (7)  | -0.0063 (6) | 0.0170 (6)             | -0.0046 (6)            |
| C18      | 0.0864 (12)       | 0.0576 (8)        | 0.0669 (9)  | -0.0111 (8) | 0.0263 (8)             | -0.0158 (7)            |
| C19      | 0.0825 (12)       | 0.0869 (11)       | 0.0567 (9)  | -0.0200 (9) | 0.0140 (8)             | -0.0232 (8)            |
| C20      | 0.0652 (10)       | 0.0960 (12)       | 0.0588 (9)  | -0.0075 (8) | 0.0017 (7)             | -0.0118 (8)            |
| C21      | 0.0547 (9)        | 0.0666 (8)        | 0.0597 (8)  | -0.0003 (6) | 0.0029 (6)             | -0.0091 (7)            |
| C22      | 0.0656 (9)        | 0.0724 (9)        | 0.0555 (8)  | 0.0085 (7)  | 0.0137 (7)             | 0.0006 (7)             |
| C23      | 0.0694 (11)       | 0.1011 (13)       | 0.0805 (11) | 0.0075 (9)  | 0.0295 (9)             | -0.0102 (10)           |
| C24      | 0.0804 (13)       | 0.1075 (14)       | 0.0826 (11) | 0.0427 (10) | 0.0030 (9)             | 0.0028 (10)            |
| C25      | 0.0759 (11)       | 0.0749 (10)       | 0.0639 (9)  | 0.0288 (8)  | 0.0119 (7)             | 0.0130 (7)             |

# Geometric parameters (Å, °)

| 01—C1  | 1.2072 (14) | C16—C17 | 1.3977 (17) |
|--------|-------------|---------|-------------|
| O2—C9  | 1.3786 (16) | C16—C21 | 1.3839 (19) |
| O2—C10 | 1.3817 (17) | C17—C18 | 1.3827 (19) |
| O3—N3  | 1.2108 (17) | C18—C19 | 1.368 (2)   |
| O4—N3  | 1.214 (2)   | C19—C20 | 1.367 (3)   |
| O5—C23 | 1.411 (2)   | C20—C21 | 1.383 (2)   |
| O5—C24 | 1.412 (2)   | C22—C23 | 1.508 (2)   |
|        |             |         |             |

| N1—N2                                                                                      | 1.4078 (15)                                                                                                                              | C24—C25                                                                                                                                                                          | 1.500 (3)                                                                                                                      |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| N1—C1                                                                                      | 1.3546 (16)                                                                                                                              | С3—Н3                                                                                                                                                                            | 0.9800                                                                                                                         |
| N1—C3                                                                                      | 1.4757 (15)                                                                                                                              | С5—Н5                                                                                                                                                                            | 0.9300                                                                                                                         |
| N2—C22                                                                                     | 1.4635 (17)                                                                                                                              | С6—Н6                                                                                                                                                                            | 0.9300                                                                                                                         |
| N2—C25                                                                                     | 1.4655 (18)                                                                                                                              | С7—Н7                                                                                                                                                                            | 0.9300                                                                                                                         |
| N3—C17                                                                                     | 1.4659 (19)                                                                                                                              | С8—Н8                                                                                                                                                                            | 0.9300                                                                                                                         |
| C1—C2                                                                                      | 1.5456 (17)                                                                                                                              | C11—H11                                                                                                                                                                          | 0.9300                                                                                                                         |
| C2—C3                                                                                      | 1.5989 (17)                                                                                                                              | C12—H12                                                                                                                                                                          | 0.9300                                                                                                                         |
| C2—C4                                                                                      | 1.5055 (17)                                                                                                                              | C13—H13                                                                                                                                                                          | 0.9300                                                                                                                         |
| C2-C15                                                                                     | 1.5071 (17)                                                                                                                              | C14—H14                                                                                                                                                                          | 0.9300                                                                                                                         |
| $C_3$ — $C_{16}$                                                                           | 1.5084(17)                                                                                                                               | C18—H18                                                                                                                                                                          | 0.9300                                                                                                                         |
| C4-C5                                                                                      | 1.3001(17)                                                                                                                               | C19—H19                                                                                                                                                                          | 0.9300                                                                                                                         |
| $C_4 - C_9$                                                                                | 1 3769 (18)                                                                                                                              | $C_{20}$ H20                                                                                                                                                                     | 0.9300                                                                                                                         |
| C5-C6                                                                                      | 1.3761 (19)                                                                                                                              | C21_H21                                                                                                                                                                          | 0.9300                                                                                                                         |
| C6_C7                                                                                      | 1.3701(17)<br>1.373(2)                                                                                                                   | $C_{21}$ $H_{21}$                                                                                                                                                                | 0.9300                                                                                                                         |
| $C_{0}$                                                                                    | 1.375(2)<br>1.270(2)                                                                                                                     | C22—1122A                                                                                                                                                                        | 0.9700                                                                                                                         |
| $C^{2} = C^{2}$                                                                            | 1.370(2)                                                                                                                                 | C22—II22A                                                                                                                                                                        | 0.9700                                                                                                                         |
|                                                                                            | 1.367(2)                                                                                                                                 | $C_{23}$ $H_{23}$                                                                                                                                                                | 0.9700                                                                                                                         |
|                                                                                            | 1.384(2)                                                                                                                                 | С23—Н23В                                                                                                                                                                         | 0.9700                                                                                                                         |
|                                                                                            | 1.3/36(19)                                                                                                                               | C24—H24A                                                                                                                                                                         | 0.9700                                                                                                                         |
|                                                                                            | 1.3/1 (2)                                                                                                                                | C24—H24B                                                                                                                                                                         | 0.9700                                                                                                                         |
| C12—C13                                                                                    | 1.3/3 (2)                                                                                                                                | C25—H25A                                                                                                                                                                         | 0.9700                                                                                                                         |
| C13—C14                                                                                    | 1.3743 (19)                                                                                                                              | С25—Н25В                                                                                                                                                                         | 0.9700                                                                                                                         |
| C14—C15                                                                                    | 1.3902 (18)                                                                                                                              |                                                                                                                                                                                  |                                                                                                                                |
| $C_{0}$ $C_{2}$ $C_{10}$                                                                   | 110 00 (11)                                                                                                                              | C16 C21 C20                                                                                                                                                                      | 122 45 (14)                                                                                                                    |
| $C_{2} = 0_{2} = 0_{10}$                                                                   | 110.00(11)<br>100.10(14)                                                                                                                 | C10 - C21 - C20                                                                                                                                                                  | 122.43(14)                                                                                                                     |
| N2 N1 C1                                                                                   | 109.10(14)                                                                                                                               | $N_2 = C_{22} = C_{23}$                                                                                                                                                          | 108.51(12)                                                                                                                     |
| N2—N1—C1                                                                                   | 132.08 (10)                                                                                                                              | 05-024-025                                                                                                                                                                       | 111.54 (14)                                                                                                                    |
| $N_2 - N_1 - C_3$                                                                          | 128.25 (9)                                                                                                                               | 05-024-025                                                                                                                                                                       | 110.85 (14)                                                                                                                    |
| CI = NI = C3                                                                               | 97.05 (9)                                                                                                                                | N2-C25-C24                                                                                                                                                                       | 108.79 (14)                                                                                                                    |
| NI—N2—C22                                                                                  | 111.11 (10)                                                                                                                              | NI-C3-H3                                                                                                                                                                         | 112.00                                                                                                                         |
| N1—N2—C25                                                                                  | 110.09 (10)                                                                                                                              | С2—С3—Н3                                                                                                                                                                         | 112.00                                                                                                                         |
| C22—N2—C25                                                                                 | 109.78 (10)                                                                                                                              | C16—C3—H3                                                                                                                                                                        | 112.00                                                                                                                         |
| O3—N3—O4                                                                                   | 122.62 (15)                                                                                                                              | C4—C5—H5                                                                                                                                                                         | 119.00                                                                                                                         |
| O3—N3—C17                                                                                  | 119.36 (12)                                                                                                                              | C6—C5—H5                                                                                                                                                                         | 119.00                                                                                                                         |
| O4—N3—C17                                                                                  | 118.02 (14)                                                                                                                              | С5—С6—Н6                                                                                                                                                                         | 120.00                                                                                                                         |
| 01—C1—N1                                                                                   | 132.94(12)                                                                                                                               | C7 $C(1)$                                                                                                                                                                        | 100.00                                                                                                                         |
| O1—C1—C2                                                                                   | 152.94(12)                                                                                                                               | C/C0H0                                                                                                                                                                           | 120.00                                                                                                                         |
|                                                                                            | 134.74 (12)                                                                                                                              | С7—С6—Н6<br>С6—С7—Н7                                                                                                                                                             | 120.00<br>120.00                                                                                                               |
| N1—C1—C2                                                                                   | 132.94 (12)<br>134.74 (12)<br>92.26 (9)                                                                                                  | С/—С6—Н6<br>С6—С7—Н7<br>С8—С7—Н7                                                                                                                                                 | 120.00<br>120.00<br>120.00                                                                                                     |
| N1—C1—C2<br>C1—C2—C3                                                                       | 134.74 (12)<br>92.26 (9)<br>84.86 (9)                                                                                                    | C7—C6—H6<br>C6—C7—H7<br>C8—C7—H7<br>C7—C8—H8                                                                                                                                     | 120.00<br>120.00<br>120.00<br>120.00                                                                                           |
| N1C1C2<br>C1C2C3<br>C1C2C4                                                                 | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)                                                                                      | C7—C6—H6<br>C6—C7—H7<br>C8—C7—H7<br>C7—C8—H8<br>C9—C8—H8                                                                                                                         | 120.00<br>120.00<br>120.00<br>120.00<br>120.00                                                                                 |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15                                                      | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>111.77 (9)                                                                        | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11                                                                                                          | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                                                                       |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15<br>C3C2C4                                            | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>111.77 (9)<br>117.12 (9)                                                          | C7—C6—H6<br>C6—C7—H7<br>C8—C7—H7<br>C7—C8—H8<br>C9—C8—H8<br>C10—C11—H11<br>C12—C11—H11                                                                                           | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                                                             |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C4<br>C3C2C4<br>C3C2C15                                  | 132.34 (12)<br>134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>111.77 (9)<br>117.12 (9)<br>113.79 (9)                             | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11<br>C12-C11-H11<br>C11-C12-H12                                                                            | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                                                   |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15<br>C3C2C4<br>C3C2C15<br>C4C2C15                      | 132.34 (12)<br>134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>111.77 (9)<br>117.12 (9)<br>113.79 (9)<br>111.09 (10)              | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11<br>C12-C11-H11<br>C12-C11-H11<br>C11-C12-H12<br>C13-C12-H12                                              | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                                                   |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15<br>C3C2C4<br>C3C2C15<br>C4C2C15<br>N1C3C2            | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>111.77 (9)<br>117.12 (9)<br>113.79 (9)<br>111.09 (10)<br>85.81 (8)                | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11<br>C12-C11-H11<br>C12-C11-H11<br>C11-C12-H12<br>C13-C12-H12<br>C12-C13-H13                               | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                               |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15<br>C3C2C4<br>C3C2C15<br>C4C2C15<br>N1C3C2<br>N1C3C16 | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>117.12 (9)<br>113.79 (9)<br>111.09 (10)<br>85.81 (8)<br>114.57 (9)                | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11<br>C12-C11-H11<br>C11-C12-H12<br>C13-C12-H12<br>C13-C12-H12<br>C12-C13-H13<br>C14-C13-H13                | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00                     |
| N1C1C2<br>C1C2C3<br>C1C2C4<br>C1C2C15<br>C3C2C4<br>C3C2C15<br>N1C3C2<br>N1C3C16<br>C2C3C16 | 134.74 (12)<br>92.26 (9)<br>84.86 (9)<br>115.94 (9)<br>117.12 (9)<br>113.79 (9)<br>111.09 (10)<br>85.81 (8)<br>114.57 (9)<br>119.27 (10) | C7-C6-H6<br>C6-C7-H7<br>C8-C7-H7<br>C7-C8-H8<br>C9-C8-H8<br>C10-C11-H11<br>C12-C11-H11<br>C12-C11-H11<br>C11-C12-H12<br>C13-C12-H12<br>C12-C13-H13<br>C14-C13-H13<br>C13-C14-H14 | 120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>120.00<br>119.00 |

| C2—C4—C9       | 120.18 (10)  | C17—C18—H18   | 120.00       |
|----------------|--------------|---------------|--------------|
| C5—C4—C9       | 117.26 (11)  | C19—C18—H18   | 120.00       |
| C4—C5—C6       | 121.69 (12)  | C18—C19—H19   | 120.00       |
| C5—C6—C7       | 119.47 (13)  | C20—C19—H19   | 120.00       |
| C6—C7—C8       | 120.49 (14)  | С19—С20—Н20   | 120.00       |
| C7—C8—C9       | 119.32 (14)  | C21—C20—H20   | 120.00       |
| O2—C9—C4       | 122.59 (11)  | C16—C21—H21   | 119.00       |
| O2—C9—C8       | 115.65 (12)  | C20—C21—H21   | 119.00       |
| C4—C9—C8       | 121.76 (12)  | N2—C22—H22A   | 110.00       |
| O2—C10—C11     | 115.87 (13)  | N2—C22—H22B   | 110.00       |
| O2—C10—C15     | 122.24 (11)  | C23—C22—H22A  | 110.00       |
| C11—C10—C15    | 121.89 (13)  | C23—C22—H22B  | 110.00       |
| C10—C11—C12    | 119.27 (15)  | H22A—C22—H22B | 108.00       |
| C11—C12—C13    | 120.38 (14)  | O5—C23—H23A   | 109.00       |
| C12—C13—C14    | 119.40 (13)  | O5—C23—H23B   | 109.00       |
| C13—C14—C15    | 121.81 (13)  | С22—С23—Н23А  | 109.00       |
| C2-C15-C10     | 120.43 (11)  | С22—С23—Н23В  | 109.00       |
| C2-C15-C14     | 122.43 (12)  | H23A—C23—H23B | 108.00       |
| C10—C15—C14    | 117.13 (12)  | O5—C24—H24A   | 109.00       |
| C3—C16—C17     | 124.60 (11)  | O5—C24—H24B   | 109.00       |
| C3—C16—C21     | 119.98 (11)  | C25—C24—H24A  | 109.00       |
| C17—C16—C21    | 115.42 (12)  | C25—C24—H24B  | 109.00       |
| N3—C17—C16     | 120.88 (11)  | H24A—C24—H24B | 108.00       |
| N3—C17—C18     | 116.45 (12)  | N2—C25—H25A   | 110.00       |
| C16—C17—C18    | 122.65 (13)  | N2—C25—H25B   | 110.00       |
| C17—C18—C19    | 119.66 (14)  | C24—C25—H25A  | 110.00       |
| C18—C19—C20    | 119.61 (14)  | C24—C25—H25B  | 110.00       |
| C19—C20—C21    | 120.21 (15)  | H25A—C25—H25B | 108.00       |
|                |              |               |              |
| C9—O2—C10—C11  | -164.66 (13) | C15—C2—C3—C16 | -131.34 (11) |
| C9—O2—C10—C15  | 15.67 (19)   | C15—C2—C4—C5  | -160.75 (11) |
| C10—O2—C9—C4   | -16.61 (19)  | C1—C2—C4—C9   | 148.72 (11)  |
| C10—O2—C9—C8   | 162.73 (13)  | C15—C2—C4—C9  | 19.71 (15)   |
| C23—O5—C24—C25 | -61.03 (18)  | C15—C2—C3—N1  | 112.75 (10)  |
| C24—O5—C23—C22 | 60.87 (18)   | C2-C3-C16-C17 | 70.79 (16)   |
| N2-N1-C1-O1    | -11.8 (2)    | C2-C3-C16-C21 | -108.37 (14) |
| C3—N1—N2—C25   | -149.25 (11) | N1-C3-C16-C21 | -8.93 (17)   |
| C1—N1—N2—C22   | -71.02 (15)  | N1-C3-C16-C17 | 170.23 (11)  |
| C3—N1—N2—C22   | 88.92 (13)   | C5—C4—C9—C8   | -1.01 (19)   |
| N2—N1—C3—C2    | -166.66 (11) | C2—C4—C5—C6   | -179.05 (12) |
| C1—N1—C3—C2    | -1.38 (9)    | C2—C4—C9—C8   | 178.56 (12)  |
| N2—N1—C3—C16   | 72.97 (14)   | C5—C4—C9—O2   | 178.30 (12)  |
| C3—N1—C1—O1    | -176.04 (14) | C2—C4—C9—O2   | -2.14 (19)   |
| N2—N1—C1—C2    | 165.68 (11)  | C9—C4—C5—C6   | 0.51 (19)    |
| C1—N1—N2—C25   | 50.80 (16)   | C4—C5—C6—C7   | 0.5 (2)      |
| C3—N1—C1—C2    | 1.42 (9)     | C5—C6—C7—C8   | -0.9 (2)     |
| C1—N1—C3—C16   | -121.74 (11) | C6—C7—C8—C9   | 0.5 (2)      |
| C22—N2—C25—C24 | -58.02 (15)  | C7—C8—C9—C4   | 0.6 (2)      |

| N1—N2—C22—C23  | 179.19 (11)  | C7—C8—C9—O2     | -178.80 (13) |
|----------------|--------------|-----------------|--------------|
| C25—N2—C22—C23 | 57.18 (16)   | C11—C10—C15—C14 | 3.1 (2)      |
| N1—N2—C25—C24  | 179.37 (12)  | O2-C10-C11-C12  | 178.81 (14)  |
| O3—N3—C17—C18  | -159.81 (14) | O2-C10-C15-C14  | -177.26 (12) |
| O4—N3—C17—C16  | -161.84 (14) | C11—C10—C15—C2  | -175.75 (13) |
| O3—N3—C17—C16  | 18.9 (2)     | O2—C10—C15—C2   | 3.91 (19)    |
| O4—N3—C17—C18  | 19.4 (2)     | C15-C10-C11-C12 | -1.5 (2)     |
| N1—C1—C2—C4    | 116.42 (11)  | C10-C11-C12-C13 | -1.7 (2)     |
| N1—C1—C2—C15   | -114.90 (10) | C11—C12—C13—C14 | 3.1 (2)      |
| O1—C1—C2—C3    | 176.08 (14)  | C12-C13-C14-C15 | -1.5 (2)     |
| N1—C1—C2—C3    | -1.31 (8)    | C13—C14—C15—C2  | 177.22 (12)  |
| O1—C1—C2—C4    | -66.19 (18)  | C13-C14-C15-C10 | -1.6 (2)     |
| O1—C1—C2—C15   | 62.49 (18)   | C3—C16—C17—C18  | 179.68 (13)  |
| C1-C2-C3-N1    | 1.20 (8)     | C17—C16—C21—C20 | 1.2 (2)      |
| C4—C2—C3—N1    | -115.37 (10) | C21—C16—C17—N3  | -179.79 (12) |
| C1—C2—C3—C16   | 117.11 (10)  | C3—C16—C17—N3   | 1.0 (2)      |
| C4—C2—C3—C16   | 0.54 (15)    | C21—C16—C17—C18 | -1.1 (2)     |
| C1—C2—C4—C5    | -31.73 (16)  | C3—C16—C21—C20  | -179.54 (13) |
| C4—C2—C15—C10  | -20.60 (16)  | N3—C17—C18—C19  | 178.99 (14)  |
| C4—C2—C15—C14  | 160.64 (11)  | C16—C17—C18—C19 | 0.3 (2)      |
| C3—C2—C4—C9    | -113.39 (13) | C17—C18—C19—C20 | 0.6 (3)      |
| C3—C2—C4—C5    | 66.16 (15)   | C18—C19—C20—C21 | -0.5 (3)     |
| C1-C2-C15-C10  | -151.80 (12) | C19—C20—C21—C16 | -0.5 (2)     |
| C1-C2-C15-C14  | 29.43 (16)   | N2—C22—C23—O5   | -59.13 (17)  |
| C3-C2-C15-C10  | 114.15 (13)  | O5—C24—C25—N2   | 59.98 (18)   |
| C3—C2—C15—C14  | -64.62 (15)  |                 |              |
|                |              |                 |              |

# Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H  | H···A | D····A      | D—H··· $A$ |
|---------------------------|------|-------|-------------|------------|
| C3—H3…O3 <sup>i</sup>     | 0.98 | 2.55  | 3.5310 (16) | 174        |
| С6—Н6…О1 <sup>іі</sup>    | 0.93 | 2.56  | 3.3828 (17) | 148        |
| C11—H11…O2 <sup>iii</sup> | 0.93 | 2.50  | 3.389 (2)   | 159        |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+3/2, z-1/2; (iii) -x+2, -y+1, -z+1.