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Background: Ischemic and hemorrhagic stroke are associated with a high rate of

long-term disability and death. Recent investigations focus efforts to better understand

how alterations in gut microbiota composition influence clinical outcomes. A key

metabolite, trimethylamine N-oxide (TMAO), is linked to multiple inflammatory, vascular,

and oxidative pathways. The current biochemical underpinnings of microbial effects

on stroke remain largely understudied. The goal of our study is to explore the current

literature to explain the interactions between the human gut microbiome and stroke

progression, recovery, and outcome. We also provide a descriptive review of TMAO.

Methods: A systematic literature search of published articles between January 1,

1990, and March 22, 2020, was performed on the PubMed database to identify studies

addressing the role of the microbiome and TMAO in the pathogenesis and recovery of

acute stroke. Our initial investigation focused on human subject studies and was further

expanded to include animal studies. Relevant articles were included, regardless of study

design. The analysis included reviewers classifying and presenting selected articles by

study design and sample size in a chart format.

Results: A total of 222 titles and abstracts were screened. A review of the 68

original human subject articles resulted in the inclusion of 24 studies in this review.

To provide further insight into TMAO as a key player, an additional 40 articles were

also reviewed and included. Our findings highlighted that alterations in richness and

abundance of gut microbes and increased plasma TMAO play an important role in

vascular events and outcomes. Our analysis revealed that restoration of a healthy

gut, through targeted TMAO-reducing therapies, could provide alternative secondary

prevention for at-risk patients.

Discussion: Biochemical interactions between the gut microbiome and inflammation,

resulting in metabolic derangements, can affect stroke progression and outcomes.
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Clinical evidence supports the importance of TMAO in modulating underlying stroke risk

factors. Lack of standardization and distinct differences in sample sizes among studies

are major limitations.

Keywords: stroke, TMAO, dysbiosis, nutrition, biomarker, microbiome

INTRODUCTION

The gut ecosystem encompasses various bacterial, viral, fungal,
and protozoal species colonizing mucosal linings. The genetic
density of themicrobial genome outnumbers the human genome,
with more than 3,000,000 microbial genes (1, 2). The integral
role of the gut microbiome in metabolism, immune modulation,
and vitamin production is governed by human cells’ symbiotic
relationship (3). Disturbances in balanced microbial structure,
known as dysbiosis, result in increased pathogenic bacteria, and
decreased commensal bacteria. For instance, in a comparison
of oral and gut microbiomes, it has been shown that healthy
aging individuals have an increased abundance of Akkermansia
and Erysipelotrichaceae UCG-003 in their gut microbiome and,
higher alpha diversity in their oral microbiomes; in that study,
Streptococcus spp. was the only observed genus to have a
significant reduction in its abundance in the oral and gut
microbiomes of the healthy aging group (4).

Trimethylamine N-oxide (TMAO) is a key gut metabolite,
derived from our diet, that has been shown to play a role in
the development of various diseases. Mechanistic involvement of
TMAO in the association between gut microbiome and stroke
can provide potential therapeutic targets. The vast implications
and effects of the gut microbiome in multi-disease processes
make it difficult for research to be conducted to distinguish a
single disease process. As the interdisciplinary topic of the gut
microbiome and stroke is relatively novel, current investigations
primarily focused on the microbial abundance in disease states
are limited in providing functional or mechanistic information
that may be vital in altering clinical outcomes.

Stroke, the fifth leading cause of death, affects more
than 795,000 individuals in the United States every year
and contributes to long-term disability, leading to both
cognitive and ambulatory impairments (5). Stroke is broadly
classified as ischemic and hemorrhagic. Risk factors for
ishemic stroke include hypertension, diabetes, heart disease,
hypercholesterolemia, smoking, and age. Ischemic stroke is
classified into subtypes using the Trial of ORG 10172 in
Acute Stroke Treatment (TOAST) classification, including large
artery atherosclerosis, cardioembolic, small vessel occlusion,
other determined cause, or undetermined cause (6). There is
also evidence that polygenic risk scores can augment stroke
subtyping (7).

An emerging role of the gut microbiome in stroke patients
provides deeper insights regarding potential avenues to improve
outcomes at a personalized level. Our systematic review discusses
current clinical evidence on the human gut microbiome’s
involvement in ischemic stroke at different stages of disease
progression, recovery, and management. We further examine
the role of ischemic stroke’s etiological classification as a
potential modulator. Gaining a deeper understanding of stroke

modulators can guide the development of targeted strategies
based on an ischemic event’s etiological features. Knowledge
about stroke-associated gut pathogenic bacteria (8) along with
the development of machine learning algorithms, capable of
recognizing and analyzing microbial parameters, can enhance
diagnostic procedures, allow early identification of stroke risks,
and facilitate precise interventions for improved outcomes.
In the following sections, we aimed to answer the following
questions: (1) What are the key findings in current literature
that suggests the influence of the human gut microbiome on at-
risk and current stroke patients? (2) What characteristics of gut
metabolite trimethylamine N-oxide make it a suitable target for
stroke prevention and intervention? We conclude with a brief
discussion and perspectives for future directions with a focus on
actionable biomarkers for targeted therapeutic interventions.

METHODS

In phase I, we developed a comprehensive search strategy
combining the three major themes of stroke, gut microbiome,
and TMAO. The search string for stroke and gut microbiome
were: (“Stroke”[Mesh] OR “Stroke, Lacunar”[Mesh] OR
“Stroke Rehabilitation”[Mesh] OR “Infarction, Posterior
Cerebral Artery”[Mesh] OR “Brain Stem Infarctions”[Mesh]
OR “Infarction, Middle Cerebral Artery”[Mesh] OR
“Infarction, Anterior Cerebral Artery”[Mesh] OR “Myocardial
Infarction”[Mesh] OR “Anterior spinal artery stroke”
[Supplementary Concept]) AND (“Microbiota”[Mesh]
OR “Gastrointestinal Microbiome”[Mesh]) OR (stroke
and microbiome). The search string for TMAO was:
(“trimethyloxamine” [Supplementary Concept]) AND
(“Diet”[Mesh] OR “Medication Therapy Management”[Mesh]
OR Genetics). We included all published studies on these
topics regardless of intervention target, approach, setting, and
study design. We focused on human subject studies. PubMed
database was searched and studies available between January
1, 1990, and March 22, 2020, were included. After performing
the search, we manually screened the titles and abstracts for
clinical applicability of gut microbiome in pre-stroke, stroke, and
post-stroke stages.

In phase 2, we updated our search on May 1, 2020,
and reviewed recent animal studies covering the underlying
mechanisms. The following data were extracted from the
included articles: study design, study setting, sample size,
and limitations. Two review authors (ViS and VaS) extracted
the data from eligible studies and the extracted data were
reviewed for accuracy and relevance. The principal summary
measure was the number of current article subtypes on the
gut microbial abundance in stroke disease states. Studies with
multiple study designs were counted as two separate studies
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TABLE 1 | Summary of selected studies on gut microbiome and stroke.

Study type Number of

articles

Sample size range

Case control 8 [60–1,244]

Cohort 27 [50–3,359,653]

Clinical trial 1 [28]

Metagenomics (human) 11 [8–1,049,861]

Other (Cross sectional and

Experimental)

26 [18–4,007]

Five of the studies were classified into more than one study type due to their methodology.

for accurate synthesis. Data were imported into a table format
for visualization. Missing data were not applicable as the study
design data was apparent in the eligible studies. To better
characterize the current literature on gut-microbiome, the range
of sample sizes of the grouped study design was also calculated.
Given the complexity and the non-comprehensive nature of the
current literature, studies on gut microbiota and stroke were
grouped based on clinical features such as stroke risk factors,
stroke onset, and post-stroke recovery. Studies on TMAO were
grouped based on the source, genetics, nutrition, comorbidities,
medication, and mechanisms.

RESULTS

The search protocol regarding the gut microbiome and
stroke resulted in 222 articles, from which 68 human
studies were eligible for preliminary analysis, shown in
Supplementary Tables 1, 2. Table 1 outlines the different study
types, the number of articles in each study type, and the range
of sample size. Five out of the 68 human subject articles had 2
study designs. Our preliminary analysis showed that the majority
of articles in our present study were cohort studies (n = 27) and
cross-sectional studies (n = 25); only one study was a clinical
trial. The study design with the highest maximum sample size
included cohort and metagenomic (human) studies.

Among the preliminary 68 human subject studies, 24 articles
were selected for further in-depth analysis and inclusion in
our present study based on their pertinent findings for the
gut microbiome and stroke. As human studies were limited in
reporting underlying mechanisms, we included nine additional
animal studies in our review. Our search was expanded to include
40 articles that focused on the effects of genetics, nutrition,
comorbidities, medications, and mechanisms related to TMAO.
In total, we included 73 articles in this review, as depicted in
Figure 1.

Gut Dysbiosis May Link Stroke Risk
Factors to Stroke
Individuals With Stroke Risk Factors Exhibit Altered

Gut Microbes
A review of the current literature at the intersection of the
gut microbiome and stroke risk factors supports a better
understanding of stroke management at a personalized
level. Individuals with a high risk of stroke have increased

opportunistic gut pathogens, increased lactate-producing
bacteria, and decreased butyrate-producing bacteria (9).

Hypertension is a well-established risk factor for the
development of the small-vessel occlusion (lacune) subtype of
ischemic stroke, in which inflammatory cytokines are linked to
recurrent vascular events (10). High systolic blood pressure is
positively correlated with the presence of the genus Prevotella
(11); findings were adjusted for age and gender. High dietary
salt intake (≥2.3 g/d) was also associated with an increased
relative abundance of genus Prevotella, family Ruminococcaceae,
and genus Bacteroides, as shown in Table 2. The associated
microbes statistically differed depending on short-term or
long-term sodium consumption (11). Further, fecal microbiota
transplantation studies performed on high-salt diet-fed mice
to recipient germ-free mice resulted in higher blood pressure
measurements following a low dose of angiotensin II (11).
These findings suggest that the pathophysiology of microbiota-
induced hypertension may be due to increased sensitivity of the
angiotensin II receptor. Although the biochemical underpinnings
remain poorly understood, interleukin-6 and interleukin-17
cytokines were found to be in greater systemic abundance inmice
who received fecal microbiota transplantation from high-salt diet
mice, compared to normal-salt diet mice (11).

Atrial Fibrillation (AF) serves as a significant risk factor
for cardioembolic ischemic strokes. Individuals with AF exhibit
gut microbial imbalance and have similar taxonomic profiles
(Bacteroides, Prevotella, and Faecalibacterium genera) but
distinct profiles from non-AF individuals (12, 13). AF individuals
had similar microbiome diversity and microbial structures that
differed from controls (13). Limitations in these findings include
a lack of consideration for dietary and physical activity effects on
atrial fibrillation.

Metabolic syndrome pathology consists of vascular risk
factors and metabolic derangements such as central obesity,
dyslipidemia, hyperglycemia, and hypertension. Metabolic
syndrome promotes the development of atherosclerosis
and increases the risk of stroke. Patients with metabolic
syndrome show a significant positive correlation between plasma
TMAO concentrations and unclassified members of the order
Clostridales, and a negative correlation with Fusobacterium
prausnitzii (14). The link between metabolic abnormalities and
gut microbial structure showed that higher glutamine levels
were associated with increased unclassified Clostridales, while
higher acetate levels were associated with phylum Tenericutes
and family Christensenellaceae. Co-occurrence network analysis
revealed that Clostridales, Tenericutes, Methanobrevibacter, and
Christensenellaceae were positively correlated with metabolites
acetate, glutamine, and polyunsaturated fatty acids, while Blautia
were negatively correlated with acetate (14). Metabolic syndrome
has been found to correlate with specific microbial communities
and metabolites, which may indirectly impact stroke events.

Isolated bacterium transplantation of Enterobacter cloacae
B29 from a morbidly obese patient into germ-free mice, followed
by a high-fat diet, induced obesity, and insulin resistance in
mice models (15). In addition, bacterium-derived endotoxin load
showed a causative relationship with inflammatory conditions
(15). Anti-diabetic and anti-inflammatory medications affect the
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FIGURE 1 | Schematic representation of inclusion and exclusion of articles in present study.

TABLE 2 | Gut microbial communities and their relative abundance change before stroke, during stroke, and after stroke event.

Stages of stroke Changes in the

abundance

Gut microbial communities

PRE-STROKE Increase Gut opportunistic pathogens, lactate producing bacteria, Ruminococcaceae, and Peptococcaceae as well as

Bacteroides, Prevotella, Clostridium, Escherichia, Enterobacter, Acinetobacter, and Proteus species

Decrease Butyrate-producing bacteria, Faecalibacterium prausnitzii

STROKE ONSET Increase Helicobacteraceae, Neisseriaceae, Ruminococcaceae_UCG_005, norank_p_Flavobacteriaceae,

norank_p_Parcubacteria, Gammaproteobacteria, Proteobacteria, and short chain fatty acid producing bacteria,as

well as Odoribacter, Akkermansia, Victivallis, Enterobacter, Megasphaera, Desulfovibrio, Acinetobacter, and

Acidovorax species, and N. polysaccharea

Decrease Genus Bacteroidia and Faecalibacterium, Bacteroides spp., and Prevotella spp.

POST-STROKE Increase Carnobacteriaceae, Streptococcaceae, Granulicatella, Streptococcus, and Fusobacterium spp., as well as G.

adiacens

Decrease Short chain fatty acids

gut microbiota. For instance, polyphenol resveratrol given to
obese Caucasians improved glucose homeostasis and insulin
resistance along with a reduction in microbial diversity
and an increase in Akkersmansia muciniphila (16). Similar
results were not observed in obese African Americans, Afro-
Latinos, and African American/Asian; indicating that polyphenol
resveratrol intervention may exhibit ethnicity-dependent effects
on glucose metabolism.

Diabetes mellitus is recognized as a major risk factor for both
large artery atherosclerosis and small vessel disease etiology of
stroke. Patients with type 2 diabetes and chronic kidney disease,
prevalent risk factors for stroke, have an increased abundance
of trimethylamine producing bacteria, including Clostridium
spp., Escherichia spp., Enterobacter spp., Acinetobacter spp.,
and Proteus spp. that belong to phylum Firmicutes and
Proteobacteria. In comparison with healthy individuals, diabetic
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patients have higher serum levels of TMAO (17). Higher serum
TMAO levels in diabetic patients contributed to widespread
endothelial dysfunction, inflammation, and increased gut
permeability compared to healthy counterparts (17). In addition,
increased plasma TMAO in these patients correlates with
plasma TNF-α, interleukin-6, zonulin gut permeability marker,
endothelin-1, and lipopolysaccharide (17).

A cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy (CADASIL), a rare genetic
disease that can lead to recurrent lacunar and small vessel
stroke, was shown to have significant taxonomic differences
in gut microbiota compared to controls, suggesting the role
of intestinal microbiota on the pathophysiology of CADASIL.
In CADASIL patients with a history of stroke, there was a
decrease in Phascolarctobacterium and Paraprevotella compared
to patients without a history of stroke (18, 19).

Hemorrhagic stroke is a brain bleed that occurs due to
ruptured blood vessels and can result from trauma, tumors,
genetic malformations, hypertension, diabetes, and smoking.
There are fewer investigations on the pathophysiological
interaction between intestinal microbiota and hemorrhagic
stroke compared to ischemic stroke. Nonetheless, intestinal
microbiota has been implicated in the developmental
pathogenesis of neurovascular abnormalities that result in
hemorrhagic strokes, such as cerebral cavernous malformation
(20). The lipopolysaccharide component of gram-negative
bacteria from the gut localizes to the systemic circulation,
interacts with Toll-like 4 endothelial receptor, and induces
activation of MEKK3-KLF2/4 signaling (20). Further, genetic
mutations in PDCD10, which arise from excessMEKK3 signaling
via lipopolysaccharide from the gut microbiome, contribute to
cerebral cavernous malformation in a mouse model (21).

Gut Metabolite TMAO Exacerbates Stroke Risk

Factors
TMAO is a key gut metabolite that increases after the
consumption of animal products. Higher levels of TMAO are
associated with increased risk of major cardiovascular events
which they defined as death, myocardial infarction, or stroke
(22). Plasma TMAO is measured using stable isotope dilution
liquid chromatography tandem mass spectrometry and normal
plasma TMAO levels are 0.5–5µM. Further studies trying to
understand the prognostic value of TMAO showed that in
patients who underwent cardiovascular surgery, high serum
TMAO was associated with an increased number of infarcted
coronary arteries, after adjusting for age, sex, body mass
index, chronic kidney disease, hypertension, dyslipidemia, and
cerebrovascular disease (23). The authors concluded that TMAO
may be a useful biomarker in providing clinical utility in risk
stratification among subjects suspected of an acute coronary
syndrome. To better understand the mechanistic link between
TMAO and thrombotic risk, the research group also showed in
animal studies that TMAO enhances platelet hyperactivity and
responsiveness. Additionally, TMAO precursor trimethyllysine,
has been shown to be associated with both short-term and long-
term cardiovascular events. Trimethyllysine levels in patients

with suspected acute coronary syndrome were associated with
major cardiac events, including stroke at 1 and 6 months,
independent of cardiovascular risk factors or renal function (24).

Nie et al. showed, using a nested case-control study, that
higher levels of TMAO were associated with increased risk of
stroke in a hypertensive population when adjusted for choline,
L-carnitine, and baseline systolic blood pressure (25). Another
study focusing on type 1 diabetics showed that higher plasma
concentrations of TMAO were predictive of mortality and
cardiovascular disease. Stroke was not significantly associated
with higher TMAO concentrations in type 1 diabetics when
adjusted for cardiovascular risk factors (26). Limitation of this
study included the one-time TMAO level measurement and the
high intraindividual variability in TMAO levels.

Importantly, inconsistencies still exist in the association
between TMAO precursors and cardiovascular disease risk. For
instance, Jia et al. (27) show that genetically predicted higher
TMAO is not associated with higher odds of cardiometabolic
disease traits (atrial fibrillation, coronary artery disease,
myocardial infarction, stroke) after Bonferroni correction. They
showed that type 2 diabetes and chronic kidney disease result
in higher TMAO levels and that cardiovascular disease may
be a result of confounding or reverse causality. An important
study limitation was the exclusion of additional variants of
selected genome-wide SNPs that were used for Mendelian
randomization (27). Taken together, TMAO may link stroke risk
factors with various health conditions, including stroke, vascular
inflammation, and other vascular events.

Microbial Communities During Ischemic
Stroke Event
The gut microbiota in ischemic stroke and intracerebral
hemorrhage stroke patients differ in α-diversity (within-
individual diversity), β-diversity (between-individual diversity),
and taxonomic summary compared to healthy controls (28).
A small cohort of 30 ischemic stroke patients had enriched
Odoribacter, Akkermansia, Ruminococcaceae_UCG_005,
norank_p_Flavobacteriaceae, norank_p_Parcubacteria, and
Victivallis as well as increased short-chain fatty acid-producing
bacteria, compared to 30 healthy controls who had enriched
Anaerostipes and Ruminiclostridium_5 (29). Similarly, a
small cohort of 10 patients with cerebral infarction had an
increased Gammaproteobacteria and decreased Bacteroidia.
The presence of Gammaproteobacteria was positively correlated
with apolipoprotein E. In contrast, Bacteroidia was negatively
correlated with apolipoprotein E levels (30). Patients with
large-artery atherosclerotic ischemic strokes and transient
ischemic attacks had depleted Bacteroides, Prevotella, and
Faecalibacterium but had an increased density of Enterobacter,
Megasphaera, and Desulfovibrio.

Proteobacteria was abundant in severe stroke patients
compared to patients with mild stroke, as shown in Figure 2

(31). Stroke patients exhibited low TMAO levels compared
to controls; however, the article lacked age- and sex- matched
controls and measured levels of TMAO 24 h after hospital
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FIGURE 2 | Gut dysbiosis and plasma TMAO independently predict stroke features.

admission, in which the stroke physiology or treatment may have
impacted TMAO levels (31). A more recent study by the same
group showed that TMAO levels in AIS patients decrease 24 h
after treatment. However, baseline TMAO levels were higher in
AIS patients compared to controls. After 7 days post-treatment
TMAO levels were lower in AIS patients compared to controls
(32). Based on differential genera in large-artery atherosclerotic
ischemic stroke, a stroke dysbiosis index was developed and
independently correlated with stroke severity and stroke outcome
at discharge (33). Further, patients who underwent carotid
endarterectomy due to previous strokes or transient ischemic
attack had an abundance of Helicobacteraceae, Neisseriaceae,
Acinetobacter, Acidovorax, and N. polysaccharea compared to
asymptomatic atherosclerotic patients who had an abundance
of Porphyromonadaceae, Bacteroidaceae, Micrococcaceae,
and Streptococcaceae (34). However, another study found
similar bacterial profiles, dominated by Proteobacteria and
Actinobacteria, between asymptomatic patients and symptomatic
patients with cerebral ischemia (including stroke, transient
ischemic attack, and amaurosis fugax) (35). Both of these
studies defined symptomatic plaques obtained from patients
with symptomatic atherosclerosis. However, the first study
defined asymptomatic plaques from patients who died due
to non-atherosclerosis causes, while the second study defined
asymptomatic plaques from living asymptomatic patients.

In addition to alterations in gut microbes during a stroke,
plasma TMAO levels are also affected. High levels of TMAO
in plasma are associated with early neurological deterioration,
defined as a two or more point increase in the National Institutes
of Health Stroke Scale (NIHSS) in 3 days, in patients with
thrombotic, lacunar, embolic, or other ischemic stroke types (36).
Despite having higher initial baseline TMAO levels, ischemic
stroke patients had decreased plasma TMAO levels 24 h and 7
days after treatment was administered compared to controls (32).
However, there is not sufficient evidence to corroborate causality.
As ischemic stroke occurs concomitantly with gut dysbiosis and
altered plasma TMAO levels, the microbiome is likely involved in
stroke occurrence.

Gut Metabolite in Post-ischemic Stroke
Events
The Contribution of the Microbiome in Stroke

Recovery Remains Largely Understudied
The alterations of microbiome diversity during stroke recovery
and how various therapies alter the structure remain largely
understudied. Further advancements in this topic may lead to
the improvement of personalized treatment modalities. A study

performed on patients recovering from an acute stroke episode

showed differences in both oral and gut microbiomes structure
depending on whether patients received oral or tube feedings.

Opportunistic pathogens such as Corynebacterium striatum and
Streptococcus agalactiae were found in higher proportion, and
dominant genera such as Streptococcus spp. and Veillonella spp.
were found in lower densities during enteral feedings when
compared to oral feedings (37). These results support the

notion that oral indigenous microbiota is altered to allow for
opportunistic pathogens to thrive in enteral feedings compared
to oral feeding during stroke recovery. The pathophysiology
behind these findings can be attributed to various factors such as
decreased mechanical clearing with mastication and reduction in
salivary flow. More long-term studies are needed to corroborate
the overall biological effect of these microbiome alterations as
well as more in-depth studies considering the various subtypes
of ischemic stroke.

In microbiome-related studies, another relevant factor for

consideration is the pattern of co-occurrence. The genetic

profiles of microbiomes can be utilized to construct networks
to quantify and visualize varying degrees of co-occurrences,

which could also indicate their potential interactions. Simpler
co-occurrence networks were observed more frequently in oral

and gut microbiomes in oral feeding compared to enteral

feedings. The clustering coefficients’ values, which quantify

the abundance of connections in an ecological network for
microbiome interaction analysis, showed a declining trend—

from 0.44 (oral feeding) to 0.375 (tube feeding)—within all
networks in the oral microbiome. In the gut microbiome, the
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trend was also decreased—from 0.542 (oral feeding) to 0.467
(tube feeding) (37).

These observations highlight that patients’ dysbiosis in the
post-stroke period is potentially decreased with oral feedings
compared to enteral feedings. Although evidence is still limited,
current literature points to the importance of food intake by the
oral route during stroke recovery regardless of stroke etiology.

There is a lack of understanding about the human gut
microbiome in stroke recovery. However, a study in animals
identified the pro-regenerative effects of short-chain fatty
acids (SCFAs) in modulating stroke recovery. SCFAs promote
microbiota activation and behavioral recovery, measured via
motor deficits of the affected forelimb, and lead to post-
stroke neuronal plasticity, defined as dendritic spine density of
pyramidal cells (38). These findings suggest that SCFA can play a
vital role in stroke recovery by reducing the invasion of immune
cells or cytokine secretion in the brain. Further, ischemic stroke
is associated with decreased SCFA levels and fecal microbiota
transplants rich in SCFA serve as effective treatments (39). Future
studies are needed to explore the human gut microbiome and
SCFAs in the stroke recovery process.

Gut Metabolite TMAO Is Associated With Post-stroke

Complications
A study performed in patients with acute ischemic stroke
showed that elevated baseline TMAO levels measured at day
2 and day 7 post-stroke were associated with increased 90
day and 12-month major ischemic complications such as
myocardial infarction, death, or recurrent ischemic stroke
as well as unfavorable functional outcomes as indicated by
modified Rankin scale (mRS) ≥3 (32). No significant differences
were observed among patients with different TOAST criteria.
Studies performed on high-choline-fed mice have shown to
increase macrophage and scavenger CD36 receptors to promote
the development of atherosclerosis (40). These findings were
reversed with broad-spectrum antibiotic suppression of intestinal
microbiota (40). The underlying mechanism provides an
understanding of how high TMAO levels may result in worsening
atherosclerosis in patients recovering from stroke with large-
artery atherosclerotic subtype. The specific mechanism of major
ischemic complications in other subtypes of ischemic stroke is
unclear. TMAO’s effect on vascular inflammation, endothelial
dysfunction, oxidative stress, and signal inhibition may also
play a role. Other studies examining long-term data (up to 3
years follow-up) support the association between TMAO and
stroke outcomes. A study examining thrombotic, lacunar, and
embolic post-stroke patients showed that high TMAO levels
had higher major adverse cardiovascular events 3 years later
than counterparts with low TMAO levels (41). TMAO may
have consequential long-term effects, thus potentially providing
clinicians a window of opportunity for intervention. Further
research will be needed to evaluate whether decreased TMAO
levels or decreased microbiome-associated choline metabolism
has clinical value. TMAO could provide prognostic value that
can aid care providers in identifying the risk of recurrence
and providing timely interventions for secondary prevention.
Furthermore, TMAO may also be integrated, along with
traditional risk factors, into predictive models to identify patients

at higher risk for recurrence and facilitate the implementation of
more targeted preventive measures.

TMAO can also have an indirect effect on recurrent
stroke through alterations in the risk factors. TMAO increases
osmotic pressure by influencing the body’s counter-regulatory
mechanism to promote water resorption via the TMAO-AVP-
AQP-2 axis, effectively increasing the mean arterial blood
pressure, and leading to hypertension (42). TMAO is also seen
to impair glucose tolerance and insulin signal pathways. High-fat
diet mice which also received 0.2% TMAO for 4 weeks were seen
to have increased insulin levels, increased inflammatory cytokine
MCP-1, and decreased anti-inflammatory cytokine IL-10 in the
adipose tissue when compared to high-fat diet mice without
0.2% TMAO (43). Figure 3 shows the underlying mechanisms
involved in TMAO-linked complications (44–52).

TMAO as an Actionable Metabolite
TMAO is derived from our diet through phosphatidylcholine,
L-carnitine, and betaine, shown in Table 3. Gut microbes
convert dietary nutrients into intermediate trimethylamine,
which undergoes oxidation by hepatic enzyme flavin-
containing monooxygenases to produce TMAO. The impact
of genetics on TMAO is largely determined by enzyme flavin-
containing monooxygenases 3, which is responsible for 90%
of trimethylamine oxidation (53). FMO3 overexpression in
mice increases plasma TMAO levels while silencing FMO3
decreases TMAO levels. In humans, males express hepatic
FMO3 in lower quantities than females, possibly due to down-
regulation via androgen (53). Enzyme variants are associated
with TMAO and kidney function decline in individuals with
chronic kidney disease (54). Flavin-containing monooxygenases
3 impacts TMAO levels, platelet responsiveness, and thrombosis
potential (55). Knockout studies have shown TMAO and
thrombosis reduction along with effects on lipid and glucose
metabolism (43, 44). Manipulation of phosphatidylethanolamine
N-methyltransferase, an enzyme involved in choline metabolism,
has also been shown to impact TMAO levels (56).

While genetics play a role in determining TMAO levels,
dietary nutrients intake is also an important contributor. Studies
suggested that animal-based diets rich in saturated fat lead to
increased plasma levels of TMAO (57–59). Consumption of
lean seafood (60), salmon (61), eggs (62), non-fermented dairy
products (63), increased intake of salt, increased intake of protein
(64), and adherence to a Paleolithic diet (65) result in higher
TMAO. On the other hand, pistachio intake (66), hypocaloric
diet, and exercise (67) have decreased TMAO in humans.
Consumption of resveratrol (68), pterostilbene (69), oolong tea
extract and citrus peel polymethoxyflavones (70), and fish oil (71)
have reduced TMAO in mice. In contrast, intake of probiotics,
inulin fiber (72), and tea or cocoa flavanol (73) did not alter
TMAO levels. These findings suggest that nutrition can play an
important role in determining concentrations of gut metabolite
TMAO. Nutrition therapy and personalized diets can serve as
a potential intervention for patients exhibiting gut dysbiosis
or TMAO-linked conditions. In addition to diet, medications
may also have an impact on TMAO levels. In humans, TMAO
is suppressed by broad-spectrum antibiotics (74), aspirin and
clopidogrel (32), and meldonium (75). In mice, TMAO is
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FIGURE 3 | Mechanisms underlying TMAO-associated complications. Numbers in parentheses indicate supporting references.

TABLE 3 | Impact of genetics, nutrition, medications on TMAO, and associated comorbidities.

Source Genetics/Epigenetics Nutrition Comorbidities Medications

Phosphatidylcholine Flavin-containing

monooxygenases 3

Increases TMAO

Omnivore, fat-based diet rich in

saturated fat, red meat, lean seafood,

salmon, eggs, non-fermented dairy

products, salt, double the daily

amount of protein, Paleolithic diet

HIV

Diabetes

Preeclampsia

Gestational diabetes

Polycystic ovary syndrome

Coronary artery disease

Coronary heart disease

Plaque rupture in STEMI

Thrombus in atrial fibrillation

Chronic kidney disease

Increases TMAO

Antiretroviral therapy

β glucuronidase inhibitor

L-carnitine Phosphatidylethanolamine

N-methyltransferase

Decreases TMAO

Hypocaloric diet & exercise, pistachio,

resveratrol, pterostilbene, oolong tea

extract, citrus peel

polymethoxyflavones, fish oil

Decreases TMAO

Aspirin

Antibiotics

Meldonium

Clopidogrel

Choline analog

Guggulsterone

Betaine MicroRNA 146a-5p No effect

Probiotics, inulin fiber, tea, or cocoa

flavanol

suppressed by a choline analog (3,3-dimethyl-1-butanol) (76)
and guggulsterone (farnesoid X receptor antagonist) (77). TMAO
enhancing medications include antiretroviral therapy in HIV
patients (78) and β glucuronidase inhibitor (glucaro 1, 4 lactone)
in rats (79). Additional investigations are needed to examine how
common medications given to patients with stroke or its risk
factors may impact the TMAO level and potentially lead to a poor
outcome in these patients.

DISCUSSION AND FUTURE
PROSPECTIVES

Our results showed that human gut microbial communities
can be involved in different stroke stages, from facilitating the
progression of stroke in the presence of its risk factors, to the
recurrence of stroke. We identified altered gut microbes in pre-
stroke, stroke onset, and post-stroke phases, which may serve as
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potential clinical biomarkers. The current understanding of the
gut microbiome revolves around the large artery atherosclerosis
subtype, probably due to its high prevalence compared to other
etiologies. However, the microbiome’s vast effects can play a role
in the pathogenesis of all stroke etiologies.

Our findings also demonstrate that TMAO is a powerful
metabolite that plays an essential role in the association between
microbiome and stroke and may serve as an actionable target. As
there is new evidence that polygenic risk scores can be used to
augment stroke subtypes (7), microbiome composition can also
be an additional layer of information that can be used to better
inform care providers when planning individualized care paths
for their patients to improve outcome. Taken together, the gut
microbiome plays an important role in stroke and can transform
how stroke and its subtypes are diagnosed and treated.

Gut dysbiosis and gut metabolite TMAO, involved in
different stages of stroke, may contribute to stroke development
and associated outcomes. These findings demonstrate the
importance of maintaining a healthy gut by preserving the
normal balance of commensal and pathogenic bacteria and
optimal TMAO levels to reduce the risk of stroke incidence.
Implementation of personalized solutions focused on restoring
microbial communities and lowering TMAO through the diet
may improve the quality of life for individuals living with morbid
conditions. Dietary interventions can change gut microbial
composition from a disease state to a homeostatic state.

Prebiotics are dietary fiber-derived, non-digestible
carbohydrates that selectively stimulate the growth or activity of
certain colon-resident bacteria (80). For instance, prebiotics can
enhance the growth of anti-inflammatory bacteria Lactobacillus
and Bifidobacterium (81). Examples of prebiotics include inulin,
human milk oligosaccharides, fructo-oligosaccharides, galacto-
oligosaccharides (82). Sources of prebiotics include soybeans,
raw oats, unrefined wheat, and unrefined barley (83). Diets
rich in prebiotics can shift the microbiome composition toward
increased commensal bacteria, thereby promoting host health.

While prebiotics enhances intrinsic microbial communities,
probiotics are exogenous live microorganisms, taken orally,
that confer health and benefit to the host via modulation of
intestinal microflora and inhibition of pathogen colonization
(84). Probiotics can restore the proper balance of gut microbiota,
exert metabolic effects, and enhance immunomodulatory
pathways (85). Probiotics belonging to the genera Lactobacillus,
Bifidobacterium, Lactococcus, Streptococcus, and Enterococcus
(85), are found in fermented foods such as cheese, kefir,
bushera, salami, kimchi, sauerkraut, olives (86). Incorporating
prebiotics, probiotics, or both (known as synbiotic) into a
personalized diet may attenuate the development of pathogen-
dominant microbiome-associated diseases, especially in
patients with bacterial translocation or inflammation. For
instance, the probiotic species Bifidobacterium animalis
can potentially aid in the reversal of bacteremia and lower
inflammation in type 2 diabetes, a common risk factor for
stroke (87).

The gut microbiome exhibits inter-individual variability in
age, sex, ethnicity, and disease states (88); therefore, similar
dietary recommendations given to different individuals may

not effectively improve their dysbiosis. Care pathways could
be designed for individual variations when incorporating
personalized nutrition therapies with specific probiotic strains or
prebiotic consumption.

In addition to diets focused on restoring gut microbiota
as a whole system, personalized nutrition therapies could
specifically target and lower TMAO levels, which are often
linked to numerous disease states. Studies have reported
that dietary precursors can predict TMAO levels (89) and
precursor phosphatidylcholine can heighten TMAO levels (74).
Increased precursor choline or betaine are further associated
with increased risk for major adverse cardiac events (90).
These findings suggest that decreased consumption of TMAO
precursors may lower TMAO levels and may improve its
associated conditions. TMAO precursors are found in red
meat and egg yolk. Starting a dietary approach to stop
hypertension (DASH) (91), vegetarian diet, or Mediterranean
diet may reduce TMAO, especially for patients with high
plasma TMAO levels (92). As a long-term diet is associated
with both the metabolome and microbiome (93), persistent
dietary changes, focused on improving gut health, may reduce
stroke risk and promote secondary prevention. Personalized
nutrition strategies account for the personalized microbiota
response and personalized host response to a specific diet
or nutrients.

Machine learning-based personalized dietary interventions,
developed based on the patient’s microbiome composition,
clinical parameters, genetics, lifestyle patterns, and personal
goals, can be designed to impact the microbiome, metabolome,
and gut physiology (94–97). Patient TMAO levels can be
integrated into the model to tailor a diet focused on lowering
TMAO and mitigating the risk of developing related conditions.
Quantification of various biomarkers such as choline, carnitine,
betaine, trimethylamine, and TMAO in the clinical setting
can be a convenient and effective way to identify actionable
risk factors for stroke recurrence or poor outcome and
facilitate the development of technologies with quantitative
features for targeted interventions. A well-designed and validated
model can analyze patient profile, including patient’s altered
gut microbes, increased TMAO levels, systemic inflammatory
markers, medication history, and traditional stroke risk factors
obtained from the electronic health record, and estimate the risk
of recurrence or poor outcome. Such models can also integrate
other non-clinical variables such as nutrition patterns for a
more precise and personalized assessment and recommendations
(95, 98).

The gut microbiome contributes to ischemic stroke
progression and includes large vessel subtypes and small
vessel pathophysiology. Our findings in the present study
are considered preliminary. Lack of standardization between
articles in an interdisciplinary field limits applicability to the
clinical setting. Factors such as lifestyle, physiologic traits,
alcohol consumption, and bowel movements are confounding
variables that should be considered in future studies. Vujkovic-
Cvijin and colleagues provide a list of important confounding
factors to consider when designing such studies on this
topic (99). One of the limitations in our present study is the
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inclusion of articles with small sample sizes, which warrant
additional large-scale investigations. Reports with large sample
sizes included genomic databases while articles with small
sample sizes included investigations performed in hospital or
university settings. Further, the diversity and composition of
gut microbiota lead to complex network analysis, and articles
in our present study primarily examined increases or decreases
in microbiota composition. Studies included here did not
incorporate the concept of functional redundancy-induced
stability of gut microbiota due to the multiple functioning
capacity of different microbes. Future studies need to examine
functional changes rather than compositional changes of the
gut microbes to demonstrate how the microbes induce changes
within the human body. Current biochemical knowledge on
microbiome’s effects on stroke was extrapolated from animal
studies that were similar but not specific to gut influences on
stroke. Further, our review yields a low number of articles
on hemorrhagic stroke compared to ischemic stroke; the
latter could be in part since hemorrhagic stroke is associated
with higher morbidity, mortality, and a lower prevalence
than ischemic stroke. Additional investigations are needed
to explore the gut microbiome alterations that occur during
a hemorrhagic stroke. Some of the articles included in our
present study were specific to particular ethnic populations,
such as Caucasians and Asians. The latter may provide insight
into how genetics or environment (nutrition and physical
activity) may differentially impact gut microbiomes across
ethnicities, which is important for better patient representation
and addressing health disparity, and the development of
personalized therapies. Limitations in our review process include
selecting published articles in English and using only one
database (Pubmed).

In conclusion, our findings support the involvement of
the gut microbial landscape and key metabolite TMAO in

stroke risk factors, occurrence and recurrence of ischemic
stroke, and functional outcomes after stroke. Future human
subject studies are needed to elucidate specific functions and
underlying mechanisms of gut microbes that play a role in
the pathophysiology of stroke. Translating this knowledge into
clinical practice can aid care providers in delivering personalized
and preventative care to stroke patients efficiently.
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