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Abstract: (1) Background: The health effect of temperature has become a rising public health topic.
The objective of this study is to assess the association between apparent temperature and non-
accidental deaths, and the mortality burden attributed to cold and heat temperature; (2) Methods:
The daily data on temperature and deaths were collected from 10 cities in Thailand, Korea and China.
We fitted a time-series regression with a distributed lag nonlinear model (DLNM) to derive the
health risk of temperature for each city and then pooled them to get the overall cumulative risk by
multivariate meta-analysis. Additionally, we calculated the attributable fraction of deaths for heat
and cold, which was defined as temperatures above and below minimum-mortality temperature
(MMT); (3) Results: There are regional heterogeneities in the minimum mortality percentiles (MMP)
and attributable fractions for different countries. The MMP varied from about the 5–10th percentile in
Thailand to 63–93rd percentile in China and Korea. The attributable fractions of the total deaths due
to short-term exposure to temperature in Asia is 7.62%, of which the cold effect (6.44%) is much higher
than the heat effect (1.18%); (4) Conclusions: Our study suggested that apparent temperature was
associated with an increase in non-accidental mortality. Most of the temperature-related mortality
burden was attributable to cold, except for Thailand.

Keywords: apparent temperature; mortality; attributable risk; distributed lag nonlinear model

1. Introduction

In the context of global climate-changing [1,2], many epidemiological investigations
have focused on the adverse health effects of temperature-related events, such as cold
waves, heat waves, and sudden changes in temperature, which are currently highly con-
cerned in the field of environmental health [3–5]. In the United States between 1999 and
2009, about 700 people died of heat-related diseases every year, higher than the sum of
deaths caused by other environmental events [6]. Chen et al. found the attributable burden
of respiratory and cardiovascular disease mortality caused by air temperature in 272 cities
in China was 10.57% and 17.48%, respectively [7]. The formulation and implementation of
policies and strategies to adapt temperature need further studies which explore the health
risk of temperature comprehensively.

A few international studies provided evidence for the association between ambi-
ent temperature and adverse health outcomes, including respiratory and circulatory
diseases [8–10]. However, most research focused on the adverse effects of extreme weather
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and temperature fluctuations, ignoring the potential health risk caused by the moderate
low or high temperature period, which is more frequent [11–14], leading to the uncompre-
hensive assessment of the excess morbidity/mortality due to ambient temperature. So it is
necessary to model temperature–health dependencies with temperature as a continuous
variable and quantify the mortality burden attributable to ambient temperature, including
moderate and extreme temperatures. Furthermore, most previous studies [12,15], used
relative risk (RR) to quantify the association, providing limited information about the
health risk of exposure, without considering the attributable burden. Attributable fraction
(AF) is one of the most commonly used methods to quantify the contribution of exposure
to adverse health outcomes, defined as the proportion of outcome in the population avoid-
able if exposure is somehow eliminated [16]. Compared with RR, AF is more suitable for
estimating the potential benefits of preventive interventions [17].

The association between ambient temperature and mortality varies across study
areas [7,18], which might be due to different regional climates, adaptation responses and
susceptibility factors [19]. While these studies were all restricted to a single city or country,
large research in multiple countries and regions is needed to achieve reliable results.

To characterize the sensation that humans perceive more objectively, we chose the
apparent temperature (AT) to be the exposure metric of temperature, which is a composite
biometeorological index combining temperature and relative humidity [20], proposed by
Steadman in 1984. It is believed that the biometeorological index can evaluate the health
effect of temperature more accurately than typical variable (e.g., average temperature),
since the biometeorological index is generally developed based on theoretical stands
and combines more than one weather factor [21]. Previous studies also have shown
that apparent temperature is more closely related to mortality than other temperature
variables [22].

In order to provide scientific evidence for the government’s prevention and control
of weather-sensitive diseases, in this study, we aimed to establish the exposure-response
relationship between temperature and non-accidental mortality in three countries of Asia:
China, Korea and Thailand. Based on the exposure-response relationship, we further
evaluate the attributable burden from cold and heat.

2. Materials and Methods
2.1. Data Source

In this study, time series daily data covering different periods in 10 cities of three
Asian countries: China (Ningbo, Tianjin, 2008–2011), Korea (Seoul, Busan, Daegu, Incheon,
Gwangju, Daejeon, 2000–2010), Thailand (Bangkok, Chiang Mai, 2013–2016). The data were
mainly made up of parallel time series of daily counts of deaths for non-accidental and daily
meteorological variables, including temperature and relative humidity. In terms of China,
we collected data on the daily number of non-accidental deaths in Ningbo and Tianjin
from the Center for Disease Control and Prevention of Ningbo, and the Center for Disease
Control and Prevention of Tianjin, respectively, and the meteorological variables were
obtained from the China meteorological data service center. Daily deaths due to influenza
and air pollution data in Tianjin were collected from the Center for Disease Control and
Prevention of Tianjin and the Tianjin Environment Monitoring Center, respectively. Daily
mortality and weather data of six cities in Korea between 2000–2010 were collected from
a previous multi-city study [23]. With regard to the two Thai cities, we attained the
meteorological data from the Thailand Meteorological Department, the Ministry of Digital
Economy and Society, and the mortality data from the Strategy and planning division,
Ministry of Public Health.

2.2. Statistical Analysis

We used a two-stage analysis to evaluate the association between non-accidental
mortality and apparent temperature. In the first stage, time series regression was applied
to estimate the exposure-response relationship for each city separately. In the second stage,
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we pooled the estimated exposure-response association of each city using a multivariate
meta-analytical model. Finally, to assess the mortality risk of ambient temperature, we
calculated the minimum mortality temperature (MMT) and the attributional risk of death
due to cold effects and heat effects.

To reflects human somatosensory more objectively, we chose the apparent temper-
ature as an exposure indicator of temperature, which is a comprehensive index of ambi-
ent temperature and relative humidity [20]. The apparent temperature is calculated as
follows [24] (1):

AT = −2.653 + 0.994 ∗ Ta + 0.0153 ∗ Td2 (1)

where Ta means air temperature and Td means dew point temperature.
In the first stage, we applied a Generalized Additive Model (GAM) as the basic frame-

work to establish an exposure-response relationship between apparent temperature and
non-accidental mortality for each city. Considering the inherently non-linear relationship,
we introduced a distributed lag non-linear model (DLNM) into GAM, which can describe
complex non-linear and lagged effects. In order to include the long delay of cold effects
and exclude the advanced deaths because of the harvesting effect, we extended the lag
period to the 21 days referred to previous literature [25]. The model was as follows (2):

log(Yt) = βTempt,l + s(Trend, d f × year) + s(RH, 4) + DOW + a (2)

In this model, Yt represents daily non-accidental death on day t; Tempt,l is cross-basis
with DLNM model, the maximum lag time is 21 day; β is the coefficient of the cross-basis
function of apparent temperature; s(Trend, df × year) means cubic B-spline of time with
8 degrees of freedom per year to control for seasonal and long-term trends; RH is daily
relative humidity; DOW means the day of the week effect; α is the residual.

In the second stage, we estimated the cumulative risk during the whole lag period
and calculated the overall association of the temperature-mortality by pooling city-specific
association by meta-analysis. Based on previous studies, climatological and socioeconomic
factors could modify the mortality effect of ambient temperature [19]. Considering both the
accessibility and comprehensiveness of data from multiple cities, we included average tem-
perature and temperature variation as meta-predictors in the multivariate meta-regression.
The heterogeneity was analyzed by the Cochran Q test for qualitative judgment and I2

for quantitative estimation. We used the best linear unbiased prediction (BLUP) to obtain
the overall cumulative exposure-response association of multiple cities. The BLUP allows
areas with few daily mortality counts or short series to exploit information from the other
areas to share similar characteristics [26]. Finally, we tested the correlation between model
variables and mortality through the Wald test.

At last, the minimum mortality temperature, corresponding to the specific temperature
associated with the lowest mortality risk. Then we calculated the attributable fraction of
cold (below MMT) and heat (above MMT) by deeming the MMT as a baseline reference.
Moreover, the continuous temperature of each city was divided into four temperature levels:
extreme cold, moderate cold, moderate heat and extreme heat, based on the cutoff values
of 2.5th and 97.5th temperature percentiles and MMT referred to previous studies [25,27].

AFs of each city were calculated as follows:

AFx,t = 1 − exp

(
−

L

∑
l=0

βxt,l

)
(3)

ANx,t = AFx,t •
L

∑
l=0

nt+l
L + 1

(4)

where
L
∑

l=0
βxt,l is defined as the cumulative lagged effect of the overall risk of temperature

xt on day t; L means the maximum lag time (21 days); nt is the number of deaths on day t;
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ANx,t means attribute numbers on day t. By summing the ANx,t from all the days in the
series, we obtained the total counts of deaths attributable to non-optimum temperatures,
then the total attributable fraction was gained by dividing the total number of deaths by
the total number of attributable deaths.

2.3. Sensitivity Analysis

Considering the difficulty of determining appropriate maximum lag days and degrees
of freedom, sensitivity analyses were performed by using alternative maximum lag days
(15/25 days) and changing the df of time trends (7–10 df/year). Additionally, we also did
sensitivity analysis by controlling for particulate matter 10 µm in diameter (PM10) and
deaths due to influenza in Tianjin, since pollution and influenza data were available only
for Tianjin.

Our study did all analysis with R software (R Development Core Team, 2020) in
RStudio (RStudio Team, Boston, MA, USA) with packages mgcv to build GAM, splines and
dlnm to create DLNM, mvmeta to do meat regression. All statistical tests were two-sided,
and the values with p < 0.05 were deemed statistically significant.

3. Results

Figure 1 gives the location distribution of 10 Asian cities in this study. There are
2 cities in China: Ningbo and Tianjin, 6 cities in Korea: Seoul, Busan, Daegu, Incheon,
Gwangju, and Daejeon, 2 cities in Thailand: Bangkok and Chiang Mai. Table 1 shows the
descriptive data on total non-accidental deaths, mean apparent temperature and mean
relative humidity during the study period in the 10 Asian cities included in this study.
The database included 1,416,091 deaths. The total counts for Thailand, Korea and China
were found to be 217,470, 888,985 and 374,142, respectively. Generally, the apparent
temperature in Thailand (ranging from 10.3 to 42.3 ◦C) is much higher than in Korea
(ranging from −10.8 to 38.4 ◦C) and China (ranging from −9.9 to 42.1 ◦C), indicating that
climate characteristics varied between the countries.

Figure 1. The locations of 10 Asian cities in this study.
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Table 1. Descriptive analysis of non-accidental daily death counts and meteorological variables in 10 Asian cities.

Country City Study Period Death Counts
Apparent

Temperature (◦C)
(Range)

Relative
Humidity (%)

(Range)

Thailand Chiang Mai 2013–2016 34,195 31.0 (10.3–39.7) 69.4 (38.9–95.5)
Thailand Bangkok 2013–2016 183,275 35.2 (18.2–42.3) 74.2 (46.0–97.0)
Thailand - * 2013–2016 217,470 33.1 (10.3–42.3) 71.8 (38.9–97.0)

Korea Seoul 2000–2010 375,082 12.6 (−10.4–35.7) 61.8 (19.4–96.5)
Korea Busan 2000–2010 183,275 14.9 (−4.8–38.4) 62.7 (16.2–99.0)
Korea Daegu 2000–2010 111,032 14.3 (−5.4–37.3) 57.5 (16.9–95.9)
Korea Incheon 2000–2010 106,282 12.5 (−10.8–36.1) 67.3 (26.0–98.4)
Korea Gwangju 2000–2010 57,216 13.9 (−8.7–36.9) 66.6 (19.6–98.1)
Korea Daejeon 2000–2010 56,098 12.8 (−10.4–35.2) 65.7 (24.2–97.6)
Korea - 2000–2010 888,985 13.5 (−10.8–38.4) 63.6 (16.2–99.0)
China Tianjin 2008–2011 245,847 17.0 (−9.9–39.0) 72.1 (15.0–97.0)
China Ningbo 2008–2011 128,295 19.2 (−2.8–42.1) 72.2 (19.0–95.0)
China - 2008–2011 374,142 15.7 (−9.9–42.1) 64.4 (15.0–97.0)

Total 1,416,091 15.6 (−10.8–42.3) 64.5 (15.0–99.0)

* - means taking the country as a whole.

Figure 2 reveals the cumulative exposure-response curves (estimated by BLUP) and
apparent temperature distributions of 10 Asian cities, with the corresponding MMT and
the cutoffs to define extreme and moderate temperatures. The histogram plots show that
most daily temperatures were lower than the MMT. As shown in Figure 2, the cumulative
exposure-response relationship was described by V or L sharp. Both the cold effect (below
MMT) and the heat effect (above MMT) were found to be significant for all cities in this
study. However, the exposure-response curves of cold and heat are different. Specifically,
the curve of the cold effect changes slowly and linearly, while the corresponding heat effect
shows a sharp and nonlinear increase, indicating that the cold effect lasted longer and
was more delayed than heat. Additionally, although the relative risks (RRs) are highest
at extreme cold and extreme hot, relative contributions from moderate cold and hot are
higher than extreme, due to the small proportion of extreme temperature days according
to the histogram plots.

Table 2 presents the attributable fraction caused by cold and hot temperatures in each
city. Overall, the minimum mortality percentile (MMP) in Asia was 79.5th percentile. For
cities in Korea and China, the MMP ranged between about the 60th and 90th percentiles of
temperature, with the exception of cities in Thailand, where the MMPs were 10th and 5th
percentiles. The MMT ranged from 19.71 ◦C in Busan, Korea, to 31.46 ◦C in Tianjin, China,
and mainly varied between 20 ◦C and 30 ◦C. In total, 7.62% of non-accidental mortality
was attributed to temperature. However, attributable fraction varied substantially across
cities, with the highest estimates in Ningbo (11.78%) and Tianjin (11.54%), China, and the
lowest in Chiang Mai (2.84%), Thailand, suggesting that the mortality risk of temperature
in China is larger than in the other two countries. Most temperature-attributable deaths
were caused by cold temperature, with a fraction of 6.44%, while the hot temperature
only accounts for a small part of the burden, with a fraction of 1.18%. This result keeps
consistent among cities in Korea and China, while the results in Thailand were the opposite.
Sensitivity analysis showed that the overall MMPs and AFs remained almost unchanged
when the lag period and df varied and were not dependent on pollution and influenza
(Supplementary Table S1).
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Figure 2. The overall cumulative exposure-response associations in 10 cities. Exposure-response
associations as best linear unbiased prediction (with 95% empirical CI, shaded grey) in 10 countries,
with related temperature distributions. Gray dotted lines are minimum mortality temperatures, and
gray short-dashed lines are the 2.5th and 97.5th percentiles. RR = relative risk.

Table 2. Attribution risk of the impact of short-term temperature exposure on non-accidental mortality in ten Asian cities.

Country City
Minimum
Mortality
Percentile

Minimum
Mortality

Temperature (◦C)
Total (%) (95% CI) Cold (%) (95% CI) Heat (%) (95% CI)

Thailand Chiang
Mai 10 24.32 2.84 (−3.89, 8.83) 0.17 (−0.40, 0.71) 2.67 (−4.51, 9.09)

Thailand Bangkok 5 28.66 8.91 (−3.82, 19.78) 0.31 (−0.06, 0.67) 8.61 (−3.74, 19.45)
Korea Seoul 91 29.12 6.46 (0.80, 11.11) 6.18 (0.98, 11.19) 0.28 (−0.15, 0.68)
Korea Busan 65 19.71 5.13 (0.55, 8.79) 4.74 (1.12, 8.34) 0.39 (−0.70, 1.44)
Korea Daegu 90 30.17 3.96 (−3.56, 10.42) 3.68 (−4.15, 10.67) 0.28 (−0.33, 0.81)
Korea Incheon 66 20.56 6.77 (2.91, 10.16) 6.48 (2.60, 9.74) 0.29 (−0.62, 1.34)
Korea Gwangju 91 30.74 6.05 (0.15, 11.66) 5.75 (−0.85, 11.10) 0.30 (−0.21, 0.78)
Korea Daejeon 91 29.45 7.62 (0.67, 13.92) 7.15 (0.01,13.03) 0.46 (−0.21, 1.03)
China Tianjin 93 31.46 11.54 (1.12, 20.38) 11.08 (0.37, 19.60) 0.46 (0.13, 0.72)
China Ningbo 63 23.48 11.78 (4.62, 18.12) 10.48 (4.28, 15.68) 1.30 (−0.92, 3.35)

Asia 79.5 - 7.62 (4.95, 9.83) 6.44 (3.97, 8.63) 1.18 (0.14, 2.15)

Table 3 shows the result of the multivariable meta-regression analysis, which included
average temperature and temperature variation as meta-predictors. We found that both
average temperature and temperature variation showed a significant correlation with non-
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accidental death counts, with an I2 of 36.6% and Cochran Q test insignificant, indicating
that the residual heterogeneity was low.

Table 3. Second-stage random-effects meta-regression models.

Model Predictor Test for
Predictor Q Test I2 Statistic

random-effects
meta-regression

Average temperature 0.0316
0.0162 36.6%Temperature variation 0.0348

4. Discussion

In this study, we estimated the association between apparent temperature and non-
accidental deaths in ten Asian cities. The exposure-response curves were V or L shaped,
with a significant non-accidental mortality increase attributable to cold and hot tempera-
tures, and the cold effect characterized with hysteresis and persistence. The overall MMT
was distributed at the 79.5th percentile of temperature, although this percentile varied
substantially between cities in different countries. We also found that most temperature-
attributable deaths were caused by cold, with a fraction of 6.44%. Generally, the asso-
ciation between temperature and non-accidental mortality is consistent with previous
studies [28,29].

Many studies found the relationship between health outcomes and temperature was
generally observed as U, V, and J-shaped [9,17,30], similarly, we also found the association
between non-accidental mortality and apparent temperature was L or V-shaped. Although
the RR corresponding to extreme cold was larger than moderate cold, the moderate cold oc-
curred more frequently and caused more non-accidental deaths. Therefore, the researchers
only considering health effect of extreme temperature underestimated the mortality risk of
ambient temperature. Global warming has obviously shortened the time of seasonal trans-
formation [31], leading to weather-sensitive diseases such as respiratory diseases due to
insufficient time to adapt to the change of seasons. The high number of deaths attributable
to moderate cold could be explained by the seasonal transition problem contained in it.
Thus, during seasonal transition period, effective measures should be implemented to
strengthen people’s awareness of preventing cold for a long time, not only focusing on
extreme cold.

There were regional heterogeneities about the mortality risk of temperature in our
study. We found more than 10% of non-accidental mortality was attributable to temperature
in China, which was much larger than the other two countries, indicating that people
living in China are more sensitive to temperature. Gasparrini et al. [9] also found the
attributable fraction ranged from 3·37% in Thailand to 11.00% in China. These discrepancies
in susceptibility can be explained by a variety of factors, including natural endowment,
socioeconomic characteristics, population structure, living habits [32], access to health
care, and housing conditions [19]. Therefore, relevant organizations should take relevant
adaptive strategies accordingly to deal with the regional specific threat of temperature.
Additionally, more temperature-related mortality was caused by heat than cold in Thailand,
which is different from Korea and China, and also inconsistent with the results of previous
studies in Thailand [33]. This difference might be explained by several reasons. First, the
large heat effect in Thailand was attributed to the low MMP (5–10th percentile), while
the MMP in China and Korea ranged from about 60th to 90th percentile. A multi-country
study also found that the MMPs in tropical areas such as Thailand is lower than other
areas [9], in which the MMPs for most countries were at 80th and 90th percentile, with
the exception of the tropical areas such as Thailand (60th percentile). This difference is
mainly due to the high temperature and relative humidity in Thailand all year. Thailand
is located in a tropical region, the daily maximum temperatures are above 30 ◦C in most
regions of Thailand throughout a typical year, without limit to summer [34], thus the
weather conditions might differ from China and Korea where cities are situated in the
temperate climate zone [35]. Second, under global warming situations, the air temperature
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in Thailand has had a relatively high increase in recent years [36]. Studies on future
temperature-related health risk found an increase in heat-related mortality and a decline
in cold-related mortality [5,37,38]. For instance, Ballester et al. reported that the rise in
deaths from heat will compensate the reduction of cold-related mortality during the second
half of the century [37]. The MMTs in Australia, Brazil and the United Kingdom showed
a decreasing trend between around 1990 and around 2010, from 17.2–27.4 ◦C in the first
year to 16.3–24.8 ◦C in the last year [39], indicating that the mortality attribute to cold
would decline with time. As a tropical developing country, Thailand is more sensitive to
climate warming due to the limited public health infrastructure and adaptive capacity [35].
Therefore, the temperature-attributable mortality caused by cold may be overweighted by
heat during our study period in Thailand (2013–2016), whereas previous studies, in which
more temperature-attributable deaths were caused by cold (2.61%) than by heat (0.76%) in
Thailand, focused on an earlier time (1999–2008) [9]. Considering the regional heterogeneity,
regional specific policy should be planned to minimize the health risk of temperature.

Our result showed that compared with heat, cold temperature plays an important role
in non-accidental mortality overall, although both heat and cold contribute to mortality.
These different effects of hot and cold temperatures on human health can be explained
by several potential mechanisms. First, the underlying physiopathological mechanisms
that link heat and mortality is not completely clear. Exposure to heat may cause heart
rate increase, heart overload and blood viscosity increase, which could contribute to
water-electrolyte imbalance [40]. For exposure to cold temperature, by exciting the human
sympathetic nerves, cold is associated with a variety of autonomic responses in humans,
including vasoconstriction, increased blood pressure and heart rate [41]. These changes may
increase the mortality rate of patients with cardiovascular and cerebrovascular diseases.
In addition, cold temperature has also been found to diminish the movement of human
bronchial cilia and the phagocytosis of alveolar macrophages, which weakens the airway
defense ability, increasing the mortality rate of respiratory diseases [42]. These biological
mechanisms of cold effect persist for longer and are more severe than the effects of hot
temperature. Second, people would use air conditioners and fans to adjust the indoor
temperature and consciously reduce outdoor activities during a hot summer to decrease
the heat effect. Heating systems were available only in some areas of Asia, with a low
awareness of preventing cold, leading to a larger effect than heat.

According to the result of multivariate meta-analysis, we observed that the daily
average temperature and temperature variability were related with mortality significantly,
consistent with previous studies [9,43,44]. For instance, a multi-city study conducted
by Yang et al. in China showed that 17.1% of CVD deaths were attributable to daily
mean temperature [17]. Another study reported that a 1 ◦C increase in temperature
variability was significantly associated with a 0.9% increase in all-cause mortality [43]. The
mortality risk of temperature change could be explained by physiology and immunology
evidence [43]. Temperature change might affect humoral or cellular immunity [45] and
result in a mild inflammatory reaction, which results in respiratory diseases such as chronic
obstructive pulmonary disease [46]. Moreover, the inefficient thermoregulatory response
to sudden temperature change may also lead to a burden of cardiovascular-related markers
such as heart rate, heart rate variability, blood pressure [43], blood platelets, red cells, and
viscosity [45,47], which may trigger circulatory related diseases.

Though existing studies suggest that influenza, temperature, and air pollution may
have a synergistic effect on mortality, and they are often defined as each other’s con-
founders [48], whether pollution and influenza are confounders of temperature remains
under discussion [49,50]. In this study, we found that the mortality burden attribute to
temperature in Tianjin remained robust after adjusting PM10 and influenza deaths, sug-
gesting that air pollution levels and influenza epidemics may not influence the mortality
risk of temperature.

This study has several strengths. First, we selected apparent temperature as the
temperature exposure indicator. Many previous temperature-related studies have used a
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single temperature metric (e.g., daily mean/minimum/maximum temperature) to charac-
terize the temperature, which may not measure human exposure to ambient temperature
very well, since human body temperature is related to many weather variables. Humans
regulate body temperature by sweating, which is affected by humidity. Many methods
were developed to diagnose heat stress synthetically, especially moist thermodynamical
quantities, such as the Wet Bulb Globe Temperature (WBGT) and Heat Index (HI), but there
was no uniform way to calculate these metrics [51]. As a comprehensive biometeorologi-
cal index of ambient temperature and relative humidity, AT describes the perception of
temperature and thermal stress better than air temperature [52]. Additionally, compared
with other temperature indicators, Zhang et al. considered apparent temperature to be
the most important predictor for all-cause mortality [53]. Second, this research quanti-
tatively assessed the overall attributable fraction of temperature exposure rather than
only analyzing the relative risk of temperature. We revealed that the mortality effect of
moderate temperature was the largest among moderate and extreme temperatures. Our
result provides evidence for further studies to explore the weather-sensitive diseases.

Limitations must be acknowledged. First, we failed to conduct subgroup analysis by
gender or age to explore the sensitive population because of the limitation of information.
Second, given the huge geographic regions, different climatic characteristics in Asia, ten
cities of three countries included in this study can not represent Asia as a whole. Further
studies are needed to overcome these limitations.

5. Conclusions

In summary, our study suggested that apparent temperature was associated with an
increase in non-accidental mortality. Most of the temperature-related mortality burden was
attributable to cold. This study provided evidence of the mortality risk of temperature,
including moderate and extreme. Our result had important significance for planning public
health interventions to minimize the health effects of adverse temperatures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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