
cells

Review

Nucleic Acid-Based Approaches for Tumor Therapy

Simone Hager 1,* , Frederic Julien Fittler 2, Ernst Wagner 1 and Matthias Bros 2,*
1 Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;

ernst.wagner@cup.uni-muenchen.de
2 Department of Dermatology, University Medical Center, 55131 Mainz, Germany;

ffittler@students.uni-mainz.de
* Correspondence: simone.hager@cup.uni-muenchen.de (S.H.); mbros@uni-mainz.de (M.B.);

Tel.: +49-89218077454 (S.H.); +49-6131179846 (M.B.)

Received: 3 August 2020; Accepted: 7 September 2020; Published: 9 September 2020
����������
�������

Abstract: Within the last decade, the introduction of checkpoint inhibitors proposed to boost
the patients’ anti-tumor immune response has proven the efficacy of immunotherapeutic approaches
for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell
type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor
responses have come of age. This review intends to provide a comprehensive overview of the current
state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA
and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T
cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory
immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells
to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents
of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements
of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will
be combination treatments employing conventional regimens as well as immunotherapeutics like
checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately
counter-act tumor immune evasion.

Keywords: nucleic acids; nanoparticle; transgene; antigen; adjuvant; dendritic cell; tumor;
immunotherapy

1. Introduction

Cancer is a serious and life-threatening disease with increasing incidence in today’s world [1–5].
Depending on the tumor type, stage, and location, cancer therapy can be very challenging. Conventional
treatments (surgery, chemotherapy, and irradiation) are often inefficient, resulting in recurrence and even
death. The main reasons for therapy failure are chemoresistance as well as metastasis [6,7]. Moreover,
the patients often suffer from severe side-effects [8]. In the last 20–30 years, however, cancer treatment
regimens have changed remarkably, based on the gained knowledge about molecular biology as well
as tumor pathobiology and pathophysiology [9–11]. As a consequence of a better understanding of
the tumor as a heterogeneous tissue with different types of cells, new strategies for cancer therapy have
been developed, which are also applicable in combination with classical therapies [12–24]. However,
still only a limited number of patients respond to the already approved immunotherapies, and toxicity
as well as induction of resistance towards treatment are often a problem [25–29]. Nanotechnology-based
strategies, and in particular therapeutic nucleic acids, as well as combined immunotherapies may
improve the therapeutic outcome in more patients for a broad range of tumors, even in late stage. In this
regard, nucleic acid-based immunotherapeutic approaches have received growing interest [24,30,31].

Cells 2020, 9, 2061; doi:10.3390/cells9092061 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-3572-7205
https://orcid.org/0000-0001-8413-0934
http://dx.doi.org/10.3390/cells9092061
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/9/2061?type=check_update&version=4


Cells 2020, 9, 2061 2 of 53

This review aims to present a comprehensive overview of the current state of nucleic acid-based
anti-tumor therapeutics, and associated optimization strategies. As depicted in Figure 1, such
strategies aim (i) to deliver tumor-related antigen plus adjuvant to antigen presenting cells (APC)
like dendritic cells (DC) that induce tumor-specific immune responses, (ii) to either deplete or
reprogram tumor-induced/expanded immunoregulatory cell types, especially regulatory T cells (Treg)
and myeloid-derived suppressor cells (MDSC), which collectively inhibit the induction of adaptive
immune reactions in the periphery, (iii) to generate tumor-specific T cells and natural killer (NK) cells by
genetic introduction of synthetic antigen receptors, termed CARs (chimeric antigen receptors), and (iv)
at the tumor site itself to yield direct tumor cell killing, and to inhibit the tumor-promoting function
of the tumor microenvironment (TEM). It is worth mentioning that the first clinical trial ever using
in vivo gene transfer was conducted by Nabel et al. in 1993 with an intratumorally applied liposomal
formulation of immunotherapeutic DNA encoding for HLA (human leukocyte antigen)-B7 [32].

Figure 1. Nucleic acid-based strategies for tumor therapy. Vaccination of dendritic cells (DC) aims to
induce tumor-specific effector T cells (Teff), which in turn kill tumor cells. Regulatory immune cells,
regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC), are induced by the tumor
and other cells of the tumor microenvironment (TEM) and inhibit both DC and Teff. The expansion
and suppressive activity of Treg/MDSC can be inhibited by RNA interference (RNAi) and MDSC may
be reprogramed to yield antigen presenting cells by applying nucleic acid-based stimuli. Further, T
cells can be transfected/transduced with chimeric antigen receptors (CAR) to gain tumor specificity.
Teff are inhibited by factors within the TME. Tumor-specific delivery of nucleic acids (gene-coding or
conferring RNAi) is aimed to induce apoptosis in tumor cells, and to inhibit or reprogram accessory
cells within the TME, tumor-associated macrophages (TAM), and cancer-associated fibroblasts (CAF).

2. Nucleic Acid-Based Strategies to Induce Adaptive Anti-Tumor Responses

In the last decades, the potential to exploit the patients´ immune system to induce and shape
anti-tumor responses has gained increasing interest [33]. The induction of tumor antigen-specific
adaptive immune responses requires co-delivery of the antigen and of an immunostimulatory
compound to evoke activation of a professional antigen presenting cell (APC) [34]. In this regard, DC
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that are considered the most potent APC population at stimulated state are in the focus of interest [35].
In conventional vaccination approaches, the antigen is applied as a peptide/protein in combination
with a structurally different adjuvant that specifically triggers a danger receptor expressed by DC
(and other APC) [36]. According vaccination approaches need to overcome several obstacles like (i)
unwanted uncoupling of antigen and adjuvant in vivo, which may contribute to unwanted immune
reactions, (ii) binding/uptake of the vaccine by non-APC, including regulatory immune cells like
tumor-associated macrophages (TAM) and tumor-induced myeloid-derived suppressor cells (MDSC),
which may result in the induction of tumor immune tolerance, and (iii) limited presentation of
the exogenous antigen via major histocompatibility complex class I (MHCI), yielding limited activation
of CD8+ T cells, and thereby insufficient induction of cytotoxic tumor lymphocytes (CTL). As outlined
in the following, nucleic acids encoding for antigens (plasmid DNA (pDNA) or mRNA) and nucleic
acid-based adjuvants, especially when encapsulated in APC-targeting nanoparticles (NP), provide
an interesting alternative to conventional vaccination approaches.

So far, nucleic acid-based vaccines have been delivered largely by intramuscular, intradermal,
as well as subcutaneous injections, resulting in predominant transfection of myocytes [37]
and keratinocytes [38], respectively. Whereas mRNA-based transgenes are expressed directly in
the cytoplasm of the transfected cell [39], pDNA needs to translocate to the nucleus for transcription,
followed by translation in the cytoplasm [40]. In case of intramuscular [41] as well as cutaneous [42]
administration, directly transfected cells may express the antigen. Antigen may be transferred to
regional APC by the release of exosomes [43] or apoptotic bodies [44]. In either case, antigen of
exogenous origin is presented largely on MHCII, resulting in the activation of antigen-specific CD4+ T
helper cells (Th) [45]. Only subpopulations of DC are characterized by so-called cross priming activity,
which means that antigen is shuttled/processed in such a manner that MHCI is loaded, resulting in CD8+

T cell activation [46]. In case of direct APC transfection [47], the antigen is expressed and processed like
an endogenous gene, resulting in parallel loading onto MHCI and MHCII molecules [48]. APC that
are sufficiently stimulated by pathogen-derived molecular patterns (PAMP) or endogenous danger
signals, mimicked by the adjuvant, upregulate expression of MHC molecules, of costimulators, and of
soluble mediators (i.e., cytokines), and migrate into the secondary lymphoid organs (draining lymph
nodes, spleen) to prime antigen-specific T cells [49]. Activated CD4+ T cells are required for full
activation of CD8+ T cells to yield CTL [50], and to confer so-called B cell help [51]. Depending largely
on the composition of cytokines released by activated APC, CD4+ T cells polarize into various types
of Th [52]. In case of tumor responses, the induction of Th1 cells, depending largely on IL-12, is
paramount for CTL activation [53].

2.1. Clinical Trials Using Nucleic Acid-Based Vaccines for Tumor Therapy

2.1.1. pDNA Vaccines

In an early clinical phase I trial, stage IV melanoma patients were intranodally infused with pDNA
encoding for melanoma-associated tyrosinase every two weeks for a total of four times [54]. This trial
confirmed tolerability of pDNA administration, and some activation of tyrosinase-specific T cells, but
no clinical responses were observed. In subsequent clinical trials DC were differentiated in vitro from
peripheral blood monocytes of patients using GM-CSF (granulocyte macrophage colony-stimulating
factor) plus interleukin (IL)-4, pulsed with tumor lysate/proteins, matured, and reinfused [55]. In order
to evaluate the suitability of nucleic acid-based vaccination, in a clinical phase I/II trial that enrolled
stage IV melanoma patients, monocyte-derived DC were transfected in vitro with pDNA encoding
melanoma-associated antigens melan A and gp100 using a cationic peptide for pDNA transfer,
and chloroquine to promote endosomal escape, and were stimulated with TNF (tumor necrosis
factor)-α and IL-1β [56]. Patients were vaccinated every three weeks for a total of three months.
Whereas antigen-specific T cell responses were observed, the clinical response rate was only in
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the range of 10%, and not sustained. So far, similar results have been obtained in most clinical studies
on APC-focused pDNA vaccination (tabulated in [57]).

Only a few clinical trials have demonstrated therapeutic efficacy of pDNA vaccination. In a clinical
phase I/II study, patients with carcinoembryonic antigen (CEA)-positive tumors (in most cases colorectal
cancer) were repetitively treated with a pDNA vaccine that encoded for a MHCI-restricted CEA-derived
peptide fused to an immunostimulatory domain derived from tetanus toxin fragment C as an adjuvant
by intramuscular injection for three months [58]. About half of the patients developed diarrhea
due to a break in tolerance towards CEA, which is also expressed by colonic mucosa. The group
of patients that developed autoimmunity showed a prolonged overall survival over the 16 months
observation period.

Several reports have shown that combined treatment with a pDNA vaccine and a second drug
exerted improved anti-tumor responses. In a clinical phase I trial, progression of metastatic prostate
cancer was attenuated in more than half of the patients vaccinated for three months with a prostate
acid phosphatase encoding pDNA plus recombinant GM-CSF as an adjuvant, co-applied intradermally,
in combination with the programmed cell death protein (PD-)1 blocking antibody pembrolizumab [59].
This effect was not observed in case of sequential treatment with the antigen encoding vector/GM-CSF
for three months followed by pembrolizumab application. In a phase IIB/III trial, treatment of
non-small-cell lung cancer patients with a vaccinia virus encoding the tumor-associated antigen
(TAA) Mucin-1, and IL-2 to stimulate T cells (TG4010) by repetitive subcutaneous injections yielded
longer overall survival of patients upon co-treatment with first line chemotherapy (different drugs) as
compared to patients that received chemotherapy only [60]. The efficacy of TG4010 in combination
with checkpoint inhibitors is evaluated in ongoing phase II trials (NCT02823990, NCT03353675).

Due to the overall low efficacy of pDNA vaccination in clinical trials observed so far, pDNA
vaccines need to be improved to yield stronger immunogenicity. In the following various parameters
that are important for the optimization of the design of pDNA vaccines as well as their delivery
are discussed.

2.1.2. mRNA Vaccines

Until a few years ago, mRNA-based anti-tumor vaccines were largely evaluated in clinical studies
using patient-derived autologous DC electroporated in vitro with TAA-encoding mRNA either alone,
in combination with adjuvant-encoding mRNA or followed by stimulation with soluble mediators,
followed by intradermal administration. In most of these trials, adaptive antigen-specific immune
responses were detectable, but only some reached clinical responses (the outcome of these clinical trials
is listed in [61]).

In an early phase II clinical trial, acute myeloid leukemia patients were vaccinated by intradermal
injection with autologous DC electroporated in vitro with mRNA, encoding Wilms´ tumor 1 (WT1)
antigen in bi-weekly intervals for four cycles [62]. About a third of the patients displayed complete
remission after more than a year after the first vaccination. Therapeutic efficacy of vaccination
with WT1-mRNA transfected DC was increased by including the lysosomal targeting signal of
lysosomal-associated membrane protein (LAMP) [63], which previously demonstrated to achieve
improved loading of antigen onto MHCII [64]. Similar results were achieved in another clinical phase
II trial on patients with acute myeloid leukemia (AML) using human telomerase reverse transcriptase
(hTERT) encoding mRNA for ex vivo electroporation of DC, followed by intradermal application [65].
The hTERT expression unit was fused to a LAMP minigene. Transfected DC were applied weekly
for six weeks, followed by bi-weekly application for another six rounds. Recurrence-free survival of
accordingly treated patients was prolonged as compared to historical controls.

Therapeutic efficacy of ex vivo mRNA-vaccinated DC was also demonstrated for glioblastoma,
applied after surgical removal of the major tumor mass, and in combination with more conventional
treatment regimens. In a phase II clinical trial, autologous DC were electroporated ex vivo with mRNA
derived from surgically removed glioblastoma, and were maturated with a cocktail of proinflammatory
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mediators prior to intradermal application [66]. DC were applied six weeks after surgery and combined
radiotherapy/chemotherapy (temozolomide), twice in the first week, and once per month afterwards (up
to 18 treatments). All patients received chemotherapy throughout the vaccination period. The group of
DC-treated patients showed prolonged progression-free survival. Strongly improved progression-free
survival of glioblastoma patients vaccinated in a similar setting was also observed in a phase I clinical
study using an mRNA encoding cytomegalovirus (CMV) pp-65 for DC transfection and GM-CSF as
an adjuvant [67]. CMV pp-65 was chosen based on the fact that glioblastoma cells expressed this
protein, but no other brain cells [68].

In melanoma therapy, efficacy of mRNA vaccines was observed in a study that enrolled stage
III/IV melanoma patients after resection of metastases [69]. Autologous DC were co-transfected ex
vivo with a mixture of four to six melanoma-associated antigen-encoding mRNAs (MAGE-A1/A3/C2,
Melan A, gp100, tyrosinase) plus a mixture of adjuvants (either the toll-like receptor (TLR) 3 ligand
polyriboinosinic:polyribocytidylic acid (poly(I:C)) plus CD40 ligand-mRNA, or mRNA coding for
CD40L, CD70, and a constitutively active TLR4 mutant (TriMix-mRNA)). Transfected DC were applied
intradermally in a bi-weekly cycle up to 12 times, and interferon (IFN)-α 2b was administered
concomitantly in most cases. Vaccinated patients showed an increased survival rate as compared to
historical controls. In a follow-up study on stage III/IV melanoma patients, co-treatment of patients
with DC co-electroporated with either of the melanoma antigen-mRNAs plus TriMix, and concomitant
treatment with the checkpoint inhibitor ipilimumab (CTL-associated protein (CTLA-)4 blocking
antibody), applied every three weeks for a total of four times yielded better long term survival rates
than ipilimumab treatment alone [70].

Within the last few years also some clinical trials assessing the potency of systemically applied
mRNA-based vaccines (e.g., NCT02410733; Lipo-MERIT) have been initiated, using lipoplexes
to prevent mRNA degradation. The mRNA vaccine tested in the Lipo-MERIT study aims to
directly target DC for melanoma therapy [71], and is comprised of several mRNAs that encode
four different TAA (MAGE-A3, NY-ESO-1, TPTE, and tyrosinase,) to be presented via MHCI
and MHCII, and induce IFN type I driven immune responses due to intrinsic stimulatory activity.
In a preclinical setting, a liposomal formulation that specifically addressed DC was identified
by testing the biodistribution and cell binding properties of a library of cationic liposomes
consisting of DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPE (dioleoyl
phosphatidylethanolamine), which differed in their size and zeta potential [72]. mRNA-loaded
lipoplexes with a negative net charge and a diameter of around 300 nm almost exclusively accumulated
in the spleen and were shown to address splenic and lymph node DC.

2.2. Optimization Strategies for Nucleic Acid-Based Vaccines

2.2.1. Antigen

For tumor therapy, nucleic acid-based vaccines need to encode tumor-specific immunogenic
peptides, which allows to comprise antigen-encoding sequences of different proteins within one
minigene aimed to activate a broader number of CD4+ and CD8+ T cells [73]. In general, TAA
may either constitute tumor-specific shared or tumor-specific unique antigens [74]. Whereas shared
TAAs are also presented by normal cell types, albeit at lower extent, unique tumor antigens, also
called neo-antigens, are exclusively expressed by tumors [75]. Especially in older studies, sequences
encoding shared TAAs have been used [76], but this may also result in autoimmune responses [77].
On the contrary, effector T cell responses towards neo-antigens, identified in a tumor-specific manner
by mutagenome analysis, have been reported to be more potent [78,79]. Moreover, antigens with
a prolonged half-life have been shown to induce stronger CTL responses, and thereby increased
immunogenicity [80]. To improve the presentation of (tumor) antigens, epitope-specific changes have
been shown to increase MHC affinity [81], including the use of xenogeneic antigens [82]. Loading of
pDNA-encoded antigens onto MHCII was also demonstrated to be improved by inclusion of the coding
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sequence of the invariant chain [83]. mRNA-encoded antigens were shown to be presented at higher
extent via MHCII when fused with the lysosomal targeting signal of LAMP [64].

2.2.2. Adjuvant

Conventional pDNA was reported to possess intrinsic immunostimulatory activity due
to a CpG-rich motif located within the ampicillin-resistance gene that triggered TLR9 in
endo/lysosomes [84]. Besides, pDNA was also shown to bind cytosolic DNA sensors that mediate
activation of the stimulator of IFN genes (STING) signaling pathway [85]. Moreover, physical stress
associated with vaccination may also exert adjuvant effects as observed for gene gun-mediated delivery
of gold particle adsorbed pDNA into the skin [86].

However, nucleic acid-based vaccines normally contain an adjuvant, which is delivered as
a separate unit, like the TLR3 agonist poly(I:C) [69] or CpG oligodeoxynucleotides (ODNs) that trigger
TLR9 [87,88], or more conventional adjuvants like Alum [89]. Whereas these moieties trigger danger
receptors, in several studies the efficacy of transgenes that encode constitutively active mutants of
danger receptors like TLR4, and receptors with co-stimulatory activity like CD40L and CD70 [69]
to confer APC activation has been evaluated. Additionally, minigenes encoding signaling adaptors
and transcription factors have been assessed in this regard. For example, Shedlock and co-workers
reported that co-transfection of an NF-κB p65 expression plasmid and of a HIV protein encoding
pDNA by in vivo electroporation of mice yielded stronger T cell responses [90]. Likewise, human
monocyte-derived DC co-transfected in vitro with an mRNA encoding for a constitutively active form
of IKKβ (inhibitor of nuclear factor kappa B kinase subunit beta) showed elevated upregulation of
surface activation markers and cytokines like IL-12, and conferred stronger activation of co-cultured
CD8+ T cells [91] and NK cells [92]. Similarly, biolistic co-transfection of mice with an IRF-3 encoding
pDNA enhanced T cell responses towards co-applied influenza antigen-encoding pDNA [93].

Further, the suitability of pDNA [49] or mRNA [94] encoding cytokines intended to activate APC
and to modulate T cells (in a paracrine manner) has been evaluated. For example, Li and co-workers
co-administered healthy volunteers a multigene HIV DNA vaccine plus an IL-12 encoding pDNA by
intramuscular injection, which conferred increased Th1/CTL responses [95]. Bontkes et al. demonstrated
that human DC co-transfected in vitro with a TAA, and IL-12 as well as IL-18 encoding mRNA induced
increased activity of co-cultured CD8+ T cells and NK cells [94]. Similar findings were made in a preclinical
mouse study upon intramuscular administration of a pDNA encoding mycobacteria antigen and IL-15,
known to activate both APC as well as T cells and NK cells [96]. Further, administration of IL-2 and IL-7
pDNA expression constructs aimed to promote T cell activation and proliferation have been tested in
preclinical studies [97].

2.2.3. Inhibition of Regulatory Proteins in APC

In other studies, the potential of small interfering RNA (siRNA) to inhibit the expression of
endogenous inhibitory key factors in APC has been tested. For example, Luo and co-workers boosted
anti-tumor responses using NPs that co-delivered the TLR3 ligand poly(I:C) and a siRNA specific
for the transcription factor STAT (signal transducer and activators of transcription) 3 [98], which
induces expression of anti-inflammatory factors like IL-10. Likewise, NPs delivering siRNA specific
for the co-inhibitory receptor programmed cell death (PD) ligand 1 (PD-L1) have been evaluated in
tumor studies [99]. More recently, also micro-RNA (miRNA) species, which constitute endogenously
expressed small RNA species that inhibit gene expression (Figure 2), are considered interesting
candidates to modulate the activation state of APC [100]. For example, delivery of a plasmid
harboring multiple miRNA consensus bindings sites, termed miRNA sponge [101] and of anti-miRNA
oligonucleotides [102], is intended to limit the inhibitory effect of miRNAs on activation-associated
mRNA targets.
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Figure 2. Mechanism of RNA interference (RNAi) and options for therapeutic intervention.
(1) Substitution of tumor suppressor micro-RNA (miRNA, miR) in form of pre-miRNA or miRNA
mimics, thereby inducing RNAi. (2) Blocking of oncogenic miRNA by miRNA-specific antagomirs
(anti-miR). This figure is reprinted with permission from [103]. Copyright© 2020; John Wiley and Sons.

2.2.4. Structural Optimization of pDNA Vaccines

Expression Units

In most of the aforementioned studies pDNA and mRNA species encoding antigen and adjuvant
were applied as separate plasmids (in trans). However, the approach to integrate several transcription
units into the same pDNA or mRNA in cis has received growing interest [104]. In case of pDNA,
according vectors may either contain separate expression units each driven by another promoter, or
a single promoter that regulates expression of the antigen and of molecular adjuvants. In case of
the latter, which is also possible in case of mRNA vaccines, the different expression units may be
separated either by an internal ribosomal entry site that confers cap-independent translation [105,106] or
virus-derived recognition sites [107], which in the derived long peptide are recognized by a ubiquitously
expressed protease [108].

Size Reduction

A large part of pDNA is of prokaryotic origin and is required only for propagation in
bacteria. It has been shown that after transfection prokaryotic parts are silenced by formation
of heterochromatin, which may spread into the eukaryotic expression unit(s), and thereby limit
transgene expression [109]. Therefore, the strategy to flank the expression cassette comprised of
the promoter and the transgene-encoding part with phage recombinase-recognition sites has received
growing interest. This configuration allows deletion of the prokaryotic part in the late phase of plasmid
propagation by inducing phage recombinase. In several studies the derived mini-circle DNA (mcDNA)
was reported to yield a higher transfection efficiency as well as a longer duration of gene expression as
compared to the full length parental construct [110].

Nuclear Transfer

Moreover, in case of a pDNA vaccine its nuclear translocation is necessary for transcription of
the encoded transgene(s), which constitutes a hurdle in mitotically inactive APC [111]. It was shown
that transcription factors may bind recognition sites within the gene regulatory regions of the pDNA,
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and mediate nuclear import of the pDNA by their nuclear localization signal (NLS) [112]. Especially
the simian virus (SV)40 enhancer sequence was demonstrated to harbor several of these transcription
factor binding sites, and inclusion of this region directly upstream or downstream of the transgene
expression unit conferred enhanced nuclear import and elevated transfection efficiencies [40]. In a more
controlled manner, viral peptides (e.g., SV40 large T antigen) coupled to pDNA can facilitate its nuclear
entry via their NLS [113].

Transcriptional Regulation

Expression units of pDNA-based vaccines are often under transcriptional control of virus-derived
promotors characterized by ubiquitous activity at high level, like the human intermediate/early
CMV or the SV40 promoter [114]. Since viral promoters may be subjected to methylation-mediated
inactivation, both eukaryotic promoters, like the human elongation factor (EF)1α or beta-actin gene
promoter, as well as viral/eukaryotic hybrid (e.g., CMV/beta-actin) promoters have been introduced
that allow long term transgene expression [115]. These types of promoters are still widely used
in preclinical and clinical studies. On the contrary, the potential of promoters that restrict gene
expression to DC to avoid unwanted vaccine expression by regulatory immune cells (e.g., TAM,
MDSC) has been assessed in a limited number of preclinical studies only. The promoter of DC-STAMP
(dendrocyte-expressed seven transmembrane proteins) is active in unstimulated human and mouse
DC as well as in macrophages, and is downregulated upon stimulation [116]. Mice transduced with
a lentivirus containing the DC-STAMP promoter displayed reporter activity in DC, monocytes, B
cells, and NK cells [117]. Biolistic transfection of mice with a pDNA containing the promoter of
the Langerhans cell (LC)-specifically active Dectin-2 gene resulted in LC-specific reporter activity [118],
and when employed in a lentiviral vector conferred both DC- and macrophage-restricted reporter
expression [119]. In several studies the promoters of the evolutionarily conserved human [120,121]
and mouse [120,121] fascin-1 genes were demonstrated to restrict gene expression to maturing DC.
Biolistic transfection of mice with fascin-1 promoter driven antigen encoding pDNA yielded largely
DC-restricted transgene expression, and conferred Th1-polarized immune responses in models of
allergy [122], and multiple sclerosis [123]. Furthermore, pDNA encoding for anti-inflammatory
transforming growth factor (TGF)-β [123] and IDO [124] under transcriptional control of the fascin-1
promoter yielded tolerogenic effects.

2.2.5. NPs for APC-Focused Delivery of Nucleic Acids

Biocompatible NPs are highly interesting for cellular transfer of nucleic acids [125] in the context
of nucleic acid-based tumor therapy [126], since they offer protection against extracellular degradation
by DNases [127] and RNases [128] either by dense complexation [129] or encapsulation [130] of nucleic
acids. Especially in case of systemic application, NPs may confer either due to their intrinsic properties
passive [72] or upon conjunction with surface receptor targeting moieties active [46] targeting of
APC populations.

NP Size and Surface Characteristics Affecting Biodistribution

With regard to the design of NPs it needs to be taken into account that DC as the often
preferred target cell type internalize smaller particles (<200 nm) more efficiently [131], whereas
monocytes/macrophages preferably ingest larger ones (<5 µm) by means of receptor-mediated
endocytosis and phagocytosis [132]. Besides size, also the shape of the NP may affect the efficacy
of uptake as evaluated for gold-based NPs, which were engulfed by macrophages more efficiently
in case of spherical as compared to e.g., elongated shape [133]. Both the cellular internalization of
transfection complexes and the endosomal release of NP-complexed nucleic acids, can be increased by
cell penetrating peptides (CPP) that are attached either e.g., to the pDNA [134] or to the NP [135].

Concerning the biodistribution of nucleic acid/NP transfection complexes, it was shown that
small particles are easily transported into the lymph node, whereas larger particles remain longer at
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the site of administration [136]. Further, the route of administration can also account for the fate of NP
delivery systems. After subcutaneous injection small PEGylated liposomes were found in a larger
amount in the lymph node than after intravenous or intraperitoneal application [137]. Concerning NP
clearance from the body, NPs that are smaller than 8 nm are cleared renally [138], and the extent of
renal clearance was shown to correlate with the extent of negative charge [139]. Biliary clearance was
observed especially for particles over 200 nm, and for strongly charged particles [140].

NP Types Suitable for APC Transfection

By now, a large variety of materials and structures has been evaluated for transfer of nucleic
acids into APC, comprising inorganic materials like solid core gold [141] and iron oxide-based [142],
mesoporous silica [143], and graphene oxide [144] based NPs. The latter have repetitively shown to
confer endosomal escape of nucleic acids [145,146]. Polymer-based NPs bind nucleic acids by electrostatic
interactions [147]. PLG (poly-D,L-lactide-co-glycolide) [148], PLGA (poly-D,L-lactic-co-glycolic acid) [149],
and polyethylenimine (PEI) [150] are among the most intensely studied polymer-based NPs for delivery
of nucleic acids. Of these, PEI by acting as a ’proton sponge’ conferred the most pronounced
endosomal release of nucleic acids [151], but at the same time also mediated strong cytotoxicity [152].
Chitosan is a natural polysaccharide-based polymer, which has been evaluated for pDNA transfer [153]
and similar to PLGA [154] was demonstrated to exert immunostimulatory activity [155]. Protein-based
NPs offer the advantage of high biocompatibility [156]. For example, gelatin B (negatively charged)
combined with protamine sulfate (positively charged) conferred DNA transfection, and mediated pDNA
release under acidic conditions as apparent in endolysosomes [157]. Using endogenous proteins as
nano-carriers may reduce potential immune reactions in response to repetitive application. In this
regard, serum albumin coated with chitosan conferred DNA transfection [158]. NPs, consisting of
albumin conjugated with cationic ethylenediamine complexed Bcl-2 specific siRNA, intravenously
injected into mice with established melanoma lung metastases successfully inhibited further tumor
progression [159]. Cationic lipids complex negatively charged nucleic acids by electrostatic interactions,
and by interaction with the negatively charged cell membrane confer internalization of lipoplexes [160].
DOTAP (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride) was the first lipid to be
used for pDNA transfection [161], and is still used either as a single component for complexation of
nucleic acids or in combinations with helper lipids. With regard to the latter, neutral helper lipids
like cholesterol have been included resulting in much stronger transfection efficiency presumably due
to elevated endosomal escape of passenger DNA [162]. Incorporation of coiled-coil lipopeptides into
liposomes resulted in direct release of the payload into the cytosol [163].

Administration Routes

Direct transfection of APC in secondary lymphoid organs can be achieved by intravenous
application [164], given that the nano-vaccine predominantly addresses APC by passive [72] or
active [165] targeting. This would result in the induction of antigen-specific T effector cells, which can
home to each tissue, and thereby also reach metastases irrespective of their location. However, as
delineated in preclinical rodent biodistribution studies, systemically administered NPs of larger size (≥
200 nm diameter) may accumulate e.g., in lung as reported e.g., for mesoporous silica particles [166]
or chitosan NP [167]. Moreover, most NP formulations tested so far accumulate in the liver [168]
as a consequence of the general clearance function of the liver [169], conferred by Kupffer cells
(KC) as the major liver-resident macrophage population [170] and liver sinusoidal endothelial cells
(LSEC) [171]. KC and LSEC are equipped with a number of danger receptors, including different
C-type lectin receptors (CLR) as e.g., the mannose receptor CD206 [172,173], and scavenger receptors
that broadly bind negatively charged ligands [174,175]. Besides, KC [176] and LSEC [177] express high
affinity Fc receptors, and KC also express complement receptors [178]. Therefore, it is conceivable
that NPs, depending on the characteristics of the protein corona formed in vivo [179], also including
complement activation as shown for lectin-coated NP [180], may be internalized preferentially by KC
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and LSEC. The formation of a pronounced protein corona may be attenuated by PEGylation, shown to
reduce unwanted binding to KC [181] and LSEC [182], and by conjugation with CD47, which serves
as a ‘do not-eat-me’ ignal for macrophages as evaluated for liposomes [183]. Furthermore, targeting
moieties on NP may engage according receptors on either non-parenchymal liver cell population.
An example is mannose, which has frequently been used to address CD206-expressing APC of myeloid
origin [184,185].

NP delivery via the skin constitutes an interesting alternative to systemic NP delivery for
several reasons: (i) topical application circumvents unwanted liver accumulation, (ii) cutaneous DC,
comprising Langerhans cells (LC) as the epidermal DC population, which form a dense network
(200–1000 LC/mm2 [186]), and dermal DC are apparent at rather high numbers in skin, and (iii) targeting
is not necessary since only DC, at activated state, are able to migrate to secondary lymphoid organs [187].
By now, several approaches for transfection of skin DC have been tested successfully in clinical trials
concerning safety and tolerability and are used in preclinical studies to evaluate vaccines. These
include conventional intradermal injection [188], biolistic transfection of nucleic acids pre-adsorbed
onto particles applied by gene gun [189] and PMED (particle-mediated epidermal delivery) [190],
patches with dissolvable microneedles [191,192], and tattooing devices [193]. All of these transdermal
delivery methods can transfer NP-complexed nucleic acids [194]. In case of biolistic transfection
the method-associated physical stress was sufficient to confer activation and consequently emigration
of transfected DC [86]. Further, administration of an electrical pulse just after intradermal [195]
and intramuscular [196] injection, was shown to induce local inflammation, which activated APC
at the according site, and to enhance overall transfection rates [197]. Consequently, electroporation
devices that are applied in the context of intradermal injection are currently tested in clinical phase I
(e.g., NCT04336410) and phase II (NCT03180684) pDNA vaccination studies.

Other potential delivery routes for tumor vaccination comprise the respiratory system by applying
nebulized pDNA or mRNA that largely transfect lung epithelia [198], which has predominantly been
employed for treatment of lung diseases like cystic fibrosis [199], and oral vaccination approaches using
attenuated bacteria (e.g., Salmonella typhimurium) for pDNA transfer to APC in Payer’s patches [200].

Targeting of APC

Passive targeting of DC and monocytes/macrophages in vivo may be a consequence of the protein
corona formed in case of many types of NPs due to adsorption of serum factors, which may constitute
genuine ligands for cell surface receptors [179]. The composition of the protein corona is determined
by several factors including e.g., charge and hydrophobicity of the particle surface. Further, serum
factors due to interaction with the particle surface may alter their state of conformation, and thereby
are recognized as ‘new’ ligands e.g., by scavenger receptors [201]. Finally, NPs may be recognized
as pathogen-like by the innate immune system, e.g., in case of lectin surfaces intended to ensure
biocompatibility of the NP, which however was found to trigger the lectin-dependent complement
pathway [202]. This in turn resulted in adsorption of active complement C3 on the particle surface,
and subsequent recognition of immune cells via complement receptors [180]. Unwanted adsorption
of serum factors may be limited by conjugation with polyethylene glycol (PEG) [203]. However,
concerning the repetitive application of vaccines potential adverse reactions as e.g., the induction of
PEG-specific antibodies [204] need to be taken into account.

Active targeting of transfection complexes to DC and monocytes/macrophages can be achieved
by conjugation of NPs with derivatives of natural ligands and antibodies that specifically bind
endocytic surface receptors like C-type lectin receptors, which are expressed in a largely cell
type-specific manner [205]. For example, the mannose receptor CD206 is highly expressed by
macrophages (M2-like > M1-like), and is apparent at some extent on conventional DC [206], whereas
DC-SIGN is predominantly expressed by conventional DC populations, but only by a low fraction of
macrophages [207]. In a preclinical study, intramuscular vaccination of mice with mannosylated
cationic liposomes (distearoylphosphoethanolamine-polycarboxybetaine/DOTAP/cholesterol) that



Cells 2020, 9, 2061 11 of 53

showed intrinsic DC stimulatory activity and complexed a HIV antigen-encoding pDNA improved
HIV-specific T cell responses [208]. More recently, trimannosylated liposomes (1,2-bis(hexadecyl)
glycerol/1,2-Dioleoyl-sn-glycero-3-phosphocholine/cholesterol) were shown to specifically address
DC-SIGN, and to accumulate at highest extent in the spleen after intravenous application, addressing
predominantly DC [165]. While these approaches aimed to directly transfect APC in vivo, in an alternative
approach Wang and co-workers designed a pDNA that encoded a fusion protein consisting of a tumor
antigen polypeptide and a single chain antibody fragment known to bind the murine DC-specific
receptor CD11c [209]. Thereby, this pDNA was aimed to be expressed in non-APC, but the expressed
fusion protein was meant to target DC. In a mouse breast cancer model intramuscular injection of this
pDNA prevented tumor growth when applied protectively prior to subcutaneous tumor cell inoculation,
and attenuated tumor progression in a therapeutic setting. As mentioned above, lipoplexes composed of
DOTMA and DOPE loaded with mRNA with a negative net charge and a size of around 300 nm due to
these characteristics predominantly targeted DC in secondary lymphoid organs [72].

3. Inhibition of Regulatory Immune Cells

The success of vaccination to induce a sustained antigen-specific anti-tumor response is limited by
regulatory immune cells that are induced and expanded by tumors as part of their evasion strategy [210].
Both MDSC [211] and Treg [212] can attenuate the T cell stimulatory activity of APC, the activation
of T cells as well as the anti-tumor function of Teff, and effector functions of NK cells. To counteract
the suppressive effect of regulatory immune cells the suitability of RNAi has been delineated [213,214].
Further, nucleic acids with immunostimulatory function were reported to reprogram MDSC to exert
anti-tumor activity [215].

3.1. Inhibition of Treg by RNA Interference

Under homeostatic conditions Treg ensure tolerance towards self-antigens to prohibit
autoimmunity [216], and against harmless antigens to prevent allergies [217]. Besides, as a negative
feedback mechanism Treg are expanded and are also induced de novo in the course of immune
reactions in order to limit immune responses and thereby to minimize tissue damages. Under healthy
conditions Treg occur only in small numbers [218]. Depending on the place of origin Treg can be
differentiated in thymic Treg (tTreg), alternatively termed natural Treg, [219] and in Treg that are induced
in the periphery (iTreg) [220]. During thymopoiesis thymocytes, which express a T cell receptor (TCR)
with intermediate affinity for self-peptides, differentiate into immunosuppressive tTreg [221]. iTreg
derive from CD4+/CD8+ T cells, whose TCR is not specific for self-antigens, but recognizes microbiota-
and environmental antigens presented by DC in the periphery [222] in the context of low co-stimulation
and/or Treg-promoting factors like retinoic acid, kynurenine, and TGF-β [223,224]. In mice, tTreg
and some iTreg populations can be identified by constitutive expression of the IL-2 receptor CD25
and by co-expression of the transcription factor FoxP3 [225], whereas other iTreg populations are
Foxp3-deficient, but may express anti-inflammatory mediators like IL-10 and TGF-β [226].

In cancer, constituents of the TME produce anti-inflammatory mediators, which promote Treg
expansion/induction in the periphery [218], and release of chemokines as for example the C-C motif
chemokine ligand (CCL) 22, to recruit Treg to the tumor [227]. Treg suppress anti-tumor responses
on the level of APC activity, T cell activation, T effector cell functions, and the functions of NK cells
by numerous mechanisms, as for example anti-inflammatory cytokines (e.g., IL-10, TGF-β), surface
receptor interactions (e.g., negative cross-talk via CTLA-4), IL-2 depletion, and transfer of cyclic
adenosine monophosphate (cAMP) [228].

There are different approaches to overcome the obstacle of Treg-mediated suppression of anti-tumor
responses, including strategies to deplete Treg or to reduce their suppressive activity [229]. Concerning
nucleic acid-based approaches to attenuate Treg induction, silencing of tumor-derived TGF-β in murine
CT26 colon carcinoma cells by transfection with oligofectamine/TGF-β1 siRNA complexes suppressed
Treg induction [230]. Most recently, Masjedi et al. reported that ex vivo silencing of the adenosine
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A2A receptor (A2AR) with an A2AR-specific siRNA complexed with PEG-chitosan-lactate (PCL)
NPs inhibited the differentiation of CD4+CD25− T cells derived from 4T1 breast tumor-bearing
Balb/C mice toward Treg [231]. Alternative approaches have aimed to minimize the suppressive
capability of Treg. For example, in vitro transfection of murine Treg with a Foxp3-specific siRNA
resulted in profound inhibition of their suppressive capacity [232]. Another treatment option is to
interfere with the recruitment of Treg to the tumor site. Kang and co-workers have demonstrated
that tumor infiltration with Treg in athymic nude mice, inoculated with human breast cancer cells,
can be prohibited by tail vein injection of Treg transfected with a siRNA specific for CCL22 [233].
Besides the use of synthetic siRNA for RNA interference, in recent years miRNA (over)expression
intended to alter the genetic program of Treg has gained increasing interest. In this regard, lentiviral
transduction of Treg in vitro with miR-9 and miR-155 encoding vectors resulted in reduced expression
of CTLA-4, which is a key factor for the immunosuppressive activity of Treg [234]. Additionally,
Jonuleit et al. reported that in a mouse melanoma model systemic delivery of CTLA-4 specific siRNA
by cationic lipid-assisted PEG–poly(lactic acid (PLA))-based NP resulted in reduced Treg numbers,
and inhibited tumor growth [235]. Administration of miR-141 and miR-200a mimics in multiple
sclerosis patients shifted the differentiation of naive T cells towards Th17, and at the same time inhibited
Treg differentiation [236]. In a mouse model of epithelial ovarian cancer (EOC) in vitro transfection of
CD4+ T cells with miRNA 29a-3p and miR-21-5p mimics, complexed with the commercially available
X-tremeGENE siRNA transfection reagent, followed by adoptive transfer into tumor-burdened mice,
tumor growth was attenuated [237]. This outcome was based on the inhibitory effects of both miRNA
species on STAT3 expression, thereby favoring Th17 over Treg differentiation. In another study,
transfection of Treg with miR-142-3p reduced the level of intracellular cAMP and adenylyl cyclase type
9 expression, which impaired their suppressive properties [238]. Treg-specific delivery of biologicals
may be achieved by using IL-2-functionalized NPs as shown for hydroxyethyl starch nanocapsules
that targeted Treg due to their constitutive high level expression of the IL-2 receptor CD25 [239].

Altogether, these studies demonstrate that nucleic acid-based strategies have a high potential to
reduce overall Treg activity in cancer. However, it should be noted that Treg depletion may result in
a compensatory induction of MDSC [240].

3.2. Strategies for MDSC Reprograming and Depletion

MDSC derive from myeloid precursor cells during myelopoiesis [241]. Immunomodulatory
factors generated by tumors like some cytokines, chemokines, or colony-stimulating factors (CSF)
are capable of stimulating expansion of MDSC on the expansion of monocytes, conventional DC,
and neutrophils [242], while chronic inflammations can lead to extramedullary myelopoiesis [243].
The expansion and activation of generated MDSC requires concerted interaction of several signaling
pathways, like the NF-κB, JAK-STAT, HIF-1α, C/EBPβ, and CHOP pathway. Based on the expression
of plasma membrane markers, the amount of immune suppressive molecules as well as by
functional analysis [244], MDSC can be allocated to CD11b+Ly6G−Ly6Chi monocytic (m)MDSC and to
CD11b+Ly6G+Ly6Clow granulocytic (g)MDSC [245]. MDSC exert potent immune-suppressive activity
against T cells [246] and NK cells [247]. Accordingly, MDSC contribute to control autoimmunity [248]
and infections [249]. After activation, MDSC migrate to the site of inflammation or to the tumor
site in response to a variety of chemokines [250]. There, MDSC generate an immune-suppressive
milieu, which is enhanced by different cytokines [243]. The infiltration of mMDSC into a tumor
leads to a distribution of tumor cells from the place of origin by induction of epithelial–mesenchymal
transition (EMT), which generates a cancer stem cell (CSC) phenotype [251]. Tumor infiltration of
gMDSC withdraws the CSC phenotype and leads to tumor cell proliferation and promotes metastasis.
In secondary lymphoid organs MDSC suppress APC, the activation of tumor antigen-specific T cells,
and T effector cells by several mechanisms in an analogous manner as described for Treg [252].

In some approaches siRNA and miRNA have been applied to attenuate MDSC generation
and their suppressive activity. For example, Boldin et al. have shown that miR-146a inhibited
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the proliferation of MDSC by targeting tumor necrosis factor receptor-associated factor 6 (TRAF6)
and IL-1 receptor-associated kinase 1 (IRAK1) [253]. Similarly, miR-424 was reported to interfere
with MDSC differentiation [214]. In several mouse tumor models intravenous application of
oligofectamine/miR-223 complexes inhibited tumor-conferred MDSC generation by targeting myocyte
enhancer factor 2C (MEF2C) in bone marrow progenitor cells [254].

Moreover, some types of NPs as an intrinsic property have been reported to reprogram MDSC
towards proinflammatory macrophages as shown e.g., for cationic dextran- and PEI-based NP [215]
in vitro and for NP modified with a cationic polymer in vivo [255]. In addition, TLR agonists that
address TLR7/8 (e.g., R848) and TLR9 (CpG ODN) were shown to exert similar effects both in vitro
and in vivo [256], which may contribute to the overall immunostimulatory effect of these adjuvants.

3.3. Inhibition of Treg and MDSC by Tumor-Directed Approaches

Besides direct targeting of Treg and MDSC via RNA interference, the induction/expansion
and tumor infiltration of either regulatory cell type may also be controlled indirectly by affecting tumor
gene expression and as a secondary effect in the course of inducing anti-tumor responses. Stem cell
factor (SCF; c-kit ligand) is generated by tumors and confers MDSC infiltration [257]. In a mouse
MCA26 colon tumor model adenoviral transfer of SCF-specific siRNA resulted in reduced accumulation
of MDSC at the tumor site [258]. Injection of a TNFAIP3-specific siRNA into E.G7 or B16-F10 melanoma
induced apoptosis in MDSC via activation of the c-Jun N-terminal kinase (JNK) pathway [259]. Injection
of vascular endothelial growth factor (VEGF)-specific siRNA, complexed with nanogels, into renal
tumors significantly reduced MDSC numbers in that area [260]. Injection of a Newcastle Disease Virus
Hemagglutinin–Neuraminidase encoding pDNA into the ear pinna of DA3 tumor bearing Balb/c
mice promoted innate anti-tumor responses and reduced MDSC infiltration into the tumor site [261].
In humans suffering from pancreatic ductal adenocarcinoma (PDA), in many cases antibodies and T
cells specific for α-enolase (ENO1) have been identified [262]. In a mouse model of autochthonous
pancreatic cancer, injection/electroporation with a ENO1-encoding pDNA attenuated tumor growth
and concomitantly also the expansion of Treg and MDSC [263].

4. Generation of T Cells and NK Cells Expressing CARs for Tumor Therapy

CARs are synthetic antigen receptors, which comprise an extracellular antibody domain,
a transmembrane domain, and an intracellular signaling domain, and recognize e.g., tumor-associated
antigens [264]. So-called CAR T cells (CAR-T) and CAR natural killer cells (CAR-NK) are generated
by transfection of either cell type with a CAR-encoding pDNA, mRNA, or are transduced with
a CAR-encoding viral vector [265]. Therefore, CAR expressing cells are able to recognize antigens
under tumor-induced immune-suppressive conditions and can exert a proper immune response. For
CAR synthesis, the variable domains of an antibodies’ light and heavy chain are fused, for example by
short glycine-serine linkers, to yield a single chain fragment variable (scFv) [266]. The transmembrane
domain is usually derived from CD28 or another membrane receptor [267]. In most cases CD3ζ, which
is a component of the endogenous TCR, serves as the signaling domain for CAR-T [268]. For CAR-NK
the transmembrane immune signaling adaptor chain is employed as the signaling domain [264].
The signaling domain is often combined with one or more co-stimulatory motifs [269] like CD28 [270],
CD137, CD357, CD278, or CD134 [271] for CAR-T, and CD28, CD137 [272], CD278, CD134 [273], or
Dap10 [270] in case of CAR-NK. The first generation of CARs contained only CD3 (ζ or γ chain)
signaling motifs, which are able to activate murine CTL hybridoma cells, modified with chimeric
genes for surface receptors, e.g., to trigger IL-2 secretion, but these may be inactivated by tumors [274].
The second generation of CARs was equipped in addition with a co-stimulatory domain, and the third
generation possessed more than one co-stimulatory domain [275].

In an alternative approach, the signaling and the co-stimulatory domains are split between
two different CARs, which is termed combinatorial targeting [264]. Until now, two CAR-T based
immunotherapies have been approved by the United States Food and Drug Administration (FDA). Both
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are CD19-directed CAR-T immunotherapies, targeting the pan-B cell receptor CD19. They have shown
significant results in the treatment of non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia
(ALL), and chronic lymphocytic leukemia (CLL) [276]. Of these, treatment with tisagenlecleucel (T
cells from the patients’ blood are lentivirally transduced with CD19-speciic CARs) yielded an overall
remission rate of 81% after three months in patients suffering from relapsed or refractory ALL, but caused
serious, mainly reversible toxic effects in children and young adults under 25 years [277]. In patients
with NHL, axicabtagene ciloleucel (lentiviral transduction of patients’ blood T cells with CD19-specific
CARs) resulted in an objective response rate of 82%, and a complete response in 54% of cases [278].
However, treatment with either CAR-T treatment can lead to serious and even life-threatening side
effects, like the tumor lysis syndrome, a disease which can result from a tumor therapy, causing
hyperuricemia, hyperkalemia, hyperphosphatemia, and hypocalcemia [279], and the cytokine release
syndrome that is induced by a cytokine storm [280], leading to fever, hypotension, and respiratory
insufficiency [281].

Another problem of CAR-Ts is the interaction of MDSC with CAR-Ts, which may lead to
a reduction of CAR-T activation, to reduced proliferation after antigen stimulation, and lowered
cytokine production [282]. MDSC in the liver for example suppress an anti-tumor response of
CAR-Ts via binding of PD-L1 that engages PD-1 on T cells [283]. The expression of PD-L1 by MDSC
in the liver is supported by GM-CSF and is largely regulated by the transcription factor STAT3.
The negative effect of MDSC on CAR-T can be avoided by MDSC depletion, using therapeutic
drugs like gemcitabine and 5-fluorouracil [284], neutralization of GM-CSF, e.g., by otilimab that
is currently assessed in a clinical phase 3 study [285], and PD-L1 blockade, e.g., by checkpoint
inhibitors like atezolizumab [286]. For example, Fultang and co-workers have recently shown that
the activity of an anti-GD2-/mesothelin-/EGFRvIII-CAR-T was significantly enhanced when co-applied
with the anti-MDSC drug gemtuzumab ozogamicin, an anti-CD33 antibody linked to cytostatic
calicheamicin [287]. Altogether, due to the high potential of CARs for cancer treatment, improvement
of CAR-based therapy is in the focus of research. For example, Wang et al. have recently generated
CAR-T cells by electroporation-based transfection of T cells with non-viral mcDNA, which is considered
much safer than virus-based chimeric antigen receptor-engineered CARs [288].

5. Manipulating the TME Using Therapeutic Nucleic Acids

The TME is a complex, very heterogeneous network of stromal and endothelial cells as well
as recruited immune cells [289]. It is characterized by leaky blood vessels, a special tumor-specific
extracellular matrix (ECM), immunomodulatory agents/cytokines, and growth factors [18,289–291].
The TME plays an important role during tumorigenesis as well as tumor progression and metastasis
by supporting the tumor cells in evading the immune system [19,292] and by contributing to
chemoresistance [293]. Different cell types like CAF [294], TAM (pro-tumoral phenotype) [295–297],
MDSC, and Treg (see Section 3) [18] as well as tolerogenic DC [18,298] contribute to the establishment
and maintenance of the immunosuppressive tumor surroundings. In addition, the TME inactivates
effector functions of tumor-infiltrating lymphocytes (TIL) by various mechanisms, and thus undermines
immunosurveillance [292,299,300].

Further characteristics of the tumor tissue comprise acidity (≈pH 6.5) due to the Warburg
effect [301,302], hypoxia [303], expression of distinct matrix enzymes like matrix metalloproteases
(MMPs) [304], and an elevated redox potential [305] as well as increased levels of reactive oxygen species
(ROS) [306]. These properties display barriers in the delivery process of anti-tumor drugs, but can be
also exploited for bio-responsive targeting of therapeutics to the tumor tissue [307]. By this, tumor
selectivity and overall biocompatibility might be enhanced. Besides, passive targeting via the enhanced
permeation and retention (EPR) effect [308], and more effective tumor addressing via tumor homing
peptides and CPPs can increase accumulation of (nano) formulations within the tumor [309–311].
In addition, active targeting mediated by ligands such as peptides, vitamins, or antibodies is often
utilized to direct a therapeutic selectively to the target site [312].
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Immunotherapeutic approaches often aim to evoke a switch from immunosuppression to immune
permission within the tumor tissue. By this, the tumor becomes immune-sensitive again, and then can
be effectively combated by the innate and adaptive immune system. In the following, a selection of
diverse strategies for TME manipulation is presented with a focus on nucleic acid-based approaches.

5.1. Modulation of Intratumoral Signaling by Nucleic Acids

In the immunosuppressive TME a disproportion exists between soluble mediators (cytokines
and growth factors) exerting pro- and anti-inflammatory properties, thereby promoting tumor immune
escape and tumorigenesis [313]. There are two options to counteract this imbalance, resulting in
effective anti-tumor activity [313]. On the one hand, the immune system can be stimulated by
overexpression of pro-inflammatory cytokines. On the other hand, immunosuppression can be reduced
by inhibition/neutralization of anti-inflammatory signals.

Cytokines are key mediators in the communication of immune cells and are crucially involved
in controlling the intensity of an immune response [314–316]. Thus, it is not surprising that cytokine
therapy has been pursued as a cancer immunotherapeutic approach for more than 30 years now.
However, in clinical studies, such cytokine therapies have not met the expectations based on the results
of preclinical studies, especially when applied as monotherapies [313]. Only IFN-α [317] and IL-2 as
high-dose therapy [318] have been approved for the systemic treatment of several cancers, based on
moderate beneficial anti-tumor effects in clinical trials. Ongoing research is focused on increasing
therapeutic efficacy and biocompatibility by developing recombinant cytokines with improved
pharmacokinetics (e.g., PEGylated or fused with targeting antibodies), combinations with other
immunotherapeutic approaches such as immune checkpoint inhibitors, and local or specifically
targeted administration of (recombinant) cytokines [313]. Besides that, cytokine gene therapy (using
gene encoding pDNA or viral vectors) and other nucleic acid-based approaches (like RNAi or genome
editing) are promising concepts [24,313,316]. Table 1 summarizes such nucleic acid-based approaches
evaluated in clinical trials. In the following, important signaling molecules and strategies (especially
therapeutic nucleic acids) to modulate their levels within the tumor tissue are outlined.

Table 1. Examples of clinical trials investigating nucleic acid-based approaches for adjusting
intratumoral cytokine levels.

Signaling
Molecule Therapy Strategy Application Route Treated Cancer Clinical State References

IL-2

Syngeneic tumor cell vaccine modified with
IL-2 gene ex vivo

Intradermal or
subcutaneous

injection
Metastatic melanoma Phase I [319]

Allogeneic tumor cell vaccine modified
with IL-2 gene ex vivo

Subcutaneous
injection Metastatic melanoma

Pilot study [320]

Phase I–II [321]

Allogeneic tumor cell vaccine modified
with IL-2 gene ex vivo

Subcutaneous
injection

Relapsed
neuroblastoma Phase I [322]

TNF-α

TNFerade, a replication-deficient
adenoviral vector encoding for TNF-α

under the control of a radiation inducible
promotor (erg-1 gene promotor)

Intratumoral
injection

Various cancer types,
e.g., advanced

pancreatic cancer
Phase III [323,324]

IL-12
Ad–RTS–hIL-12, an adenoviral vector

encoding for IL-12 transgene designed with
a ligand-inducible expression switch

Injection in
the resection cavity

Recurrent high-grade
glioma Phase I [325]

GM-CSF

GVAX, an allogeneic tumor cell vaccine
modified with GM-CSF gene ex vivo,(in
combination with immune checkpoint
inhibitors and/or cyclophosphamide

and Listeria monocytogenes-expressing
mesothelin (CRS-207))

Intradermal injection Advanced pancreatic
cancer

Phase Ib [326]

Phase II [327]

Phase IIb [328]

Phase II [329]

IFN-α Instiladrin® (rAdIFNα2b/Syn3), an IFN-α
encoding adenoviral vector

Intravesical injection BCG unresponsive
bladder cancer

Phase
III—results

pending
(NCT02773849)

[330]

TGF-β (inhibition)
Belagenpneumatucel-L, an allogeneic

tumor cell vaccine altered to express ASO
directed against TGF-β

Intradermal injection Advanced non-small
cell lung cancer

Phase II [331,332]

Phase III [333]
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IL-2 stimulates T-lymphocytes and NK cells, but also controls the duration and intensity of
their activation, regulates immune homeostasis, and balances the Teff/Treg ratio [313,334]. Various
autologous/syngeneic as well as allogeneic IL-2 gene-modified tumor cell vaccines have been
investigated in preclinical and clinical studies for their potential in prophylactic and therapeutic
application for the treatment of advanced and metastatic cancers like melanoma [319–322,335–337].
In vitro transduction of tumor cells with the IL-2 gene was achieved using viral vectors (e.g., retro-viral
or adenoviral) [320,322,336] or by employment of advanced methods like the adenovirus-enhanced
transferrinfection (AVET) system [319,335,337,338]. The toxicity profile of systemic IL-2 gene therapy
can be improved by transcriptional targeting of IL-2 to the tumor to ensure specific expression of
the IL-2 gene within the tumor [339–341].

TNF-α exhibits tumoricidal effects by inducing apoptosis and hemorrhagic necrosis of tumor
cells [323]. GenVec’s TNFerade is a replication-deficient adenoviral vector encoding for TNF-α under
the control of a radiation-inducible promotor [323,324], applied by intratumoral injection. Phase III
clinical trials have been terminated in 2010, as a study in locally advanced pancreatic cancer failed
to show a significantly improved outcome of combination therapy with TNFerade in comparison
to standard therapy alone [342]. Reduced transgene expression may be caused by (pre-existing)
immune responses against the adenoviral vector, mainly mediated by antibodies, limiting the option
of repeated application [343]. Besides viral vectors, non-viral carrier systems for TNF-α delivery are
subject of research as well. Kircheis et al. for example designed surface-shielded transferrin-PEI/DNA
complexes for targeted TNF-α gene delivery after intravenous application in tumor-bearing mice [344].
Significant and selective TNF-α expression within the tumor without detectable serum levels could be
demonstrated in three different tumor models. In a combination approach, Su et al. evaluated to which
extent systemic TNF-α gene therapy synergized with liposomal doxorubicin (Doxil®) to enhance
tumor endothelium permeability, and thus would promote accumulation of the chemotherapeutic
drug within the tumor [345]. Synthetic polymers based on amino ethylene units [346,347] were
used as pDNA carriers. The beneficial effect of TNF-α expression on concomitant Doxil® therapy
was proven in all tested tumor models including metastases [345]. All in all, this combination
approach offers great potential in treating metastases even with low doses of chemotherapeutic drugs.
Quinn et al. achieved synergistic effects on tumor growth inhibition by combining systemic application
of a previously evaluated RGD-targeted adeno-associated virus phage encoding for TNF-α [348,349]
with hypo-fractionated radiation for the therapy of disseminated melanoma [350].

Another interesting candidate for cancer immunotherapy is IL-12 because of its ability to activate
both the innate and the adaptive immune system [351]. In addition, IL-12 has anti-angiogenic
properties by inducing IFN-γ, which in turn inhibits VEGF and MMPs [313,351–354]. In early
clinical trials, however, the anti-tumor activity of systemically applied IL-12 was found to be only
moderate, and was accompanied by severe side effects [351,355]. IFN-γ as induced by IL-12 is
mainly responsible for the dose-related and schedule-dependent toxicity [353,356]. New strategies
focus on targeted and local delivery of IL-12 to minimize systemic toxicity and to improve specific
tumor targeting by conjugating IL-12 to tumor antigen-specific monoclonal antibodies (so-called
immunocytokines) [357,358]. Moreover, various IL-12 gene therapy approaches ex vivo and in vivo
are pursued [359,360]. Different delivery methods comprise viral vectors like adeno- or retroviral
vectors [325,361–366], and non-viral techniques such as electroporation [367–373] or synthetic carrier
systems like (lipo)polymer-DNA complexes and liposomes [374–377]. In order to increase the specificity
of local IL-12 expression within the tumor, an IL-12 transgene with a ligand-inducible expression switch
was designed [325,364]. Another way to locally control in situ expression of IL-12 is to engineer CAR-
T cells, which release IL-12 in an inducible or constitutive manner [378]. Moreover, the IL-12 gene may
be inserted in the genome of oncolytic viruses as an immune stimulatory component (see Section 5.3).

GM-CSF has been investigated as an adjuvant for different types of vaccines because of its
stimulatory effect on myeloid cell types like conventional DC and macrophages [313]. Unfortunately,
GM-CSF activates TAM and MDSC as well, thereby supporting tumor growth. These opposing effects
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are mainly responsible for its only moderate clinical efficacy [316]. Combination therapy is an option to
overcome this issue; e.g., co-treatment with recombinant GM-CSF and immune checkpoint inhibitors
led to prolonged survival of metastatic melanoma patients [379]. An example for a GM-CSF gene-based
approach is the GVAX technology [326–329]. To this end, allogeneic pancreatic tumor cells have been
transfected ex vivo with pDNA encoding GM-CSF. GVAX has been tested in combination with immune
checkpoint inhibitors as well as with tumor vaccines. Moreover, oncolytic viruses often encode inter
alia for GM-CSF (see Section 5.3). GM-CSF is also addressed in strategies to improve the efficacy
and to lower the toxicity of CAR-T cell therapies. However, in contrast to the aforementioned GM-CSF
therapy concepts, here GM-CSF is not substituted, but knocked out for example via CRISPR/Cas9
technology [380].

The CXCL12/CXCR4 (C-X-C motif chemokine 12/C-X-C motif chemokine receptor 4) axis plays
a crucial role in tumorigenesis, metastasis, and chemoresistance [381,382], and therefore is an ideal
target for cancer immunotherapy. However, the toxicity of systemic anti-CXCL12 therapy approaches
using small CXCR4 inhibitors like AMD3100 [383] and monoclonal antibodies targeting CXCL12 [384]
is a serious issue. Transient and locally restricted expression of antibody-like trap proteins that bind
and neutralize CXCL12 constitutes an option to increase systemic tolerability [385,386]. For this
purpose, NPs are used for target site-selective delivery of pCXCL12-trap encoding pDNA [18], such as
lipid NPs/liposomes [385–387].

VEGF is crucial for neoangiogenesis, which is essential for tumor progression and metastasis [388].
Moreover, VEGF contributes to immunosuppression within the TME [389]. Accordingly, several
anti-VEGF therapeutics have already been clinically approved, and many pre-/clinical trials are
currently carried out evaluating the VEGF trap protein aflibercept [390,391] or monoclonal antibodies
that target either VEGF itself (bevacizumab) [392,393] and its receptor VEGFR (ramucirumab) [394] in
combination with classical chemotherapeutics or immune checkpoint inhibitors [389,395]. Another
potent strategy is RNAi aimed to knock-down VEGF or VEGFR, which showed good anti-tumor
results in many preclinical studies. In this regard, CPPs [396–399], polymers like PEI [400–403] or
chitosan [404], cationic liposomes [405,406], gold [407], and graphene oxide NPs [408], often modified
with shielding and targeting units, have been used as delivery systems.

TGF-β exhibits manifold functions regarding cell proliferation, differentiation, migration,
and apoptosis [409–411]. In the context of cancer progression, an overexpression of TGF-β has
been observed within the TME, promoting EMT, immunosuppression, and metastasis. However, these
tumor-promoting effects of TGF-β occur only in late-stage tumors, while in early stages its anti-tumor
activity is more pronounced. Thus, anti-TGF-β therapy approaches aim to treat advanced cancers.
A lot of preclinical and clinical research has been performed in the field of nucleic acid-based strategies
ranging from siRNA [412] over miRNA [413–415] to antisense oligonucleotides (ASO) [416–421].
Belagenpneumatucel-L is an anti-TGF-β allogeneic tumor cell vaccine, based on non-small cell lung
cancer cells genetically engineered to express ASO directed against TGF-β [331–333]. In a phase III
clinical trial, however, no significant increase in the mean overall survival was achieved compared to
placebo treatment, but e.g., prior treatment with radiation therapy was found to have a positive effect
on therapeutic outcome [333]. Therefore, further investigation in clinical trials is necessary.

In addition to the mediators discussed above, many others can be addressed in immunotherapeutic
approaches as well [313,316]. For example, intramuscular IL-27 and intratumoral IFN-α gene delivery
via viral vectors promoted Treg depletion in the TME [422–424]. This is favorable in view of the efficacy
of cancer immunotherapy [425,426], suggesting that both approaches are valuable as adjuvant
therapies. Moreover, IFN-α showed strong anti-proliferative, anti-angiogenic, and immunomodulatory
activity [427,428]. An IFN-α encoding adenoviral vector (rAdIFNα2b/Syn3, Instiladrin®) has been
investigated in advanced clinical trials for intravesical treatment of BCG (Bacillus Calmette–Guerin)
unresponsive bladder cancer [330]. Results of a phase III clinical trial that has been completed in 2018
are still pending (NCT02773849).
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5.2. Nucleic Acid-Mediated Immune Checkpoint Inhibition and T Cell Stimulation

Immune checkpoints regulate the intensity and the duration of immune responses [429,430].
By this, self-tolerance is preserved, and hence tissue damage is minimized. Tumors often abuse such
pathways in order to create an immunosuppressive surrounding, e.g., by anergizing tumor-reactive
Teff. Consequently, blockade of immune checkpoints presents a very promising method to restore
immunity against the tumor and the TME. Among these CTLA-4 and PD-1 are the best characterized
receptors [431,432]. Intensive research led to therapy concepts of immune checkpoint inhibition, which
revolutionized treatment especially of advanced cancers [433]. Up to now, several antibodies addressing
CTLA-4, PD-1, and its ligand PD-L1 have been implemented in cancer therapy regimens [25,26].
However, response rates are quite low, and relapse often occurs due to resistance development [434–438].
Moreover, immune checkpoint blockade is effective only if the number of tumor-reactive Teff is high
enough at the beginning of treatment [434,439–442]. In this regard, the T cell number in a patient can be
increased by ex vivo expansion of TIL that are subsequently reinfused, or by prior treatment with tumor
vaccines [438]. Combinations of different immune checkpoint inhibitors as well as their combination
with other (immuno)therapeutic approaches aim to overcome the resistance mechanisms [436,437,442].

Other major issues of checkpoint inhibitor therapy are immune-related adverse effects
and toxicity [443,444]. Systemic toxicity can be reduced by targeted delivery of checkpoint inhibitors
using NPs and by nucleic acid-based approaches [442]. Concerning the latter, mRNA encoding for
an anti-CTLA-4 antibody [445], pDNA encoding for PD-L1 traps [386,446,447], siRNA specific for
PD-L1 [448–452], and CRISPR/Cas9-mediated knock-out of the PD-1 gene in CAR-T cells [453,454]
have been tested so far (Figure 3).

Figure 3. Immune checkpoint inhibition mediated by nucleic acid-based strategies. (a) Besides
recognition of major histocompatibility complex (MHC)-bound antigen on the surface of APC via
TCR, co-stimulatory signals—inter alia interaction of CD80 (B7-1) and CD28—are required for full T
cell activation. The duration and intensity of activation is regulated among other things by immune
checkpoint CTLA-4 that binds with high affinity to CD80. Blocking of this interaction results in
enhanced T cell activity. One therapeutic option is delivery of mRNA encoding for anti-CTLA-4
antibodies. (b) Tumor cells often upregulate PD-L1 that binds to PD-1 on effector T cells, thereby
inhibiting the activity of effector T cells. Nucleic acid-based approaches for blocking this immune
checkpoint comprise siRNA against PD-L1, pDNA encoding for PD-L1 trap proteins (pPD-L1-trap),
and CRISPR/Cas9-mediated knock-down of PD-1 gene.
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For example, Pruitt et al. electroporated DC ex vivo with mRNA encoding heavy and light chains
of blocking antibodies specific for CTLA-4 and glucocorticoid-induced TNFR-related protein [445],
which are expressed by Treg at high level [455]. Transfected DC were co-administrated with tumor
antigen-transfected DC via subcutaneous injection into B16/F10.9 melanoma bearing C57BL/6 mice [445].
Based on the encouraging results, a phase I clinical trial for treatment of metastatic melanoma has been
initiated (NCT01216436).

Transient local expression of PD-L1 trap was pursued by Huang and co-workers [447]. For this
purpose, pDNA encoding for PD-L1 trap fusion protein was loaded into lipid-protamine-DNA NPs,
consisting of a DNA-protamine core within pre-formed DOTAP-cholesterol liposomes. These were
optionally equipped with 1,2-distearoylphosphatidylethanolamine (DSPE)-PEG or DSPE-PEG-AEAA
for shielding and targeting. These nano formulations were applied intravenously in combination with
intraperitoneally administered oxaliplatin, a chemotherapeutic drug inducing immunogenic cell death
and thereby activating DC. By this approach, synergistic effects on tumor inhibition were achieved in
a colorectal cancer mouse model.

A further combination approach was conducted by Zhou et al. by combined administration of
doxorubicin and of PD-L1-specific siRNA delivered by stimuli-responsive NPs in a B16 melanoma
tumor model [452]. These NPs were dually sensitive towards the extracellular slightly acidic pH of
tumor cells (pH-triggered detachment of the PEG layer) and their elevated intracellular redox potential
(reduction-sensitive polymer core of poly-L-lysine–lipoic acid). This combination therapy was superior
to either monotherapy in terms of specificity, efficacy, and tolerability, proving once more the advantage
of targeted combination therapies.

5.3. Multi-Faceted Combat of Cancer by Oncolytic Virotherapy

Oncolytic viruses may constitute the next breakthrough in cancer immunotherapy [456]. They
comprise DNA and RNA viruses, which can be wild-type (e.g., coxsackie virus, reovirus) or genetically
modified (e.g., herpes simplex virus (HSV), adenovirus, vaccinia virus) [457]. Oncolytic viruses
selectively replicate in tumor tissue while destroying it [14,458–460]. Moreover, they exhibit
an immunostimulatory function. Infection and lysis of tumor cells lead to the release of ROS
and proinflammatory cytokines as well as danger-associated molecular patterns and intracellular
tumor antigens, stimulating both the innate and the adaptive immune system [460]. By this, even
immunological memory can be induced, resulting in long-lasting anti-tumor effects [14,461].

In 1991, Martuza et al. succeeded in producing the first genetically modified HSV-1 characterized
by a mutation in the thymidine kinase (TK) gene to ensure selective replication only in tumor
cells [462]. This pioneer work opened a new way for cancer treatment. The first clinical trial with
an oncolytic virus started in mid-1990 [463], followed quickly by many others [464]. However,
the clinical efficacy fell short of the expectations, but safety and synergism with standard cancer
treatments could be demonstrated [464]. Subsequent generations of oncolytic viruses have been
developed by genetic engineering to enhance selectivity and efficiency while maintaining or even
improving safety [457,459,465,466] (Figure 4). Tumor selectivity can be enhanced at several levels
(transduction, transcription, translation, post-translation) as well as via oncogenic targeting or insertion
of miRNA targeting sequences [465,467]. Oncolytic and immunogenic efficacy can be increased by
insertion of certain transgenes encoding (i) enzymes that convert pro-drugs to cytotoxic products
(e.g., HSV-TK or cytosine deaminase), (ii) immunostimulatory cytokines (e.g., GM-CSF or IL-12),
or (iii) TME/ECM-modifying peptides and enzymes (e.g., MMP-9 or the anti-angiogenic peptide
angiostatin) [468]. Safety can be ensured by mutations in pathogenic and virulence genes as well as in
genes required for viral replication in normal cells [457,468].
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Figure 4. Genetic modifications to enhance selectivity, safety, and efficacy of oncolytic virotherapies.

Nowadays, a large repertoire of oncolytic viruses is available and oncolytic virotherapy has been
intensively investigated in numerous preclinical and clinical studies, also in combination with other
cancer therapies like chemotherapy, radiation therapy, or other immunotherapies [456–460,469,470].
Table 2 displays approved oncolytic virotherapies and those that have been or are currently tested in
clinical trials.

Table 2. Examples of oncolytic virotherapies approved or in clinical trials.

Oncolytic Virus Genetic Modification Treated Cancer Clinical State Reference

Wild-Type Virus

RIGVIR® (wild-type
ECHO-7; (+)ssRNA virus)

– Melanoma Approved in Lativa in 2004 [471]

Reolysin® (pelareorep, type
3 Dearing (T3D) strain
reovirus; dsRNA virus)

–

Many advanced
malignancies (e.g.,

melanoma, sarcomas,
non-small cell lung cancer,

pancreatic adenocarcinoma)

Phase I and II [457,472,473]

Advanced, metastatic head
and neck cancer Phase III [472]

Oncolytic Adenovirus (dsDNA virus)

Oncorine® (rAdV H101)
Deletion in E1B-55K

and E3 genes Nasopharyngeal carcinoma Approved in China in 2005 [474,475]

CG0070 (AdV-5) Deletion in E3 gene;
insertion of GM-CSF gene

Non-muscle-invasive
bladder cancer

Phase II/III (BOND,
NCT01438112); phase II
(BOND2, NCT02365818)

[456,476]

Oncolytic Herpes Simplex Virus, HSV-1 (dsDNA virus)

T-Vec (talminogene
laherparepvec)

Deletion in ICP34.5
and ICP47 genes; insertion

of GM-CSF gene
Advanced melanoma Approved by FDA and EMA

in 2015 [477,478]

M032 Deletion in ICP34.5 gene;
insertion of IL-12 gene Glioblastoma multiforme Phase I [479]

G47∆
Deletion in ICP34.5, ICP47

and ICP6 genes; insertion of
GM-CSF gene

Recurrent glioblastoma,
castration resistant prostate
cancer, recurrent olfactory

neuroblastoma

Clinical trials in Japan [456,480,481]

Oncolytic Vaccinia Virus (dsDNA virus)

Pexa-Vec (JX-594,
pexastimogene
devacirepvec)

Mutation in TK gene;
insertion of GM-CSF gene

Advanced hepatocellular
carcinoma

Phase III (in combination
with sorafenib) [482]

RIGVIR® was the first oncolytic virus being approved for therapy of melanoma in Latvia in
2004 [471]. This oncolytic virus, enteric cytopathogenic human orphan (ECHO)-7, is a wild-type virus.
In 2005, the first genetically modified oncolytic virus (Oncorine®, a recombinant oncolytic adenovirus
H101) was approved in China for the treatment of nasopharyngeal carcinoma [474,475]. Ten years
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later, T-Vec (talminogene laherparepvec) achieved approval by the FDA and the European Medicines
Agency (EMA) for treatment of advanced melanoma [477,478]. This oncolytic virus is derived from
HSV-1 and was genetically modified to mitigate pathogenicity as well as to increase tumor-selective
replication and lysis [478]. In addition, T-Vec expresses GM-CSF to enhance anti-tumor immunity.

Saha et al. conducted a preclinical study with a triple-mutated third generation oncolytic HSV-1
vector (G47∆-mIL12), in which the murine IL-12 gene was inserted [483]. This oncolytic virus was
applied intratumorally, in combination with systemically applied immune checkpoint inhibitors. Only
the triple combination of G47∆-mIL12, anti-CTLA-4, and anti-PD-1 antibodies successfully cured
glioblastoma in an immune-competent glioblastoma mouse model.

Other oncolytic DNA viruses that are frequently used are genetically engineered adenovirus
and vaccinia viruses [484,485]. CG0070, an oncolytic adenovirus type 5 with an inserted GM-CSF gene,
is currently investigated in advanced clinical trials for treatment of non-muscle invasive bladder cancer
(BOND, NCT01438112; BOND2, NCT02365818) [456]. The BOND study (phase II/III clinical trial)
demonstrated that intravesically applied CG0070 evoked a durable response in a subset of high-risk
patients and was well tolerated [476]. An example for an oncolytic vaccinia virus in clinical studies is
pexastimogene devacirepvec (Pexa-Vec, JX-594), which bears a mutation in the TK gene for cancer cell
targeting and an inserted GM-CSF gene to enhance immune stimulation [456,482,486–488]. In a phase
III clinical trial, Pexa-Vec is currently evaluated in combination with the multi tyrosine kinase inhibitor
sorafenib in patients with advanced hepatocellular carcinoma without prior systemic therapy [482].

Reolysin® (pelareorep) is a wild-type oncolytic RNA virus (type 3 Dearing (T3D) strain
reovirus) [457,489], which is extensively studied in clinical trials [456,472]. In phase II and III
clinical trials, Reolysin® showed encouraging clinical efficacy, especially in combination with
chemotherapeutics (e.g., carboplatin and paclitaxel) in patients with advanced malignancies [472,473].

Despite rapid progress in oncolytic virotherapy and encouraging results in clinical trials, there
are still some obstacles [457]. One shortcoming is the small genomic capacity of some oncolytic
viruses [460]. Moreover, deletion of pathogenic genes to reduce toxicity might also reduce oncolytic
activity [490]. Efficacy may be enhanced for instance by insertion of transgenes or combination with
other therapies. In case of the latter, optimal therapy regimens and schedules have to be evaluated in
terms of dosage, application routes, and timing [457]. Therefore, further investigations in clinical trials
are needed.

5.4. Nucleic Acid-Based TLR Agonists to Boost Anti-Tumor Immune Response

PAMPs and other danger signals are recognized by the innate immune system via pattern
recognition receptors such as TLRs [491,492]. Subsequently, pro-inflammatory pathways and the innate
immune system are activated to eradicate pathogens. The anti-tumor immune response can be
augmented by mimicking PAMPs. Monophosphoryl lipid A, a modified lipopolysaccharide derivative
that triggers TLR4, is used as the adjuvant component in the prophylactic cervix cancer vaccine
Cervarix® [493]. The successful application of this TLR ligand also reinforced further research
in immunostimulatory nucleic acids like double-stranded RNA (dsRNA) or single-stranded DNA
(ssDNA) for cancer immunotherapy.

Poly(I:C) is an artificial dsRNA analog that acts as a potent TLR3 agonist [491,494]. Besides
enhancement of the anti-tumor immune response, mainly by induction of IFN type I and chemokines
especially in immune cells, poly(I:C) also directly induces apoptosis in cancer cells [495–497].
However, early clinical trials conducted in the 1970s using poly(I:C) for cancer treatment did not
prove any clinical benefit [491,498–500], most likely because of its fast degradation prior to cellular
uptake [501,502]. Consequently, a stabilized version of poly(I:C), polyriboinosinic:polyribocytidylic
acid-polylysine carboxymethylcellulose (poly-ICLC, Hiltonol®), has been developed [502,503].
However, toxicity was a big issue in early rounds of clinical testing, which could be reduced by
administration of lower intravenous doses and by local application [491]. Nowadays, poly-ICLC is
intensively evaluated in phase I and II clinical trials, especially in combination with cancer vaccines
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and radiotherapy [491,492,495,504,505]. Another concept to increase the stability and to improve
the toxicity profile of TLR3 agonists is the employment of particulate formulations [506]. Shir et al.
designed poly(I:C) polyplexes using a polymer conjugate consisting of branched PEI, PEG, EGF
for EGFR-targeting, and lytic melittin for improved endosomal escape [507,508]. Complete tumor
elimination could be achieved via intratumoral application in three different tumor mouse models
(glioblastoma, breast cancer, adenocarcinoma) [507], and in a disseminated EGFR overexpressing
tumor mouse model [508]. In the latter study, polyplexes were administered intravenously, followed by
intraperitoneal injection of peripheral blood mononuclear cells into tumor bearing immune-deficient
SCID mice. Tumor-targeted poly(I:C) mediated induction of chemokines and inflammatory cytokines
selectively within the tumor tissue. This led to tumor homing of the injected immune cells as well
as a strong anti-tumor and bystander killing effect. The latter might be advantageous in view of
the heterogeneous tumor tissue. In this study, complete curation was achieved without adverse side
effects [508]. Schaffert et al. optimized the nano-carrier by using linear instead of branched PEI [509].
The improved carrier was effective even without the lytic melittin unit. In a follow-up study, GE11
peptide was used for EGFR targeting [510]. In contrast to EGF, GE11 does not activate EGFR, and thus
mitogenic activity of the tumor cells should be much lower. This could be an advantage in terms
of clinical use. Other types of poly(I:C) polyplexes were formulated by Lächelt et al. [511] using
sequence-defined oligo(ethanamino)amides modified with PEG and the anti-folate drug methotrexate
(MTX) with varying degrees of polyglutamylation. MTX exhibits dual function by serving as ligand
targeting the folate receptor and by exerting cytotoxic effects in the cytosol. The extent of polyplex
uptake as well as MTX and poly(I:C) toxicities correlated with increasing amounts of glutamic acid.
A synergism of the combined cytotoxic agents was observed.

CpG ODNs are another class of TLR agonists that imitate bacterial/viral genomic sequences, and are
recognized by TLR9 trough their unmethylated cytosine-guanine dinucleotide motif [87,512–514].
TLR9 signaling results in the secretion of pro-inflammatory cytokines and the activation of APC
and CTL. To improve the in vivo stability of CpG ODNs in most cases the phosphodiester backbone is
replaced (at least in part) by a nuclease-resistant phosphorothioate backbone [513,515]. Encouraging
results in preclinical studies led to a series of clinical trials in the mid-2000s, testing CpG ODNs alone, in
combination with cancer vaccines, or with chemo- and radiotherapy [18,514,515]. However, the clinical
outcome fell far short of the hopes and expectations, especially in case of CpG ODN monotherapies,
but safety and good tolerability were proven. Subsequent studies showed that TLR9 signaling was
negatively influenced at several levels by the immunosuppressive TME [514]. Consequently, CpG
ODNs in combination with immune checkpoint inhibitors are currently evaluated in phase I and II
clinical trials for treatment of advanced solid tumors like metastatic melanoma [514]. Another dual
immunotherapy strategy are conjugates of CpG ODN and either STAT3 siRNA or a STAT3 decoy
ODN, respectively [514,516], as STAT3 is an oncogenic transcription factor that interferes with TLR9
signaling. Furthermore, NPs that deliver CpG ODN are under intensive investigation in several
preclinical and also some clinical studies [513]. The goal of all these NP-based approaches is to
enhance the therapeutic efficacy of CpG ODNs by increasing their stability and protection against
nucleases as well as to improve the uptake of CpG ODNs by target cells. In addition, NPs allow
to use phosphodiesters instead of the commonly used phosphorothioate backbone [513]. This may
improve safety, as phosphorothioates are known to cause various adverse effects, especially in case of
systemic application at higher doses [513,514]. By now, several types of NPs have been evaluated for
CpG ODN delivery [18,513]. Preclinical studies are conducted inter alia with polymeric NPs formed
with polymers like poly(lactic-co-glycolic acid) or PEI [517,518], liposomal formulations [519–521],
carbon nanotubes [522,523], gold [524,525], and silica mesoporous NPs [526], as well as DNA-based
carriers [527,528]. Near-infrared light responsive nanomaterials like copper sulfide, graphene oxide,
or gold nanorods can be used for photothermal enhancing of CpG ODN immunogenicity [529–531].
Besides these preclinical studies, CpG ODN-loaded virus-like particles are already investigated
in a phase I/II clinical trial [532]. Furthermore, CpG ODNs can also be conjugated with antigen
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(peptide/protein) or human immunodeficiency virus-derived Tat-peptide [533,534]. Self-assembled
CpG ODNs like MGN1703 are another example, already tested in phase I and II clinical trials, for
treatment of e.g., metastatic colorectal carcinomas [535–537].

5.5. Tumor Suppression by RNA Interference

The discovery of RNAi in 1998 [538] led to a better understanding of gene regulation
mechanisms [103]. RNAi in humans and animals is mediated by miRNA [539] (Figure 2). miRNAs
influence many cellular functions like proliferation, differentiation, apoptosis, oncogenesis, and drug
sensitivity [540–543]. Dysregulated miRNA expression is associated with the development and progress
of various diseases [539,543,544]. Calin et al. were the first to report involvement of miRNA in cancer
progression [545]. miRNAs can be used as diagnostic and prognostic biomarkers [546]. For cancer
therapy, oncogenic miRNAs can be blocked by antisense molecules (antagomirs), while attenuated levels
of tumor suppressor miRNAs can be substituted by pre-miRNAs or miRNA mimics [539,543,547,548].

The major challenge in clinical translation of miRNA therapeutics is to ensure their efficient,
specific, and safe delivery to the tumor [539,543,546,549]. Chemical modifications can increase
resistance of RNA to enzymatic degradation by nucleases. Examples for such structural alterations are
modifications of the ribose 2′-OH group, the use of phosphorothioate instead of phosphodiester bonds,
peptide nucleic acids, locked nucleic acids as well as conjugation with other moieties (e.g., cholesterol,
antibodies, or membrane translocation peptides) [103,539,550–552].

For example, Cheng et al. conjugated peptide nucleic acid-based anti-miR-155 to a pH-sensitive
membrane translocation peptide via a disulfide link [103,552]. In the acidic tumor tissue,
the conformational change in this peptide promoted internalization of the antagomir, which was
released intracellularly upon disulfide cleavage due to increased glutathione levels. In a lymphoma
model, cell targeting, a significant inhibition of lymphoma proliferation as well as a good tolerability
were demonstrated. It is also worth noting that the neutral charge of the peptide nucleic acid was
decisive for success.

Viral as well as non-viral delivery systems such as liposomal or polymeric NPs are under
investigation to prevent degradation of miRNA and to promote their targeted delivery [539,546,551].
Loss of miR-200c expression is known to promote tumorigenic processes like tumor cell
proliferation, EMT, migration, and chemoresistance [539,553–558]. Müller et al. tested a cationic
oligo(ethanamino)amide structure with T-shape topology, terminal cysteines, and a dioleyl motif,
post-functionalized with PEG-GE11 for shielding and EGFR targeting for delivery of a mimic of
the tumor suppressor miR-200c [559]. In two different human tumor cell lines, these EGFR-targeting
miRNA polyplexes conferred selective, enhanced delivery of miRNA-200c, leading to various
anti-tumor effects, including decreased tumor cell proliferation and migration, and enhanced sensitivity
towards doxorubicin.

Altogether, miRNA therapeutics hold great potential for efficient and safe cancer treatment,
especially as multi-functional nano formulations, paving the way towards clinical translation.
A liposomal formulation of miR-34a mimic (MRX34) for treatment of patients with advanced solid
tumors was the first miRNA therapeutic entering phase I clinical studies in 2013, but was accompanied
by severe immune-mediated adverse effects (NCT01829971) [560,561]. Nevertheless, the observed
dose-dependent modulation of relevant target gene expression provided a proof-of-concept for
miRNA-based cancer therapy [561]. This raises hope that miRNA therapeutics will make the leap
towards clinical application. Therefore, further optimization of cargo and delivery systems to improve
clinical efficacy and toxicity profiles is necessary.

6. Conclusions

Until a few years ago, nucleic acid-based immunotherapeutics have proven successful in preclinical
studies, but largely fell short of expectations when evaluated for therapeutic efficacy in clinical
trials [57,61]. One major limit has been the lack of appropriate delivery systems required to prevent
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degradation of pDNA/mRNA, and to enable cell type-specific delivery [125,126]. Insofar, it is not
surprising that by now virus-based gene therapies including oncolytic viruses [471,474,475,477,478],
and cell-based immunotherapeutics, namely CAR-T cell therapies [28,277,562–564], demonstrated
more successful for tumor therapy, and have been approved for clinical treatment. However, in the last
years, the development of biocompatible, cell targeting NPs, especially of liposomal carriers [565],
has strongly improved the efficacy of e.g., mRNA-based anti-tumor vaccines [71,72]. Additionally,
in case of CAR-T as an ex vivo gene therapy approach non-viral delivery is currently tested [566].
These developments, in combination with structural improvements in particular of gene encoding
pDNA [567], and the proper choice of individual tumor-specific neoantigens for individualized
vaccination [79], are important factors to overcome the low therapeutic efficacy of most nucleic acid
immunotherapeutics tested so far. Furthermore, as numerous clinical trials have repetitively shown,
nucleic acid-based therapeutics were more efficient when co-applied with agents that act on other
levels like immune checkpoint inhibitors [70,79] or chemotherapeutics [474], and radiotherapy [568].
Moreover, first preclinical studies have shown that also different kinds of nucleic acids that act
on distinct levels of cancer treatment may be combined to yield synergistic effects. For example,
co-administration of the adjuvant poly(I:C) enhanced the anti-tumor efficacy of CAR-T cells [569].
Similarly, co-application of an oncolytic adenovirus and of CAR-T cells improved anti-tumor responses
as compared to monotherapy [570].

Altogether, ongoing developments indicate that nucleic acid-based therapeutics will become
essential tools for successful tumor therapy as part of combination therapies, comprising the induction
of tumor antigen-specific immune reactions [79], the enhancement of anti-tumor responses [514],
the inhibition or reprograming of regulatory immune cells [256], the generation of tumor killing
immune cells (CAR) [284], and direct killing of tumor cells [482]. The versatility of nucleic acids as
a therapeutic mean is underscored by the fact that these can exert either of the aforementioned functions
by serving as gene expression units in pDNA/mRNA vaccines, conferring RNAi (siRNA, miRNA),
and adjuvant activity (e.g., CpG ODN), and can be easily produced under GMP conditions [571].
Therefore, it is conceivable that in the future nucleic acid-based therapeutics that act on different
levels of cancer treatment will be part of combination therapies involving either also conventional
therapeutics or distinct types of nucleic acids.
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macrophage; TCR: T cell receptor; Teff: effector T cell; TGF-β: transforming growth factor beta; Th: T helper cell;
TIL: tumor-infiltrating lymphocyte; TK: thymidine kinase; TLR: toll-like receptor; TNF-α: tumor necrosis factor
alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; Treg: regulatory T cell; iTreg: induced Treg;
tTreg: thymic Treg; VEGF: vascular endothelial growth factor; VEGFR: VEGF receptor; WT1: Wilms’ tumor 1.
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