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Bone-related diseases seriously affect the lives of patients and carry a heavy economic
burden on society. Treatment methods cannot meet the diverse clinical needs of affected
patients. Exosomes participate in the occurrence and development of many diseases
through intercellular communication, including bone-related diseases. Studies have shown
that exosomes can take-up and “package” non-coding RNAs and “deliver” them to
recipient cells, thereby regulating the function of recipient cells. The exosomal non-coding
RNAs secreted by osteoblasts, osteoclasts, chondrocytes, and other cells are involved in
the regulation of bone-related diseases by inhibiting osteoclasts, enhancing chondrocyte
activity and promoting angiogenesis. Here, we summarize the role and therapeutic
potential of exosomal non-coding RNAs in the bone-related diseases osteoporosis,
osteoarthritis, and bone-fracture healing, and discuss the clinical application of
exosomes in patients with bone-related diseases.

Keywords: bone-related diseases, exosomes, non-coding RNAs, osteoporosis, osteoarthritis

INTRODUCTION

Bone is one of the most complex tissues in mammals. It undergoes continuous shaping, remodeling
and repair throughout its life cycle to protect vital organs and provide rigid support for the entire
body (Long and Ornitz, 2013; Riddle and Clemens, 2017). Bone-related diseases are global health
problems that seriously affect the quality of life of patients, and include osteoporosis (OP),
osteoarthritis (OA), and fracture, etc. (Manolagas, 2013; Liu et al., 2015b). With the aging of the
population becoming serious, it is estimated that the global OP and OA patients have reached 200
million and 250 million, respectively (Vos et al., 2012; Weaver et al., 2016).

Bone homeostasis is maintained in two main parts: osteoblast-mediated bone formation and
osteoclast-mediated bone resorption. In addition, bone-marrow adipocytes, stromal cells, and
osteocytes in the bone microenvironment contribute to the maintenance of bone homeostasis
(Lems and Raterman, 2017; Chawalitpong et al., 2018; Zhao et al., 2018). Bone homeostasis also
gradually declines with aging during bone remodeling. Enhanced bone resorption or weakened bone
formation can lead to disruption of bone homeostasis, which can result in severe bone loss and
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osteoporotic fractures in older and postmenopausal women
(Matsuo and Irie, 2008; Cao, 2011). The moieties involved in
osteoblast-mediated bone formation and osteoclast-mediated
bone resorption are signaling proteins, and they maintain
bone homeostasis. To ensure the integrity and versatility of
bones, bone remodeling occurs throughout life (Zhao et al.,
2006; Suchacki et al., 2017). It has also been proposed that
osteocytes have essential roles in bone remodeling because
they affect the activities of osteoblasts and osteoclasts (Tatsumi
et al., 2007).

Exosomes are membrane-bound extracellular vesicles
produced in the endosomal compartment of most eukaryotic
cells. Exosomes have been shown to be important vehicles for
communication between bone cells that maintain bone
homeostasis (Kalluri, 2016). Recent studies have demonstrated
that exosomes secreted by bone marrow mesenchymal stem cells
(BMSCs), osteoclasts, and osteoblasts are involved in the
regulation of bone metabolism. Osteoblast activity is inhibited
by exosomes secreted by osteoclasts, thereby inhibiting the bone
formation-activity of osteoblasts (Li et al., 2016; Sun et al., 2016).
However, the promotion of osteoblast differentiation is regulated
through exosomes secreted by osteoblasts and BMSCs (Cui et al.,
2016; Xu and Wang, 2017).

Exosomes contain various biologically active molecules, which
can be delivered to target cells through ligand–receptor
interactions, endocytosis, direct membrane fusion, or
conduction of signaling pathways (Kalamvoki et al., 2014). In
particular, non-coding RNAs (ncRNAs) are present in exosomes.
Research of exosomal ncRNAs in breast cancer (Naseri et al.,
2018), neurologic diseases (Xin et al., 2012), nephropathy (Wang
et al., 2019), and other diseases has attracted considerable

attention. Different exosomal ncRNAs have different
mechanisms in bone-related diseases (Figure 1). They play a
vital part in bone remodeling and have an indispensable role in
bone-related diseases.

The purpose of this review is to demonstrate the role of
exosomal non-coding RNAs in bone-related diseases and
discuss its potential clinical applications. With a view to
providing new research directions and ideas for bone-related
diseases in the aging process.

FUNCTIONS AND CONTENTS OF
EXOSOMES

Exosomes were discovered ∼40 years ago. Their diameter is, in
general, between 40 and 150 nm (Pan and Johnstone, 1983; Zhou
et al., 2017). Formation of early endosomes is by invagination.
Then, under the regulation of endosomal transport complexes
and some related proteins, these early endosomes “sprout” and
form multivesicular bodies. The latter can release vesicles after
fusion with the plasma membrane, and exosomes are formed
(Simons and Raposo, 2009; Soekmadji et al., 2013).

An increasing number of cells have been shown to secrete
exosomes: MSCs, lymphocytes and macrophages (van Niel et al.,
2001; Bourdonnay et al., 2015; Guay et al., 2019). Exosomes
mediate intracellular communication through biologically active
molecules such as, proteins, long non-coding (lnc)RNAs and
microRNAs (miRNAs) that they contain (Thery et al., 2002;
Kowal et al., 2014). Exosomes have been studied extensively in the
last decade due to their multiple functions in various
physiological processes and diseases. Exosomes can participate

FIGURE 1 | Possible mechanism of action of three exosomal non-coding RNAs (schematic). Different exosomal non-coding RNAs (miRNA, lncRNA, and circRNA)
regulate the fate and differentiation of target cells through different mechanisms, thereby affecting disease progression.
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directly in signal transmission between cells, which is one of the
most important factors in paracrine regulation (Dai et al., 2019).

After donor cells secrete exosomes into the extracellular
matrix (ECM), exosomes will be recognized and internalized
by recipient cells; then exosomes release their contents into
recipient cells to regulate cell function (Kalluri and LeBleu,
2020) (Figure 2). Due to their small size, stable structure, low
toxicity, and other characteristics, exosomes are being employed
increasingly as “nano-medicine carriers” for tissue regeneration
and disease treatment (El-Andaloussi et al., 2012; Batrakova and
Kim, 2015; Yang et al., 2019a). In general, the separation method
is selected based on the experimental principle and source of
exosomes. Ultracentrifugation is used as the “gold standard” for
separation and purification of exosomes, among which density
gradient ultracentrifugation is the best method. The advantages
are simple pretreatment, non-requirement of specialist
knowledge, and economic affordability (Li et al., 2017). The
exosomes prepared by size-exclusion chromatography have
high purity, which can preserve the integrity of vesicles and
prevent exosome aggregation (Patel et al., 2019).
Immunoaffinity isolation, field-flow fractionation, and
precipitation are also used in the isolation and extraction of
exosomes (Kang et al., 2017; Gurunathan et al., 2019; Zhang and
Lyden, 2019).

CLASSIFICATION AND FUNCTION OF
NCRNAS

Mammalian cellular RNAs have been studied for decades
(Morris and Mattick, 2014). Advances in sequencing
technology have led to the discovery of many ncRNAs. The

latter include circular RNAs (circRNAs), miRNAs, lncRNAs,
and transfer RNAs (tRNAs) (Sharp, 2009; Ling et al., 2013; St
Laurent et al., 2015; Ebbesen et al., 2016). According to the
difference in length, ncRNAs can be divided into small
ncRNAs and lncRNAs (Knowling and Morris, 2011). Only
∼2% of the human genome is transcribed into proteins, most
of the remainder are transcribed into ncRNAs of different
sizes and functions, so a large class of RNAs does not code for
proteins (Iyer et al., 2015; Gupta and Thum, 2016). ncRNAs
participate in several biological processes, including
regulating gene expression at the transcriptional level and
directing genome rearrangement or DNA synthesis (Cech and
Steitz, 2014). The lncRNAs associated with chromatin
modification have been described recently. Small RNAs
transcribed from promoter regions and bidirectional
promoters produce ncRNAs of different sizes (Khalil et al.,
2009; Neil et al., 2009; Taft et al., 2009). Under certain
conditions, miRNAs expression can be used to accurately
identify the origin of poorly differentiated tumors
compared with that using protein-encoded messenger (m)
RNAs, so ncRNAs could be “ideal” diagnostic markers
(Rosenfeld et al., 2008). Besides, studies have shown that
∼200 miRNAs have been characterized sufficiently to
enable classification of cancer types. Also, spectral analyses
of miRNAs seem to overcome some of the difficulties of early
detection associated with colon cancer and other occult
cancers (Lu et al., 2005; Aslam et al., 2009; Cortez and
Calin, 2009). Such large numbers of ncRNAs with diverse
mechanisms constitute a huge and efficient gene-regulatory
network, which is involved in many physiological and
pathological processes (Ulitsky and Bartel, 2013; Zhang
et al., 2019b; Wu et al., 2020).

FIGURE 2 | Exosome formation and cargo release (schematic). As the endocardium of the early endosome forms a vesicle into the inner bud, an exosome begins to
form and then transform into multivesicular bodies. The latter can release vesicles after fusion with the plasma membrane, and are then known as “exosomes.”
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ROLES OF NCRNAS IN BONE-RELATED
DISEASES
Roles of ExosomalmiRNAs in Bone-Related
Diseases
miRNAs are small coding RNAs derived from a hairpin or
double-stranded RNA precursor of length ∼22 nucleotides.
miRNAs are generated from introns and exons of protein-
encoded and non-coding transcripts by RNA polymerase II
(Lee et al., 2003; Landthaler et al., 2004; Mattick and
Makunin, 2005). miRNAs are involved in regulating the
proliferation, differentiation, and apoptosis of cells, as well
as embryonic development (Ambros, 2003; Giraldez et al.,
2005; Hatfield et al., 2005; Naguibneva et al., 2006; Plasterk,
2006; Lee et al., 2015). Several studies have demonstrated
miRNAs to be involved in the regulation of osteoclasts and
osteoblasts. For example, inhibiting miR-31 expression
blunts osteoclast formation and bone resorption
(Mizoguchi et al., 2013). Besides, miR-140-3p can
regulate osteoblast differentiation by targeting the
transforming growth factor (TGF)β3 signaling pathway
(Fushimi et al., 2018). Exosomal miRNAs from different
cells have also been studied extensively in bone-related
diseases (Figure 3).

Roles of Exosomal miRNAs in OP
OP is characterized by fragile bones and an increased risk of
fracture. OP may be a systemic deterioration of bone mass and
bone microstructure due to bone metabolic imbalance
(Rachner et al., 2011). OP can lead to a decline in the
quality of life of patients, but also bring about a huge
economic burden to society (Curtis et al., 2016). miRNAs

have been shown to play an important part in OP (Tang
et al., 2017) (Table.1).

The pathological process of OP is caused mainly by an
imbalance between osteogenic differentiation and osteoclast
differentiation. Recent studies have demonstrated that such
imbalance can be regulated by exosomal ncRNAs. For
instance, Sun and co-workers showed that the exosomes
secreted by osteoclasts contain miR-214, which was transferred
to osteoblasts through Ephrin-A2/Eph-A2 recognition and
inhibited osteoblast function (Sun et al., 2016). Li et al. (2016)
showed the function of exosomal miR-214-3p in the
communication between osteoclasts and osteoblasts. miR-214-
3p can transfer from osteoclasts to osteoblasts and inhibit
osteoblastic bone formation. Importantly, targeted inhibition
of exosomal miR-214-3p in osteoclasts can reverse the
inhibition of osteoblast activity and promote bone formation,
which may be a potential treatment for bone loss. Studies have
indicated that miR-30d-5p and miR-133b-3p can inhibit
osteoblast differentiation by targeting the Runt-related
transcription factor 2 (RUNX2) gene, and miR-30d-5p and
miR-133b-3p show high expression in osteoblast-derived
exosomes (Li et al., 2008; Zhang et al., 2011). Hwang et al.
(2014) revealed that miR-140-3p had high expression in
osteoblast exosomes. miR-140-3p inhibited the formation of
osteoblasts by blunting expression of the bone morphogenetic
protein 2 (BMP2) gene. Let-7 was identified in the osteoblast
precursors and exosomes of mineralized osteoblasts, which
promoted osteogenesis by regulating the high mobility AT-
hook 2 gene and axis-like protein (AXIN)2 gene (Egea et al.,
2012; Wei et al., 2014). Chen et al. (Chen et al., 2014) identified
miR-503-3p in osteoblast-derived exosomes. They demonstrated
that miR-503-3p could prevent osteoclast differentiation by

FIGURE 3 | Exosomal non-coding RNAs derived from different cells in three bone-related diseases (schematic). Different sources of exosomes, such as BMSCs,
serum, and cancer-cell sources, have different effects on osteoporosis, osteoarthritis, and bone fractures by regulating different exosomal non-coding RNAs.
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inhibiting expression of the receptor activator of nuclear factor-
kappa B (RANK) gene. miR-667-3p, miR-6769b-5p, miR-7044-
5p, miR-7668-3p, and miR-874-3p which show high expression
in the exosomes secreted by mineralized osteoblasts, can promote
the osteogenic differentiation of osteoblast precursors by
inhibiting AXIN1 expression and enhancing β-catenin
expression (Cui et al., 2016). These observations indicate that
exosomal miRNAs from osteocytic cells can change the
differentiation trend of osteoblasts and clasts, thereby
inhibiting or promoting bone formation.

Xu et al. (2014) showed that expression of miR-199b, miR-218,
miR-148a and miR-135b in exosomes increased significantly and

miR-221 expression was decreased during the early stage of
osteogenic differentiation of human bone marrow
mesenchymal stem cells (hBMSCs). Besides, miR-199b, miR-
218, miR-135b, and miR-148a have been suggested to be
regulators in osteoblast differentiation in HBMSCs (Schaap-
Oziemlak et al., 2010; Hassan et al., 2012; Cheng et al., 2013;
Lauvrak et al., 2013; Xu et al., 2013). Qin et al. (2017) established
that, after myostatin treatment, miR-218 expression in osteocyte-
derived exosomes was downregulated, which could integrate into
osteoblastic cells and inhibit osteoblast differentiation by
downregulating the wingless type (Wnt) signaling pathway.
Several key miRNAs related to osteogenesis (miR-34a, miR-

TABLE 1 | The role of exosomal non-coding RNAs in osteoporosis.

Origin of
exosomes

Exosomes cargo Pathway ncRNA
expression

Mechanism References

Osteoclasts miR-214 EphrinA2/
EphA2

high inhibited the function of osteoblasts Sun et al. (2016)

Osteoclasts miR-214-3p N/A high inhibited osteoblast bone formation Li et al. (2016)
Osteoblasts miR-30d-5p RUNX2 high inhibit osteoblast differentiation Li et al. (2008); Zhang

et al. (2011)miR-133b-3p
Osteoblasts miR-140-3p BMP2 high inhibited the formation of osteoblasts Hwang et al. (2014)
osteoblast precursors/
mineralized osteoblasts

Let-7 HMGA2 high promoted osteogenesis Egea et al. (2012);
Wei et al. (2014)AXIN2

Osteoblast miR-503-3p RANK N/A preventd osteoclast differentiation Chen et al. (2014)
mineralized osteoblasts miR-667-3p AXIN1 high promoted the osteogenic differentiation of osteoblast

precursors
Cui et al. (2016)

miR-6769b-5p β-catenin
miR-7044-5
pmiR-7668-3p miR-
874-3p

HBMSCs miR-199b N/A High/low increased/decreased significantly during the early
stage of osteogenic differentiation of HBMSCs

Xu et al. (2014)
miR-218
miR-148a
miR-135b/miR-221

Osteocytes miR-218 Wnt signaling low inhibited osteoblast differentiation Qin et al. (2017)
BMSCs miR-31a-5p N/A High promoting osteoclastogenesis and bone resorption Xu et al. (2018)
BMSCs miR-151-5p N/A N/A promoting osteogenic differentiation and saving bone

reduction
Chen et al. (2017)

MSCs miR-21 SMAD7 High Inhibition of osteogenic gene expression Jiang et al. (2018)
HUCMSCs miR-1263 Mob1 High inhibiting BMSCs apoptosis and preventing disuse

osteoporosis in rats
Yang et al. (2020a)

breast cancer cells miR-20a-5p SRCIN1 N/A Promoting the proliferation and differentiation of
osteoclasts

Guo et al. (2019)

vascular endothelial cells miR-155 N/A High inhibited osteoclast induction Song et al. (2019)
HBMSCs exosome
mimetics

miR-29a Noggin High promoted osteogenesis Fan et al. (2020)

BMSCs miR-186 Hippo signaling
pathway

High promote osteogenesis Li et al. (2021)

BMSCs LncRNA MALAT1 MIR-34c/
SATB2 axis

N/A promoted osteoblast activity/enhanced the activity of
osteoblasts in osteoporotic mice

Yang et al. (2019b)

MM cells lncRNA RUNX2-AS1 RUNX2 N/A inhibiting the osteogenicity of MSCs Li et al. (2018)
osteoclasts NONMMUT000375.2 genes related to

osteoclast
N/A repressed the osteogenic differentiation of MC3T3-E1

cells
Xu et al. (2020a)

NONMMUT071578
BMSCs lncRNA H19 Angpt1/

Tie2-NO
High promoted osteogenesis and angiogenesis through

mediating Angpt1/Tie2-NO signaling
Behera et al. (2021)

circ-Rtn4 modified
BMSCs

circ-Rtn4 miR-146a N/A reduced the cytotoxicity and apoptosis of MC3T3-E1
cells induced by TNF-α

Cao et al. (2020)

serum samples hsa_circ_0006859 miR-431-5p High Hsa_circ_0006859 suppressed osteoblastic
differentiation and promoted adipogenic differentiation
of hBMSCs.

Zhi et al. (2021)

osteoporotic plasma
exosomes

tRF-25
tRF-38
tRF-18

N/A High had good accuracy in the diagnosis of osteoporosis Zhang et al. (2018b)
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27a, and miR-22) and adipogenesis (miR-143 and miR-375) have
been detected in osteoblasts and adipocyte-derived exosomes,
respectively (Narayanan et al., 2018). To study how exosomes
promote osteogenic differentiation, Qin et al. (2016) detected
miRNAs in exosomes, and found miR-27a, miR-206a, and miR-
196a to have high expression. Furthermore, miR-196a had the
greatest functional potential. Thus, targeting such exosomal
miRNAs may be an ideal treatment strategy for patients with OP.

Rong et al. (Xu et al., 2018) demonstrated that miR-31a-5p
could promote osteoclastogenesis and bone resorption, and that
its expression in the exosomes of BMSCs of old rats was
significantly higher than that in young rats. In addition, the
differentiation and function of osteoclasts could be inhibited by
blunting expression of miR-31a-5p in exosomes. miR-151-5p
from the exosomes of exogenous BMSCs could be spliced into
endogenous BMSCs to promote osteogenic differentiation. Bone
reduction can be saved by injection of exosomal miR-151-5p in
vivo (Chen et al., 2017). Jiang et al. (2018) showed that miR-21
expression in MSC-derived exosomes extracted from healthy
adults was significantly lower than that of miR-21 in MSC-
derived exosomes extracted from patients with OP.

Yang et al. (2020a) revealed that exosomal miR-1263 derived
from human umbilical cord mesenchymal stem cells (hUCMSCs)
could inhibit BMSC apoptosis and prevent disuse OP in rats. Guo
et al. (2019) showed that miR-20a-5p transported from breast
cancer cell-derived exosomes promoted the proliferation and
differentiation of osteoclasts by targeting the SRC kinase
signaling inhibitor 1 gene. Song et al. (2019) confirmed that
blocking the level of exosomal miR-155 secreted by vascular
endothelial cells (EC) can reverse the inhibition of osteoclast
differentiation of BMMS and further prevent bone resorption,

indicating that exosomes miR-155 may have potential to treat
osteoporosis. That was the first time that vascular endothelial cells
had been found to treat OP. The low yield of exosomes hinders
their clinical popularization. Therefore, Fan et al. (2020)
suggested “exosome mimetics” as an alternative strategy to
generate exosome-associated vesicles with high yields and
enhanced regeneration capacity. Recently, Li et al. (2021)
showed that that exosomal miR-186 isolated from BMSCs
could promote the osteogenesis observed in postmenopausal
OP through the hippo-signaling pathway. Hence, the
therapeutic effect of exosomal miRNAs in OP has great
potential (Figure 4).

The literature suggests that many miRNAs have high
expression in exosomes, and that exosomal miRNAs can
promote or inhibit osteogenesis by regulating cellular
differentiation through signaling pathways or related proteins,
which has huge implications for the clinical treatment of OP. In
conclusion, exosomal miRNAs from different sources have
important roles in the pathological process and treatment of
OP. In addition, exosomal miRNAs may be clinical markers for
OP diagnosis.

Roles of Exosomal miRNAs in OA
OA is a degenerative disease of the joints that causes chronic pain,
cartilage degeneration, synovitis, disability, and carries an
economic burden (Zarb and Carlsson, 1999; Loeser et al.,
2012; Berenbaum, 2013; Glyn-Jones et al., 2015). ECM loss
and cartilage destruction are the main features of OA
(Kobayashi et al., 2005). As a weightbearing joint, the knee
joint is a common site for OA. Because of the poor blood
supply of cartilage and the weak potential of chondrocyte

FIGURE 4 | A possible mechanism of action of exosomal non-coding RNAs in osteoporosis (schematic). Different sources of exosomal non-coding RNAs, such as
miRNA, lncRNA, circRNA, and tRNA, promote or inhibit the activity of osteoblasts and osteoclasts by regulating different targets, thereby affecting the course of
osteoporosis. ↑: promotion; ↓: inhibition.
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proliferation/migration, the regeneration ability of articular
cartilage is very limited (Yuan et al., 2017). Clinical treatment
of OA is aimed at alleviating pain symptoms. If OP progresses, it
can be treated only with joint-replacement surgery, but complete
repair and regeneration of damaged articular cartilage is not
possible (Toh et al., 2017).

In recent years, the role of exosomal miRNAs in OA has been
studied (Figure 5A). For example, exosomes derived from
hBMSCs overexpressing miR-26a-5p have been shown to delay
damage to synovial fibroblasts in vitro and reduce OA damage in
vivo. hBMSC-derived exosomes with high expression of miR-26a-
5p in OA have been shown to inhibit expression of an inhibitor of
synovial-fibroblast damage, prostaglandin-endoperoxide
synthase 2, which is very important for OA treatment (Jin
et al., 2020b). Sun et al. (2019) suggested that exosomes
extracted from hBMSCs with high expression of miR-320c
were better than exosomes extracted from control hBMSCs in
terms of promoting the proliferation of hBMSC chondrocytes
and downregulating matrix metallopeptidase (MMP)13
expression. Studies have shown that TGF-β1 regulates
Sp1through MSC-exosomal miR-135b to promote chondrocyte
proliferation, thereby promoting cartilage repair (Wang et al.,
2018). Mao et al. (2018b) established that miR-92a-3p expression
was increased in the exosomes of MSC chondrocytes.
Importantly, therapy using exosomal miR-92a-3p from MSCs
can promote cartilage proliferation and expression of ECM genes
in MSCs. Conversely, by enhancing expression of the Wnt family
member 5a gene, therapy using exosomal miR-92a-3p from
MSCs inhibits cartilage differentiation and reduces ECM
synthesis in cartilage. Those results suggest that exosomal

miRNAs derived from MSCs and hBMSCs are involved in
regulation of the pathological process of OA.

Levels of exosomal miR-193b in the plasma of OA patients
are lower than those in healthy people. miR-193b can target the
histone deacetylase (HDAC)3 gene, thereby promoting
acetylation of histone H3 and regulating the metabolism of
primary human chondrocytes (Lin et al., 2014). Tao et al.
(2017) revealed that exosomes derived from human synovial
MSCs overexpressing miR-140-5p could promote cartilage
regeneration and delay the progression of knee OA. miR-
200C appears to have an important role in reducing
interleukin (IL)-6-mediated inflammation. In addition,
Withrow et al. used polymerase chain reactions (PCRs) to
identify “exosomal cargoes.” Examination of exosomes in the
synovial fluid of OA patients and non-OA patients showed that
miR-200C expression was increased by 2.5-times in the
exosomes of OA cases (Rokavec et al., 2012). Scholars have
tested if miRNAs have expression differences in the exosomes of
IL-1β-stimulated synovial fibroblasts compared with those of
synovial fibroblasts of a control group. Fifty miRNAs had
differential expression in the exosomes of synovial fibroblasts
stimulated by IL-1β. Among them, miR-4454 was related to
inflammatory stimulation, and miR-199b was related to
cartilage formation (Zhang et al., 2012b; Zhou et al., 2014).
Inflammatory factors may be links in stimulating exosomal
ncRNAs to regulate OA. HDAC2/8 has been shown to inhibit
cartilage development by inhibiting expression of cartilage-
specific genes. Exosomes derived from miR-95-5p-
overexpressing primary chondrocytes regulate cartilage
development by targeting HDAC2/8 directly (Mao et al.,

FIGURE 5 | A possible mechanism of exosomal non-coding RNAs in osteoarthritis and impaired fracture healing (schematic). (A) Exosomal non-coding RNAs
secreted by chondrocytes andMSCs produce pathological effects on each other through different mechanisms. (B) Endothelial progenitors andMSCs promote fracture
healing and angiogenesis by transporting lncRNAs and miRNAs, respectively. ↑: promotion; ↓: inhibition.
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2017; Mao et al., 2018a). Therefore, exosomal miRNAs may be a
new direction for targeted therapy of OA.

High expression of miR-100-5p has been detected in stem cells
from human exfoliated deciduous teeth-exosomes (SHED-Exos).
miR-100-5p targets the 3′ untranslated region of mammalian
target of rapamycin (mTOR) directly, and SHED-Exos miR-100-
5p inhibits temporomandibular joint (TMJ) inflammation (Luo
et al., 2019). miR-100-5p could be a new drug for treatment of
TMJ inflammation. Liu et al. (2018a) suggested that expression of
miRNAs in the exosomes of subchondral osteoblasts in patients
with OA was significantly different compared with that of healthy
people. Upregulated miR expression may be involved in the
occurrence and progression of OA. Besides, it was worth
noting that hsa-miR-4717-5p was the differentially expressed
gene with the largest folding changes, which target gene was
RGS2. Simultaneously, reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) showed that hsa-miR-
4717-5p expression in the OA group was higher than that in the

control group. Injection of BMSC-derived exosomal miR-9-5p in
a mouse model of OA could reduce inflammation and OA-like
injury. The main manifestations were downregulation of
proinflammatory factors and a reduction in oxidative stress
damage. Syndecan 1 was the target gene of miR-9-5p, and its
upregulation led to exacerbation of inflammation and OA-like
damage, contrary to that observed with exosomal miR-9-5p (Jin
et al., 2020a). Exosome-like vesicles from chondrocytes of OA
patients were shown to stimulate inflammasome activation and
increase production of mature IL-1β by macrophages through the
miR-449a-5p/ATG4B/autophagy pathway, thereby aggravating
synovitis and accelerating OA progression (Ni et al., 2019). miR-
8485 from the exosomes of chondrocytes could stimulate the
cartilage differentiation of BMSCs by activating the Wnt/
β-catenin pathway. This mechanism was related to inhibition
of expression of the glycogen synthase kinase-3β gene by
exosomes (Li et al., 2020). Wu et al. (2019) revealed that
exosomes from infrapatellar fat-pad MSCs could promote the

TABLE 2 | The role of exosomal non-coding RNAs in osteoarthritis.

Origin of
exosomes

Exosomes cargo Pathway ncRNA
expression

Mechanism References

HBMSCs miR-26a-5p PTGS2 high could delay synovial fibroblast damage in vitro and reduce
OA damage

Jin et al. (2020b)

HBMSCs miR-320c N/A high promoting the proliferation of HBMSC chondrocytes and
down-regulating matrix metallopeptidase 13

Sun et al. (2019)

MSCs miR-135b Sp1 high promote chondrocyte proliferation, thereby promoting
cartilage repair

Wang et al.
(2018)

MSCs chondrocyte miR-92a-3p WNT5A high promoted cartilage proliferation and matrix gene
expression in MSCs.

Mao et al.
(2018b)

Plasma miR-193b HDAC3 low promoting histone H3 acetylation and regulating the
metabolism of primary human chondrocytes

Lin et al. (2014)

human synovial
mesenchymal stem cells

miR-140-5p N/A high promote cartilage regeneration and delay the progression
of knee OA

Tao et al. (2017)

synovial fluid miR-200C N/A high miR-200C increased 2.5 times in OA exosomes compared
to non-OA patients

Rokavec et al.
(2012)

primary chondrocytes miR-95-5p HDAC2/8 high regulated cartilage development and homogenous
balance by directly targeting HDAC2/8

Mao et al.
(2018a)

human exfoliated
deciduous teeth

miR-100-5p mTOR3’
untranslated region

high inhibited the inflammation of temporomandibular joint
(TMJ) chondrocytes

Luo et al. (2019)

subchondral osteoblasts hsa-miR-4717-5p RGS2 high differentially expressed gene with the largest folding
changes in the occurrence and progression of OA

Liu et al. (2018a)

BMSCs miR-9-5p SDC1 N/A reduce inflammation and OA-like injury Jin et al. (2020a)
chondrocytes miR-8485 Wnt/β-catenin,

GSK-3β
N/A stimulating the cartilage differentiation of BMSCs Li et al. (2020)

IPFP-MSCs miR-100-5p mTOR high promote the abnormal gait of OA mice and reduce the
pathological changes of articular cartilage in vivo

Wu et al. (2019)

chondrocytes lncRNA HULC N/A high promoted cell apoptosis and inhibits cell proliferation Song et al.
(2017)

synovial fluid lncRNA PCGEM1 N/A high the exosomal lncRNA PCGEM1may be a novel indicator to
distinguish early OA from late OA

Zhao and Xu,
(2018)

MSCKLF3-AS1 lncRNA KLF3-AS1 miR-206/GIT1 axis high promoted the expression of GIT and alleviated the
chondrocyte damage induced by IL-1β

Liu et al. (2018b)

MSCs lncRNA KLF3-AS1 Col2a1 high inhibited IL-1β-induced chondrocyte apoptosis Liu et al. (2018c)
The Fibroblast-Like
Synoviocyte

lncRNA H19 miR-106b-5p/
TIMP2 axis

low inhibited the degradation of the matrix in OA Tan et al. (2020)

Human chondrocyte cell circ_0001846 miR-149–5p/
WNT5B axis

high modulated IL-1β-induced chondrocyte cell damage Zhu et al. (2021)

Human chondrocyte cell circ-BRWD1 miR-1277/TRAF6
axis

high contributed to osteoarthritis development Guo et al. (2021)

MSCs circRNA_0001236 miR-3677-3p/Sox9
axis

high enhanced chondrogenesis and suppress cartilage
degradation

Mao et al. (2021)
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abnormal gait of OAmice and reduce the pathological changes of
articular cartilage in vivo. RNA-sequencing of exosomes
demonstrated that miR-100-5p had high expression in
exosomes from infrapatellar fat-pad MSCs, and might regulate
the biological behavior of chondrocytes by inhibiting the mTOR
signaling pathway.

In summary, exosomal miRNAs from different sources are
being discovered gradually, and may become a therapeutic
method in OA (Table 2). Use of exosomal miRNAs as a
means of treatment and diagnosis of OA may be an emerging
direction for future clinical research.

Roles of Exosomal miRNAs in Impaired Fracture
Healing
A fracture can be complete or partial fracture of bone structure
caused by an external force or accumulated strain (Claes et al.,
2012; Einhorn and Gerstenfeld, 2015; Zhang et al., 2018a). About
10% of patients with a fracture have delayed healing. Long-term
treatment can bring physical and psychological discomfort to
patients, unnecessary financial burdens to patients and their
families as well as poor quality of life (Komatsu and Warden,
2010; Gomez-Barrena et al., 2015). Fracture healing is a complex
process. The activation, proliferation, and differentiation of local
MSCs or progenitor cells are affected by specific growth factors
and cytokine cascades (Murata et al., 2014).

Researchers have focused gradually on the effect of exosomal
ncRNAs on fracture healing (Figure 5B). Liu et al. (2020)
demonstrated that Hypo-Exos (exosomes derived from MSCs
under hypoxia) promotes angiogenesis, proliferation, and
migration by transporting exosomal miR-126, thereby
accelerating fracture healing. Meanwhile knockout of hypoxia-
inducible factor (HIF)-1α expression resulted in a significant
reduction of MSC-derived exosomal miR-126, thereby
eliminating the influence of exosomes derived from MSCs
under hypoxia, and suggesting that hypoxic pretreatment
mediated the production of exosomal miR-126 by activating
HIF-1α. Exosomal miR-128-3p of MSCs in old rats can
regulate bone formation and fracture healing by targeting
Smad 5. For older people, a small synthetic RNA (exosomal
miR-128-3P) may be a promising strategy for fracture healing
(Xu et al., 2020b). Xiong et al. (2020) revealed that miR-5106 was
significantly overexpressed in M2 macrophage-derived exosomes

(M2D-Exos), whereas expression was decreased in
M1 macrophage-derived exosomes (M1D-Exos). They
suggested that exosomal miR-5106 could target salt-induced
kinase (SIK2) and SIK3 genes directly to induce osteogenic
differentiation of BMSCs. More importantly, local injections of
miR-5106 agonists or M2D-Exos at fracture sites could accelerate
healing in vivo. Studies have shown that MSC-derived promotion
of fracture healing is related to exosomal miRNAs. Differentially
expressed miRNAs such as miR-21, miR-4532, miR-125b-5p, and
miR-338-3p may help to enhance bone formation and
angiogenesis (Furuta et al., 2016) (Table 3).

Compared with the study of exosomal miRNAs in OP andOA,
the study of exosomal miRNAs in fracture healing is less deep.
Recent research on exosomal miRNAs in fractures has focused
mainly on bone formation and angiogenesis.

Roles of Exosomal lncRNAs in
Bone-Related Diseases
lncRNAs are a family of transcripts containing >200 nucleotides
that do not encode proteins (Costa, 2010; Moran et al., 2012;
Geisler and Coller, 2013; Ulitsky and Bartel, 2013). Due to their
different positions relative to protein-coding genes, they can be
divided into five categories: antisense; long intergenic non-
coding RNAs (lincRNAs); sense-overlapping; sense intronic;
processed transcript (Quinn and Chang, 2016; Huynh et al.,
2017). lncRNAs have been shown to be involved in nuclear
structure and gene expression as regulatory factors during
development. They are involved in regulation of the cell
cycle, differentiation, transcription, and translation (Hu et al.,
2012; Rinn and Chang, 2012; Joh et al., 2014; Quinodoz and
Guttman, 2014; Vance and Ponting, 2014). lncRNAs are
essential for bone formation. For example, targeted
destruction of an lncRNA called HOX antisense intergenic
RNA led to metacarpal deformities and allogeneic
transformation of the spine. Furthermore, lncRNAs are
regulators in the osteogenesis process of MSCs (Li et al.,
2013b; Gu et al., 2017; Tye et al., 2018). It has been reported
that lncRNAs are related to the progression of some diseases,
and are being studied as new therapeutic targets (Gutschner and
Diederichs, 2012; Li et al., 2013a; Wahlestedt, 2013; Hrdlickova
et al., 2014).

TABLE 3 | The role of exosomal non-coding RNAs in impaired fracture healing.

Origin of
exosomes

Exosomes
cargo

Pathway ncRNA
expression

Mechanism References

MSCs miR-126 HIF-1α low promoted fracture healing Liu et al. (2020)
MSCs miR-128-3p Smad 5 N/A regulated bone formation and fracture healing Xu et al. (2020b)
M1D miR-5106 SIK2 high induced osteogenic differentiation of BMSCs Xiong et al.

(2020)M2D SIK3 low
MSCs miR-21 N/A high may help to enhance bone formation and angiogenesis Furuta et al.

(2016)miR-4532
miR-125b-5p
miR-338-3p

Endothelial
progenitors

LncRNA
MALAT1

miRNA-
124

N/A stimulated the recruitment of osteoclast precursor cells and differentiation
leading to bone repair

Cui et al. (2019)
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Roles of Exosomal lncRNAs in OP
Compared with the research of exosomal miRNAs in OP, the
research of exosomal lncRNAs in OP has not made much
progress. Yang et al. (2019) demonstrated that a BMSC-
derived gene in exosomes, metastasis-associated lung
adenocarcinoma transcript (MALAT)1, promoted osteoblast
activity. In addition, the in vivo experimental results of an
ovariectomized mouse model showed that miR-34c reversed
the effect of MALAT1, and that special AT-rich sequence-
binding protein 2 reversed the effect of miR-34c in
ovariectomized mice. Multiple myeloma is characterized by
the reduced osteogenic potential of MSCs. Li et al. (2018)
found that exosomal lncRNA RUNX2-AS1 from myeloma cells
could be delivered to MSCs, thereby inhibiting the osteogenicity
of MSCs. Their results suggested that osteogenic differentiation
from multiple myeloma cells to MSCs was through a unique
exosomal lncRNA RUNX2-AS1/RUNX2 pathway.

RUNX2-AS1 in exosomal lncRNAs may be a potential
therapeutic target for the bone injury caused by multiple
myeloma. Xu et al. (2020a) showed that the lncRNAs of
exosomes secreted by osteoclasts affect osteogenesis during
granule-induced osteolysis. They demonstrated that the
exosomes of RAW264.7 cells induced by titanium particles
repressed the osteogenic differentiation of MC3T3-E1 cells.
According to analyses from the Gene Ontology database,
Kyoto Encyclopedia of Genes and Genomes database and
verification by RT-qPCR, they identified two candidate
lncRNAs: NONMMUT000375.2 and NONMMUT071578.
These two lncRNAs regulated expression of four important
genes related to osteoclast differentiation: B-cell lymphoma 2,
Wnt11, TGFβ, and 3-phosphoinositide-dependent protein
kinase-1. Exosomal lncRNA H19 isolated from BMSCs has
been shown to promote osteogenesis through the Angpt1/
Tie2-NO signaling pathway in CBS heterozygous mice, thereby
alleviating OP (Behera et al., 2021). Whether exosomal lncRNA
H19 can promote osteogenesis in normal mice may become a new
research direction.

Recent research has shown that exosomal lncRNAs also
regulate the differentiation direction of cells through related
proteins and signaling pathways, thereby affecting
osteogenesis. Study of exosomal lncRNAs in bone-related
diseases is an emerging research direction, but faces practical
problems, such as the screening and isolation of exosomal
lncRNAs.

Roles of Exosomal lncRNAs in OA
Scholars have hypothesized that selective packaging of ncRNA
into exosomes could reflect the cellular response to cartilage-cell
death during OA pathogenesis. Song et al. (2017) showed that
expression of exosomal hepatocellular carcinoma upregulated
long non-coding RNA (HULC) in OA patients was
downregulated significantly, whereas exosomal miR-372-3p
expression in OA patients was upregulated significantly.
Besides, HULC overexpression in normal chondrocytes
significantly promoted the apoptosis and inhibited the
proliferation of cells. Zhao and Xu (2018) suggested that in
synovial-fluid samples, exosome expression in the control

group was significantly lower than that in patients with early
OA or late OA. Furthermore, expression of the exosomal lncRNA
prostate cancer gene expression marker (PCGEM)1 gene in late
OA was significantly higher than that in early OA. And the early
expression of OA was significantly higher than that of the control
group. Therefore, they concluded that exosomal lncRNA
PCGEM1 may be a novel indicator to distinguish early OA
from late OA.

Exosomes derived from KLF3-AS1-overexpressing-MSCs
(MSCKLF3-AS1-Exos) have been shown to participate in MSC-
Exos-mediated induction of chondrocyte proliferation via the
miR-206/G-protein-coupled receptor kinase interacting protein
(GIT)1 axis. KLF3-AS1 promoted GIT1 expression by “sponging”
miR-206 as a competitive endogenous RNA. In addition,
MSCKLF3-AS1-Exos alleviated the chondrocyte damage induced
by IL-1β (Zhang et al., 2015; Liu et al., 2018b). Liu et al. (2018c)
demonstrated that lncRNA KLF3-AS1 expression was
upregulated significantly in MSC-Exos, and that exosomal
KLF3-AS1 inhibited IL-1β-induced chondrocyte apoptosis by
upregulating expression of Col2a1 and aggrecan, and
downregulating expression of MMP13 and Runx2. Exosomal
KLF3-AS1 could also promote cartilage repair in a rat model
of OA. Tan et al. (2020) reported that exosomal lncRNAH19may
be a therapeutic target for OA because it promotes the
proliferation and migration of chondrocytes by targeting the
miR-106b-5p/tissue inhibitor of metalloproteinases 2 axis and
inhibits ECM degradation in OA.

Roles of Exosomal lncRNAs in Impaired Fracture
Healing
Only one study has been done on the role of exosomal lncRNAs
in impaired fracture healing. The reason why few studies on
exosomal lncRNAs in bone-related diseases have been done may
be that fewer lncRNAs are carried in exosomes, or that lncRNAs
have only slight effects on bone-related diseases.

Bone repair involves two main features: 1) bone resorption
caused by osteoclastogenesis; 2) endothelial progenitor cells
stimulate neovascularization and osteogenic differentiation.
Cui et al. (2019) showed that endothelial progenitor cell-
derived exosomal MALAT1 was bound directly to miR-124.
This action reduced inhibition of integrin subunit β1 and
promoted the migration and osteoclast differentiation of bone
marrow-derived macrophages. This phenomenon stimulated the
recruitment of osteoclast precursor cells and differentiation,
which led to bone repair.

Roles of Other Exosomal lncRNAs in
Bone-Related Diseases
Roles of Exosomal circRNAs in OP
circRNAs are endogenous RNAs with covalent closed-loop
structures. Neither 5–3 ends nor poly (A) tails are present
mainly in cytoplasm. They are produced during RNA splicing
and are generated by exons, introns or a combination of both
(Owens et al., 2012; Li et al., 2015; Lasda and Parker, 2016).
circRNAs are regarded as significant regulators of cell function,
rather than a non-functional byproduct of abnormal RNA
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splicing (Salzman, 2016). Yang et al. (2020b) reviewed the
development of circRNAs in OP. They showed that circRNAs
act by targeting the major genes and signaling pathways related to
osteoblast differentiation and osteoclast differentiation. For
example, circRNA_0016624 has been reported to activate miR-
98 and enhance expression of BMP2 (which plays an important
part in induction of osteogenic differentiation), so
circRNA_0016624 promoted osteoblast differentiation.
However, the role of exosomal circRNAs in OP has not been
explored thoroughly.

Cao et al. (2020) demonstrated that co-cultivation with
exosomes derived from circ-Rtn4 modified BMSCs (Rtn4-
Exos) could reduce the cytotoxicity and apoptosis of mouse
cells (MC3T3-E1) induced by the tumor necrosis factor
(TNF)-α gene, which was manifested by expression of caspase-
3, caspase-3, and Bax protein as well as a reduction in caspase-3
activity. In particular, Rtn4-Exos exhibited its function in TNF-
α-treated MC3T3-E1 cells by sponging miR-146a, which is the
target of circ-RTN4. Thus, their findings indicated that Rtn4-
Exos suppressed the cytotoxicity and apoptosis of MC3T3-E1
cells induced by TNF-α through sponging of miR-146a. Hence,
Rtn4-Exos could be considered as a new drug candidate for OP
treatment. Exosomal hsa_circ_0006859 isolated from the serum
of postmenopausal women has been revealed to be a potential
biomarker of postmenopausal OP. It enhances the adipogenic
and osteogenic differentiation of hBMSCs by sponging miR-431-
5p (Zhi et al., 2021).

Few studies have been carried out on exosomal circRNAs.
However, exosomal circRNAs seem to influence the fate and
differentiation of target cells through sponging miRNAs.

Roles of Exosomal circRNAs in OA
Zhu et al. (2021) reported that circ_0001846 has high expression
in the exosomes of an IL-1β-treated human chondrocyte cell line
(CHON-001). They showed that transfer of exosomal
circ_0001846 regulates IL-1β -induced chondrocyte damage
through the miR-149-5p/Wnt5B axis. Guo et al. (2021)
demonstrated that exosomal circ-BRWD1 isolated from
CHON-001 cells can affect the progression of CHON-001 cells
induced by IL-1β by regulating the miR-1277/TRAF6 axis,
thereby promoting OA development. Mao et al. (2021)
showed that exosomal circRNA_0001236 transported by MSCs
promotes expression of cartilage-specific genes and proteins via
the miR-3677-3p/SRY-box transcription factor (SOX) 9 axis.
Thus, exosomes overexpressing circRNA_0001236 mitigate
cartilage degradation, inhibit osteoarthritis progression, and
enhance cartilage repair.

Those results suggest the mechanism of action of exosomal
circRNAs in OA. They provide a new direction for the study of
exosomal circRNAs in OA and other bone-related diseases.

Roles of Exosomal tRNAs in OP
The nucleotide information on the mRNA is associated with the
amino acid sequence tRNA by decoding the nucleotide triad to
help the ribosome synthesize proteins. Besides this routine
function, tRNAs are involved in the signal transduction,
survival, and apoptosis of cells, metabolism of amino acids

and porphyrins and stress responses (Giege, 2008; Phizicky
and Hopper, 2010; Raina and Ibba, 2014). Recent studies have
shown that tRNA-derived fragments (tRFs) are involved in post-
transcriptional regulation and could be considered as therapeutic
targets for certain diseases (Kumar et al., 2016).

The tRFs derived from tRNA or pre-tRNA are lncRNAs
(Zhang et al., 2019a). Zhang et al. (2018b) found that,
compared with those in healthy controls, there were 11
upregulated tRFs and 18 downregulated tRFs in exosomes in
the plasma of OP patients. Among them, expression of exosomal
tRF-25-R9ODMJ6B26 (tRF-25), tRF-38-QB1MK8YUBS68BFD2
(tRF-38) and tRF-18-BS68BFD2 (tRF-18) was increased
significantly. In addition, expression of tRF-25, tRF-38, and
tRF-18 in the plasma of OP patients had good accuracy for
OP diagnosis, and could be used as diagnostic biomarkers for OP.

In addition to the exosomal ncRNAs reviewed above,
exosomal mRNAs have a role in OP. Seven genes associated
with mRNAs have been detected in the exosomes of differentiated
hBMSCs: ACIN1,DDX6,DGKA,DKK2, Lsm2, RPS2, and Xsox17.
They showed obvious differential expression and could induce
differentiation into mineralized bone cells (Xu et al., 2014).

CLINICAL POTENTIAL OF EXOSOMAL
NCRNAS IN BONE-RELATED DISEASES

Sun et al. (2016) incubated exosomes isolated from OP patients
and from the serum of healthy controls with osteoblasts. They
showed that miR-214 expression was much higher upon
incubation with exosomes from hFOB1.19 cells than that in
non-OP individuals. Simultaneously, mRNA expression also
decreased in osteogenesis-related genes. Those results suggest
the clinical importance of increased miR-214 expression in the
serum of OP patients, and suggest its potential use as a marker for
the diagnosis and therapy of OP. Gao et al. (2019) reported that
exosomal miR-320 isolated from leukemia cells could be taken up
by BMSCs and bind to heterogeneous nuclear ribonucleoprotein
A1 to inhibit osteogenic differentiation. Hence, heterogeneous
nuclear ribonucleoprotein A1-mediated transfer of exosomal
miR-320 from leukemia cells to BMSCs could be an important
mediator of leukemia progression and a potential therapeutic
target for chronic myelogenous leukemia.

Expression of exosomal lncRNA plasmacytoma variant
translocation-1 in the serum of OA patients has been shown
by Meng et al. (2020) to reduce progression of
lipopolysaccharide-induced OA by mediating the high-
mobility group protein 1/toll-like receptor 4/nuclear factor-
kappa B pathway through miR-935p. Liang et al. (2020)
reported that chondrocyte-affinity peptides in exosomes
reduced OA progression in a rat model by delivering miR-140
to the deep cartilage area and inhibiting cartilage degradation,
which points to organelle-based acellular OA treatment.

Apart from OP, OA, and bone fractures, we also found
meaningful clinical studies of exosomal ncRNAs in other
bone-related diseases. For example, Fang et al. (2020)
demonstrated that, compared with healthy individuals,
expression of tRNA-derived small RNA (tsRNA)-10277 in the
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exosomes of plasma of patients with steroid-induced
osteonecrosis of the femoral head (SONFH) was
downregulated significantly. Also, exosomes in BMSCs loaded
with tsRNA-10277 enhanced the osteogenic differentiation of
dexamethasone-induced BMSCs. That study provides new ideas
for the osteogenic effects of exosomes in BMSCs carrying specific
tsRNAs on SONFH. Besides, there is evidence that exosomal
lncRNA nuclear enriched abundant transcript (NEAT)1 isolated
from the serum of patients with rheumatoid arthritis can promote
the development of rheumatoid arthritis through the miR-144-
3p/ROCK2 axis (Liu et al., 2021). This NEAT1/miR-144–3p/
ROCK2 regulatory pathway may become a new treatment
target for rheumatoid arthritis.

FUTURE PERSPECTIVES

Bone-related diseases not only affect quality of life, but also
threaten life in severe cases. Accumulating evidence suggests
that ncRNAs with regulatory effects are essential for the
pathogenesis of bone-related diseases.

From the research of exosomes and ncRNAs, some common
points can be found in the research of bone-related diseases. For
example, exosomal miR-155 can inhibit osteoclast activity (Song
et al., 2019) and miR-155 expression is upregulated significantly
in osteoclasts (Zhang et al., 2012a; Zhao et al., 2017). In addition,
reduced expression of miR-155 can target the gene for the leptin
receptor and increase its expression through the 5′ adenosine
monophosphate-activated protein kinase signaling pathway
which, ultimately, represses osteoclast activation and bone
resorption of osteoclasts in alendronate-treated osteoporotic
mice (Mao et al., 2019). This commonality is not accidental,
and merits in-depth exploration. Liu et al. (2015a) demonstrated
that BMSC transplantation can rescue bone loss in Fas-deficient
MRL/LPR mice by secreting exosomes. This is achieved by
reducing miR-29b expression, thereby enhancing osteogenic
differentiation in vitro and promoting bone formation in vivo.
Petho et al. (2018) reported that miR-677-3p, miR-680, miR-
3084-3p and miR-5000 had high expression in the exosomes of
mineralized osteoblasts. Furthermore, Kumar et al. (2017)
reviewed application of miRNAs as peripheral biomarkers in
aging and age-related diseases, including OP.

Research on exosomal ncRNAs and OA has also shown a
certain connection. The chondrocytes were treated with channel
protein connexin 43 (Cx43) exosomes released by OA
chondrocytes, osteocytes and synovial cells eventually
increased cell senescence levels and senescence-associated
secretory phenotypes through p53/p16 and NF-kß (Varela-
Eirín et al., 2019). In general, lncRNA PCGEM1 in the
synoviocytes of OA patients targets miR-770 to stimulate
synoviocyte proliferation by acting as a spongy lncRNA (Kang
et al., 2016). M2 macrophages polarized by lncRNA MM2P
significantly strengthen chondrocyte function and promote the
delivery of M2-derived exosomal SOX9 to chondrocytes (Bai
et al., 2020). Future studies can explore if these lncRNAs are
carried in exosomes and are involved in OA regulation. Zavatti
et al. (2020) revealed the efficacy of exosomes in human amniotic-

fluid SCs against cartilage damage, indicating a positive
correlation with their TGF-β content. circRNAs are relatively
uncharted territory in OA. Zhou et al. (2019b) established that,
through sponging miR-127-5p, circRNA.33186 encouraged OA
pathogenesis. MSC- and BMSC-derived exosomes make a great
contribution to fracture healing, but the mechanism of action
needs further exploration (Furuta et al., 2016; Hao et al., 2017).
Besides, hUCMSC-derived exosomes can repair bone fractures in
rats mainly through the Wnt signaling pathway (Zhou et al.,
2019a). Most of the exosomes that can be used to treat bone-
related diseases come from SCs. Hao et al. (2017) reviewed a
promising strategy for SC-derived exosomes to heal fractures.
However, Borel et al. (2020) found that prostate cancer-derived
exosomes could promote the differentiation and activity of
osteoblasts through the phospholipase-D2 pathway. That
discovery broadens investigation of the mechanism of action
of exosomes in bone-related diseases. Also, treatment of
rheumatoid arthritis with exosomal ncRNAs shows great
prospects for development (Ding et al., 2020; Meng and Qiu,
2020).

Although studies have shown that exosomal ncRNAs are
emerging diagnostic markers and disease targets, the
transformation from basic science to clinical application will
be challenging. Looking for commonality between bone-related
diseases may aid their treatment using exosomes. Certainly,
investigation of the connection points between miR-155 in
exosomes and osteoclasts could yield interesting results.

CONCLUSION

Study of exosomal ncRNAs in OP is more in-depth than that in
OA and impaired fracture healing. As important cell
communicators, exosomes (and their contents) have
indispensable roles in the occurrence, development, and
treatment of OP, OA, and fracture. Exploring the detailed
mechanism of action of exosomal ncRNAs in bone-related
diseases will help transformation from basic research to their
clinical application in bone-related diseases.
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