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Neurological diseases, particularly in the context of aging, have serious impacts
on quality of life and can negatively affect bone health. The brain-bone axis is
critically important for skeletal metabolism, sensory innervation, and endocrine cross-
talk between these organs. This review discusses current evidence for the cellular
and molecular mechanisms by which various neurological disease categories, including
autoimmune, developmental, dementia-related, movement, neuromuscular, stroke,
trauma, and psychological, impart changes in bone homeostasis and mass, as well
as fracture risk. Likewise, how bone may affect neurological function is discussed.
Gaining a better understanding of brain-bone interactions, particularly in patients with
underlying neurological disorders, may lead to development of novel therapies and
discovery of shared risk factors, as well as highlight the need for broad, whole-health
clinical approaches toward treatment.
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INTRODUCTION

The skeleton is necessary for facilitating movement, providing a framework for muscles and soft
tissues, protecting vital organs, storage of minerals and fat, harboring the bone marrow, and
regulating blood cell formation. Maintaining bone health is, therefore, important for overall health
and well-being. In recent years, we have begun to better dissect the relationship between the brain
and skeleton and how they regulate one another. One way to better appreciate this relationship
is to determine how it becomes altered with disease. Osteoporosis is the most common form
of metabolic bone disease and is characterized by low bone mass (≤ 2.5 standard deviations
below peak bone mass) and micro-architectural bone deterioration that can lead to debilitating
fractures. In the United States, osteoporosis accounts for over 1.5 million fractures annually. By
2050, the costs associated with osteoporotic fractures are expected to exceed $130 billion (Bartl
and Bartl, 2019). In regard to brain disease, more than one million U.S. adults are diagnosed
annually with a chronic brain disease or disorder at a healthcare cost of > $800 billion (Gooch
et al., 2017). In addition, many of these disorders are associated with increased age, a shared risk
factor with osteoporosis. Osteoporosis is more prevalent in people with neurological conditions,
such as multiple sclerosis (MS) and Parkinson’s disease (PD), while sudden neurological events,
such as stroke and spinal cord injury (SCI), can cause rapid loss in bone mineral density (BMD).
Further, lack of physical activity in degenerative neurological conditions can lead to mineral loss
and osteoporosis, particularly in aging populations and/or those with comorbidities (e.g., obesity,
diabetes, smoking). A better understanding of the mechanisms that cause bone loss and how
neurological conditions uniquely impact bone health is of clinical importance and will guide
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treatment options, encourage lifestyle change, and aid in
development of novel osteoporosis therapies. Likewise, gaining
a better understanding of how bones regulate the brain may
provide novel insights into how neurological disorders develop.
This review will provide an overview of literature related to
neurological disorders and their effects on bone health with a
goal to promote recognition of the mechanisms by which changes
in the brain can impart changes in the bones. We also discuss
how certain treatments for neurological disorders can negatively
affect bone health. This will encourage a broader view of disease
management toward improved patient health and outcomes.

BONE-BRAIN INTERFACE

As an adaptation to stress and to maintain calcium homeostasis,
the skeleton undergoes constant remodeling. In adult humans,
the skeleton replaces itself almost entirely every 10 years
[Office of the Surgeon General (US), 2004]. During this
remodeling process, the new bone laid down by osteoblasts
must replace the bone resorbed by osteoclasts in a fine-tuned
manner. However, with age, net bone loss occurs as a result
of increased osteoclastic activity and/or decreased osteoblastic
activity at a rate of approximately 1% per year after 30 years
of age. The bone remodeling process is regulated by endocrine,
paracrine, mechanical, and, as the subject of more recent focus,
neuronal factors.

Investigation into the contribution of neuronal signaling
in regulating bone remodeling and homeostasis began with
a focus on leptin, an adipose-derived hormone involved in
energy regulation and metabolism. Mice deficient for leptin
(ob/ob mice) were found to have a high vertebral trabecular
bone mass phenotype (Ducy et al., 2000). This phenotype was,
surprisingly, rescued by infusion of small amounts of leptin in
the third hypothalamic ventricle (Thomas et al., 1999; Cornish
et al., 2002; Takeda et al., 2002). It became evident that the
pathways connecting brain and bone play critical roles in energy
regulation and bone metabolism. Since this landmark finding,
a rapid expansion in studies attempting to understanding this
brain-bone interface occurred, with both the sympathetic (SNS)
and parasympathetic nervous systems (PNS) having now been
shown to regulate bone through various pathways, including
leptin, serotonin, adiponectin, circadian genes, neuropeptide
Y, muscarinic receptors, nicotinic receptors, beta-adrenergic
receptors, and sensory nerve innervation of bone (Marenzana
and Chenu, 2008; Dimitri and Rosen, 2017; Elefteriou, 2018).
The importance of autonomic tone in regulating bone mass is
supported by the observed benefit of beta-blockers on BMD and
fracture risk (Schlienger et al., 2004; Bonnet et al., 2007; Graham
et al., 2008; Reid, 2008).

Psychological stress can also impart changes in bone. We
have previously discussed the relationship between osteoporosis
and psychological stress, which is partially regulated through
activation of the hypothalamic-pituitary-adrenal (HPA) axis,
glucocorticoid signaling, and blunted response of growth factors
that contribute to bone mass, such as insulin-like growth
factor-1 (IGF-1) (Kelly et al., 2019). Conversely, bone has
been found to regulate the brain, with osteocalcin (OCN),

an osteogenic hormone, being essential for activation of the
acute stress response via inhibition of the PNS (Berger et al.,
2019). Thus, the brain-bone axis is critically important for
skeletal metabolism, sensory innervation, and endocrine cross-
talk between these organs.

Low BMD and cognitive impairment/reduced executive
function often occur together, with osteoporosis and related
fracture being associated with progression of cognitive
impairment, likely, in part, due to increased fall risk (Liu-
Ambrose et al., 2007; Cauley et al., 2016). In community-dwelling
adults aged > 50 years without history of stroke or dementia, low
BMD correlated with cognitive impairment, even after adjusting
for confounding factors (Kang et al., 2018). Cognitive impulsivity
is significantly related to BMD in elderly women, while verbal
working memory has been associated with BMD and may
alter fracture risk (Martino et al., 2019; Catalano et al., 2020b).
The incidence of physical frailty and dementia follow similar
patterns in the aging population, providing further evidence
that frailty and cognitive function may be mechanistically and
pathologically linked (Halil et al., 2015). Possible mechanisms
for the association between BMD and cognitive impairment
have been proposed. Mineral concentrations in osteoporosis
may facilitate formation of senile plaques and neurofibrillary
tangles (NFT) in Alzheimer’s disease (AD) (Lopez et al., 2008;
Loskutova et al., 2009; Zhou et al., 2011). Estrogen, involved in
bone homeostasis, may also affect cognitive function through
inhibition of neuronal apoptosis, promotion of synaptic
plasticity, reduction of oxidative stress, and improvement in
cerebral blood flow by increasing high-density lipoprotein
cholesterol levels (Funk et al., 1991; Brownbill and Ilich,
2004; Zhou et al., 2011; Kang et al., 2018). Further, estrogen
replacement may lead to benefits in cognitive function (Luine,
2014). Age-related alterations in inflammatory processes,
including increased levels of circulating IL-6 and diminished
T regulatory cell activity, may dually contribute to bone loss
(via local activation of osteoclasts) and cognitive decline (via
increasing levels of neuronal α2-macroglobulin, a protease
inhibitor implicated in AD plaques) (Ershler, 1993; Licastro
et al., 2000; Lui et al., 2003). Lastly, parathyroid hormone (PTH)
may represent a clinically important link between cognitive
dysfunction and bone health, as a regulator of calcium and
phosphate metabolism that can cross the blood-brain barrier
(Lourida et al., 2015; Murthy et al., 2018). Hyperparathyroidism
has been associated with physical frailty, bone mass loss
via osteoclast activation, as well as poor cognitive function,
potentially through calcium overload, disruption of neuronal
signaling, and hippocampal atrophy (Numann et al., 1984;
Roman et al., 2005; Marcocci et al., 2012; Murthy et al.,
2018). It is clear that the bone and brain play key roles in
regulating each other. Understanding how bone phenotypes
are altered with neurological disorders may provide further
mechanistic insights.

NEUROLOGICAL DISORDERS

To date, there are more than 600 classified neurological
disorders with distinct etiology, neuro-pathophysiology,
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and symptomology. Herein, we discuss major categories of
neurological disorders, including autoimmune, dementia-
related, infection-related, movement-related, neural
developmental, neuromuscular, psychological, trauma-related,
vascular, and other neuronal diseases. Although the etiology of
many neurological disorders is highly complex and not fully
understood, genetic, epigenetic, and external (e.g., trauma,
infection, environment) factors have been implicated in
neurological disease initiation and progression. Considerable
clinical evidence across many neurological disease categories
indicates that changes in neurophysiology lead to changes
in bone physiology, resulting in decreased BMD and bone
mineral content (BMC), altered bone microarchitecture, and
decreased bone strength, ultimately leading to the development
of osteopenia/osteoporosis and increased fracture risk. Recent
clinical and preclinical studies have begun to shed light on
some of the shared hormonal, immune, and molecular/cellular
pathways that are impacted in neurological disorders and
may mediate secondary effects in bone (Table 1). These
include sustained activation of peripheral and central nervous
systems (CNS), inflammatory pathways, changes in glutamate
signaling, dysregulation of the SNS and PNS, and HPA
axis dysregulation. In addition to shared pathophysiology,
lifestyle changes secondary to neurological disorders, including

modifications in diet and overall physical activity, can contribute
to deleterious bone effects. Further, drug treatments for many
neurological disorders (e.g., selective serotonin reuptake
inhibitors (SSRIs), antipsychotics, anti-epilepsy drugs) have
independent and overlapping roles in mediating bone loss.
Since osteopenia/osteoporosis and resulting fracture have
debilitating effects on patient quality-of-life, it is imperative
that we understand how neurological diseases lead to secondary
effects in bone to move toward more informed, comprehensive
clinical treatment.

Autoimmune Disorders
Multiple Sclerosis
Multiple sclerosis is the most common, non-traumatic disease
impacting young adults and can be divided into two stages:
an inflammatory phase leading to relapsing-remitting disease
and a secondary phase leading to prolonged neurodegeneration
and non-relapsing, progressive disease (Dobson and Giovannoni,
2019). Early disease is characterized by neural inflammation,
leading to the production of demyelinating plaques in the
CNS that results in episodes of vision loss, fatigue, and
tingling/numbness. As MS progresses, irreversible axon damage
occurs and patients experience pain, muscle spasms, vision loss,

TABLE 1 | Neurological disorders, impacts on bone, and potential mechanisms.

Neurological Disorder Impact on Bone Potential Molecular/Cellular Drivers

↓ BMD ↑ Fracture Risk

Acute Spinal Cord Injury X X CGRP, OPG, PTH, RANKL, Vasoregulation, VIP, Vitamin D, Wnt

Alzheimer’s Disease X X Aβ, ApoE, Calcium, Collagen, ERK, GPR158/OCN, IκB-α, OPG, OPN, PNS signaling,
RANKL, Serotoninergic input, SOST, TREM2, Wnt/β-catenin

Amyotrophic Lateral Sclerosis X X Akt, β-catenin, Calcium, Erk1/2, Neurotoxic metals, RANKL, SOST, Vitamin D

Ataxia X X Frataxin, Immune dysregulation, Vitamin D

Autism Spectrum Disorder X X IGF-1, OCN, Prolactin, Vitamin D

Cerebral palsy X X Calcium, IGF-1, PTH, SOST

Chronic Fatigue X X IGF-1, Macrophages, MALP-2

Epilepsy X X ALP, BALP, Calcium, Collagen, OCN, PTH Sodium, Vitamin D

Major Depressive Disorder X X ACTH, Calcium, IL-1β, IL-2, IL-6, Leptin, OPG, OPN, PTH, RANKL, SNS signaling,
TNF-α, Vitamin D

Multiple Sclerosis X X IL-1, IL-6, IL-11, IL-17A, OPN, PNS signaling, PTH, SNS signaling, TNF-α, Vitamin D

Myasthenia Gravis X X Acetylcholine, Vitamin D

Neuromuscular Dystrophy X X Calcium, Dystrophin, IL-6, IL-11, Inhibin-βA, OCN, OSX, RANKL, SMN1/2, TGFβ2,
Vitamin D

Parkinson’s Disease X X Homocysteine, Lewy body deposition, PTH, Vitamin D

Post-Traumatic Stress Disorder X X β-adrenergic stimulation, Catecholamines, Glucocorticoid signaling, IGF-1, IL-1β, IL-6,
NF-kB, RANK/RANKL, TNF-α

Sepsis/SAE X ? Collagen, Macrophages, Monocyte precursors, Myelopoiesis

Sleep Disorders X ? Cortisol, CRP, CTX, Hypoxic signaling, IL-6, P1NP, TNF-α, Vitamin D

Stroke X X Estrogen, Neuroinflammation, OPG, Vitamin D

Substance Abuse Disorder X X ALP, BALP, BGP, LDL, Leptin, Vitamin D

Traumatic Brain Injury X X Calcium, Collagen, IGF-1, NF-κB, OCN, PTH, Vitamin D

Vertigo X X Calcium, Estrogen, SNS signaling, Vitamin D

Neurological disorders are associated with negative impacts on bone. These effects may be mediated by primary pathophysiology, lifestyle changes as a result of
neurological disease, and first- and second-line therapies. Clinically supported evidence of impacts on BMD and/or fracture risk are marked by “X.” Unknown or
understudied effects are noted by “?.” Molecular/cellular targets and signaling pathways implicated in mediating effects on bone are listed for each disorder.
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and trouble walking. While the etiology of MS has not been
fully elucidated, it likely involves multiple factors in addition to
genetic predeterminants, including smoking, vitamin D, obesity,
gut microbiota, and Epstein-Barr virus (EBV) infection (Dobson
et al., 2012; Michel, 2018).

Clinical evidence suggests that MS is associated with
detrimental bone effects, including osteopenia/osteoporosis and
increased fracture risk (Moen et al., 2011; Sioka et al., 2011;
Coskun Benlidayi et al., 2015; Huang et al., 2015a; Bisson et al.,
2019). Meta-analyses show that MS patients have reduced BMD
in lumbar spine, femur neck, and hip regions compared to
healthy controls (Huang et al., 2015a). In a large clinical study,
the prevalence of osteoporosis was found to be significantly
higher in MS patients (16–26%) compared to healthy controls (6–
15%) after adjusting for potential confounding factors, including
age, sex, previous fracture history, and comorbidities (Bisson
et al., 2019). Assessment of bone microarchitecture in MS
patients, reported as a trabecular bone score (TBS), revealed
no significant changes compared to healthy controls, suggesting
that bone density, but not microarchitecture, is impacted in MS
(Olsson et al., 2018).

Potential risk factors for reduced BMD in MS patients include
vitamin D insufficiency, disease duration (> 7 years), total steroid
dose (> 15 g), disease severity, decreased ambulation, altered
parasympathetic signaling, and inflammation (Coskun Benlidayi
et al., 2015; Huang et al., 2015b; Murphy et al., 2016). In female
MS patients, BMD of lumbar spine and femoral neck was found
to be 1-2 SDs lower than in age-matched, healthy controls, with
lowest BMD values observed in patients with most severe disease
(Nieves et al., 1994). BMD was directly correlated to levels of
circulating vitamin D and inversely correlated with levels of
parathyroid hormone (PTH), pointing to vitamin D deficiency
and hyperparathyroidism as potential contributors to bone loss.
In another study of both female (pre- and post-menopausal)
and male MS patients, significant bone loss was observed in the
femoral neck region, with female patients also presenting with
bone loss in the spine. Compared to 2% of healthy controls,
22% of these patients had experienced a non-trauma-related
fracture since the age of 35, highlighting a significant clinical
outcome (Cosman et al., 1998). Both ambulatory status and
steroid treatment > 5 months were shown to be predictors of
bone loss, and patients with low levels of vitamin D exhibited
greater bone loss overall. Importantly, bone loss in the spine
was only observed in patients with low vitamin D levels and
was insignificant in patients with normal vitamin D levels. In
relatively young, ambulatory patients experiencing acute MS
relapses, 51% were found to have low BMD and 62% were
found to be vitamin D-deficient, providing further support for
a potential link between bone health and vitamin D status
(Murphy et al., 2016).

Disease severity and duration, as well as decreased ambulation,
have been associated with bone loss and increased risk of fracture
in MS patients (Tyblova et al., 2015; Olsson et al., 2018). MS
patients with moderate disease, defined by a score of < 4.5–6.5 >
on the Expanded Disability Status Scale (EDSS), had lower BMC
and BMD in total and regional scans compared to patients with
mild disease (score < 1.0–4.0 >) (Pilutti and Motl, 2019). In

studies of pre-menopausal women with MS, a significant inverse
relationship was observed between EDSS score, disease duration,
and BMD, also pointing to disease severity as a primary predictor
of bone loss (Zorzon et al., 2005; Terzi et al., 2010). Importantly,
lifetime dosage of glucocorticoids was not associated with bone
loss in this population, but only with EDSS score (Zorzon et al.,
2005). In male patients, decreased mobility and lower EDSS
scores were associated with decreased BMD in the femur and
muscle wasting in the lower extremities (Zikán et al., 2012).
Chronic use of glucocorticoids was not associated with bone loss
in this population.

Inflammation has been implicated as a driver in MS-
related bone loss. Several inflammatory factors implicated in the
pathogenesis of MS, including IL-1, IL-17A, TNF-α, IL-6, and
IL-11, have been shown to play a role in osteoporosis (Rifas,
1999; Kasper and Shoemaker, 2010). Levels of proinflammatory
osteopontin (OPN) are increased in MS patients compared to
healthy controls, with levels directly correlating with femur
neck bone loss (Altıntaş et al., 2009). In relapsing-remitting
MS patients, increased levels of circulating OPN were shown
to correlate with levels of circulating IgG and markers of bone
turnover, pointing to OPN as a potential driver of MS-related
bone loss (Vogt et al., 2010). Increased levels of OPN were
also observed in the cerebrospinal fluid (CSF) of MS patients
and correlate with cognitive impairment, suggesting OPN may
be a key player in the dysregulated bone-brain axis in MS
and may serve as a biomarker of disease progression (Wen
et al., 2012). In addition to pathological inflammatory processes,
alterations in SNS and PNS signaling have been observed in MS
patients and, in some cases, correlate with disease severity and
progression (Flachenecker et al., 1999, 2001; Elefteriou, 2008). In
a cross-sectional study, patients with active relapsing-remitting
MS exhibited impaired sympathetic function and decreased levels
of circulating catecholamines compared to healthy control and
clinically stable patients (Bartl and Bartl, 2019). Longitudinal
follow-up of a subset of these patients revealed a progressive
decline in parasympathetic, but not sympathetic, function,
suggesting that autonomic tone is differentially impacted as
the disease progresses. Future studies in MS patients will
be required to delineate the direct and indirect impacts of
autonomic dysfunction on bone, as well as how bone innervation
and/or signaling may change with disease progression. Together,
these studies indicate that pathological mechanisms mediating
primary MS symptoms and impaired mobility play major roles
in mediating bone loss in MS patients, while the effects of
glucocorticoids on bone in MS may be minimal and potentially
offset by the positive impact of restored mobility.

Dementia
Alzheimer’s Disease
Alzheimer’s disease is a progressive neurodegenerative disorder
and the primary cause of dementia. AD currently affects
over 5.8 million Americans age 65 and older, and this is
anticipated to grow to 13.8 million by mid-century (Alzheimer’s
Association, 2020). AD is characterized by progressive loss of
cognitive function and pathologically by extracellular senile
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plaques enriched in amyloid-β peptide (Aβ) and intracellular
NFTs formed by hyperphosphorylated tau protein (Mandelkow
and Mandelkow, 2012; Selkoe et al., 2012). For over 20 years,
skeletal fragility has been recognized as a comorbidity in AD
(Birge et al., 1994; Melton et al., 1994; Johansson and Skoog, 1996;
Weller, 2004; Looker et al., 2012). Low BMD and osteoporosis
occur at twice the rate in AD patients as neurotypical adults, and
this is independent of age, sex, body mass index, physical activity,
and disease stage (Melton et al., 1994; Weller, 2004; Loskutova
et al., 2009; Zhou et al., 2011, 2014; Zhao et al., 2012). Bone
loss has been shown to occur in pre-clinical AD, often preceding
diagnosis, thus it may have predictive value in estimating AD risk
and likelihood of progression to full AD in patients with mild
cognitive impairment (MCI) (Tan et al., 2005; Zhou et al., 2011,
2014; Chang et al., 2014; Sohrabi et al., 2015). Low BMD values
have been suggested to predict a faster and more severe rate of
cognitive decline (Zhou et al., 2014). Thus, while bone loss cannot
be used as an independent risk factor for AD, as it frequently
occurs in the non-dementia population, it may add predictive
value to models used to assess dementia risk.

Regarding molecular pathways that intersect brain and bone
in AD, the major genetic risk factor for AD is the apolipoprotein
E (ApoE) 4 allele (Raber et al., 2004). ApoE also plays a critical
role in maintaining bone mass by promoting osteogenesis and
inhibiting osteoclastogenesis (Noguchi et al., 2018). Transgenic
mouse models of AD, including the htau, amyloid precursor
protein (APP)/presenilin1 mutant, and Swedish mutation APP
strains exhibit low BMD (Cui et al., 2011; Yang et al.,
2011; Xia et al., 2013; Peng et al., 2014; Dengler-Crish
et al., 2016). Studies using the htau mouse model showed
evidence of low BMD that preceded the onset of widespread
tauopathy and memory deficits (Dengler-Crish et al., 2016,
2018). Tauopathy in the dorsal raphe nucleus (DRN) localized
within serotonergic neurons and was associated with a 70%
reduction in the overall number of serotonergic neurons in
htau DNR, suggesting a link between serotoninergic input,
bone loss, and AD. In AD mouse models that overexpress Aβ

(e.g., APPswe and APP/PS11E9), low BMD and osteoporosis
were reported (Yang et al., 2011; Zhou et al., 2014). APP and
its cleavage fragment Aβ are expressed in both neural and
non-neural tissues, including osteoblasts and osteoclasts, and
studies show that Aβ can directly impair osteoblast proliferation
and promote osteoclast activity (Cui et al., 2011; Xia et al.,
2013). Mechanistically, Aβ was shown to enhance RANKL-
induced osteoclast activation through IκB-α degradation, ERK
phosphorylation, and calcium oscillation signaling pathways
(Li et al., 2014).

Clinical evidence suggests that dysfunctional autonomic
signaling contributes to AD-related bone loss. AD patients
commonly exhibit increased sympathetic tone and reduced
parasympathetic flow, marked by reduced cholinergic
innervation in the aging population (Aharon-Peretz et al.,
1992; de Vilhena Toledo and Junqueira, 2010; Schliebs and
Arendt, 2011). Further, AD patients treated with AChE
inhibitors exhibit reduced risk of hip fracture and improved bone
healing, suggesting that impaired parasympathetic signaling
impacts bone homeostasis in AD patients and may be targeted

to improve bone health (Weller, 2004; Tamimi et al., 2012;
Eimar et al., 2013).

A potential common contributor to both AD and bone loss
is the wingless-type murine-mammary-tumor virus integration
site (Wnt) signaling pathway. In brain, Wnt signaling plays a
role in neuronal survival and formation of synaptic connections
and has been reported to play a neuroprotective role in AD
(Oliva et al., 2013). In bone, Wnt signaling through the canonical
(i.e., Wnt/β-catenin) pathway promotes osteoblast differentiation
and increased bone mass (Krishnan, 2006). Mechanistically,
this pathway influences renewal of stem cells, stimulation of
pre-osteoblast replication, induction of osteoblastogenesis, and
inhibition of osteoblast and osteocyte apoptosis (Krishnan, 2006).
Loss-of-function mutations in the Wnt signaling pathway results
in skeletal fragility and decreased bone mass (Shah et al.,
2015). Preclinical studies in the htau mouse demonstrated Wnt
signaling deficiencies in both the brain and bones of mice
with low BMD (Dengler-Crish et al., 2018). Triggering receptor
expressed on myeloid cells-2 (TREM2) is one potential activator
of the canonical Wnt/β-catenin pathway that may tie together
bone and brain effects. TREM2 is expressed on microglia, where
it is neuroprotective, and on osteoclasts, where it controls the rate
of osteoclastogenesis (Otero et al., 2012; Jay et al., 2015; Bemiller
et al., 2017). Homozygous loss-of-function mutations in TREM2
are associated with an autosomal recessive form of early-onset
dementia presenting with bone cysts and consequent fractures
called Nasu–Hakola disease (Paloneva et al., 2000). Meta-analysis
has shown heterozygous rare variants in TREM2 are associated
with a significant increase in the risk of AD (Guerreiro et al.,
2013). Together, these studies suggest a common potential target
for addressing bone loss in AD.

While the studies above highlight the potential mechanisms
regulating brain’s influence on bone, an understanding of bone’s
effects on brain is emerging. Bone is considered an endocrine
organ that influences other organs through the secretion of
proteins, such as OCN, sclerostin (SOST), and OPN. Blood
biomarkers associated with osteoporosis, including C-terminal
collagen fragments, OPG, and OCN, are increased in AD
(Emanuele et al., 2004; Luckhaus et al., 2009). OCN is a bone-
derived hormone that can regulate brain development and
function (Greenhill, 2013). Circulating OCN inversely correlates
with age, and cognitive function of aged mice can be improved
with injection of plasma from young mice (Villeda et al., 2014).
Most recently, Karsenty’s group has identified the G protein-
coupled receptor 158 (GPR 158) as a receptor for OCN in the
brain (Khrimian et al., 2017; Obri et al., 2018).

Sclerostin is an osteocyte-specific secreted glycoprotein,
encoded by the SOST gene that binds to low-density lipoprotein-
receptor-related protein-5 or -6 (LRP5/6) to regulate Wnt
signaling. Through this binding, SOST prevents Wnt ligand
binding to LRP5/6 and its co-receptor, Frizzled, leading to
decreased bone formation and increased bone resorption (Shah
et al., 2015). While these data suggest SOST may impact
Wnt signaling, which, in turn, affects the brain and AD
pathophysiology (Inestrosa et al., 2002; Inestrosa and Varela-
Nallar, 2014), further research needs to be conducted, as
it is unclear if circulating SOST can cross the blood-brain
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barrier (BBB). One potential mechanism by which SOST
could influences brain physiology may be through vascular
regulation. SOST has recently been shown to influence vascular
pathophysiology, a known risk factor for dementia, with high
levels of SOST having been linked to cardiovascular mortality
(Justin et al., 2013; Novo-Rodríguez et al., 2013; Catalano et al.,
2020a). However, whether or not SOST plays an associative or
causative role in vascular pathophysiology, and how this may
influence development of dementia, remains unknown.

Osteopontin is thought to enhance bone resorption by
anchoring osteoclasts to bone matrix, and high serum levels
of OPN correlate with low BMD in post-menopausal women
(Reinholt et al., 1990; Cho et al., 2013; Fodor et al., 2013). OPN
also acts as a cytokine with upregulated production in response to
inflammation and injury, including neuronal damage (Denhardt
et al., 2001; Wang and Denhardt, 2008). OPN levels increase in
patients with MCI progressing to AD, suggesting OPN could be
a marker of neuroinflammation and early clinical stages of AD
(Simonsen et al., 2007; Sun et al., 2013). Thus, it is possible that,
early on, increased OPN expression may be neuroprotective in
AD. This is supported by studies demonstrating a more marked
increase in OPN levels in AD subjects in early stages of disease
(Comi et al., 2010).

Shared risk factors for AD and bone loss include aging,
systemic inflammation, depression, genetics, sex, and physical
inactivity. However, the relationship between bone loss and
AD is complex and cannot be solely attributed to aging,
osteoporosis, or dementia. Rather, data suggest there are
common pathophysiological mechanisms contributing to both
diseases. Further adding to this complexity is the reciprocal
crosstalk that occurs between brain and bone. Thus, bidirectional
signaling between brain and bone tissue should be considered in
the context of AD and its treatments.

Infection
Septicemia/Sepsis
Septicemia, the entry of bacteria into the bloodstream, leads
to rapid immune activation and can result in a systemic
reaction (sepsis), which can lead to death (Taeb et al., 2017).
While the pathophysiology of sepsis is complex, it involves an
impaired immune response in which an initial, rapid increase in
inflammation is followed by sustained dysregulation of immune
activation/suppression, impacting multiple organ systems and
resulting in long-term morbidity (Uhle et al., 2016; Taeb et al.,
2017; Cecconi et al., 2018). Increased activation of the peripheral
immune system can also lead to CNS inflammation, owing
to a disrupted BBB, which can result in sepsis-associated
encephalopathy (SAE) (Meneses et al., 2019). As SAE impacts
roughly 70% of septic patients and is a leading cause of brain
dysfunction, it is critical to understand the mechanisms by which
sepsis-induced dysregulation of the neuroimmune-endocrine
response may impact organ systems like bone (Lamar, 2011).

Clinical evidence suggests sepsis negatively impacts bone
health. In a retrospective study of patients initially treated for
sepsis with absolute increase > 2 in Sequential Organ Failure
Assessment score, significant bone loss was observed in the

thoracic, lumbar, and sacral spine regions (Hongo et al., 2019).
A second retrospective study showed that sepsis patients had
an increased risk for developing osteoporosis compared to
non-sepsis patients (Lee et al., 2020). In addition to bone
loss, sepsis has been linked to heterotopic ossification, the
abnormal formation of lamellar bone in connective tissue. In
a retrospective study of patients hospitalized for burn injuries,
sepsis following burn injury was associated with the development
of heterotopic ossification ∼37 days after admittance, suggesting
sepsis temporally modulates bone physiology (Orchard et al.,
2015). Together, these studies indicate that the mechanisms by
which sepsis impacts bone are complex and likely dependent
on many factors, including type, duration, and location of
initial infection.

Studies in preclinical models have shown sepsis rapidly
reduces bone strength, impacts cellular differentiation in bone
marrow (BM), and induces prolonged changes in peripheral
macrophage populations. In a rat model of cecal ligation-
puncture, trabecular bone strength was significantly reduced
beginning 24 h following sepsis induction and was associated
with decreased collagen and mineral elastic modulus at 24-
and 96-h post-sepsis induction, respectively. These results
suggest sepsis rapidly impacts biomechanical properties of bone
and may lead to lasting changes in bone microarchitecture
(Puthucheary et al., 2017). In addition to altered biomechanics,
data indicate sepsis impacts differentiation of BM myeloid cells.
In a combined rodent model of burn injury and sepsis, a
shift in myeloid differentiation toward monocytopoiesis 72 h
following thermal injury was reported, indicating sepsis can
lead to rapid changes in differentiation of HSCs in BM
(Santangelo et al., 2001). Alterations in the BM compartment
were also observed in a rodent model of cecal ligation-puncture,
in which epigenetic modifications in BM-derived monocyte
precursors were found to impact the function and wound-healing
capabilities of circulating macrophages (Davis et al., 2019).
These studies point to modulation of monocyte differentiation
and macrophage function as additional mechanisms by which
sepsis may induce long-lasting effects in bone, possibly through
dysregulated osteoclast differentiation and/or alterations in osteal
macrophage function.

Movement Disorders
Parkinson’s Disease
Parkinson’s disease (PD) is a progressive neurodegenerative basal
ganglia syndrome characterized by bradykinesia and rigidity,
resulting in limited daily activity and increased fall risk (Latt
et al., 2009; Tassorelli et al., 2017). A number of studies have
examined impacts of PD on bone, with PD being associated with
decreased BMD and increased fracture risk (Vaserman, 2005;
Wood and Walker, 2005; Fink et al., 2008; Gnädinger et al., 2011;
Raglione et al., 2011; van den Bos et al., 2013; Gao et al., 2015;
Sleeman et al., 2016). Meta-analysis indicates PD patients are at
a higher risk for osteoporosis and have lower hip, lumbar spine,
and femoral neck BMD compared to healthy controls (Zhao et al.,
2013). Women with PD have 7.3% lower total hip BMD and an
increased risk of hip fracture (Schneider et al., 2008). Vitamin D
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concentrations and weight loss are reduced in early PD patients
and associated with bone loss (van den Bos et al., 2013; Ozturk
et al., 2020). No difference was found in BMD between male PD
subjects with short disease duration (0 to 5 years) compared to
those with longer disease duration (5 to 10 years), suggesting
PD progression may not correlate directly to decreasing BMD
and that early detection is key to addressing PD-induced bone
loss (Daniel et al., 2012). Thus, PD patients should be closely
monitored for vitamin D levels and weight, as well as receiving
routine dual-energy X-ray absorptiometry (DEXA) scans and
fracture risk assessment (FRAX) (Henderson et al., 2019).

Evidence for molecular mechanisms of PD related to bone loss
and increased fracture risk is scant. Lewy body deposition in areas
of the brain that regulate bone growth and strength may play
a role (Litvan et al., 2007; Daniel et al., 2012). Lifestyle changes
associated with PD may result in vitamin D deficiency, which
can impact bone loss via compensatory hyperparathyroidism
(Invernizzi et al., 2009; van den Bos et al., 2013; De Pablo-
Fernández et al., 2017). PD also alters levels of bone metabolism
markers (Sato et al., 2004; Bezza et al., 2008). Elevated
homocysteine levels from levodopa treatment, the central drug
treatment for PD, may also impact bone, as homocysteine
can induce osteoclast differentiation and osteoblast apoptosis
(Koh et al., 2006; Lee et al., 2010). A significant proportion
of PD patients suffer from depression, and concomitant use of
antidepressants with levodopa results in a 3- to 5-fold increase
in risk of hip and femur fracture (Lieberman, 2006; Arbouw
et al., 2011). In general, several factors may be involved in
development of bone loss associated with PD, including limited
mobility/activity, malnutrition, low body mass index, decreased
muscle strength, medication use, and vitamin D deficiency
(Invernizzi et al., 2009; Malochet-Guinamand et al., 2015). Larger
and more powerful studies are needed to determine effects of
PD on osteoporosis risk and to stratify this risk by various
confounding factors.

Ataxia
Ataxia, a degenerative CNS disease, results in impaired balance
and coordination. It is usually caused by damage to the
cerebellum but can be caused by damage to the spinal cord or
other nerves. There have been few studies on subtypes of ataxia
and their effects on bone. In Friedreich ataxia (FDRA), the most
common inherited ataxic disorder in the Caucasian population
caused by a GAA triplet expansion in the first intron of the
frataxin gene on chromosome 9q13, scoliosis and foot deformities
are frequent (Labelle et al., 1986; Delatycki et al., 2005; Milbrandt
et al., 2008). A strong negative correlation between ataxia severity,
GAA repeat length, and BMD was reported in the femoral neck
of FDRA patients (Eigentler et al., 2014). The low observed BMD
may be due to disease-related falls, mobility restrictions, and/or
wheelchair-dependency. Additionally, vitamin D levels were low
in the patient cohort, but it is unclear as to why. Suboptimal bone
growth and mineralization in FRDA patients during childhood
and adolescence may also impact adult BMD and growth. Farias
et al. assessed BMD in patients with spinocerebellar ataxia type
3, also known as Machado-Joseph disease (MJD), which is a
progressive ataxia resulting in movement restriction caused by

an abnormal cytosine-adenine-guanine (CAG) expansion on
chromosome 14q32.1. Ten patients out of thirty showed low
BMD in at least one of the sites studied, while five patients had
at least one lumbar fracture and seven patients reported more
than ten falls per month (Farias et al., 2019). This study also
found a correlation between CAG expansion and low femoral
neck score, providing further evidence that gene alterations
may be related to lower BMD. Simonsen et al. found that
75.3% of patients with hereditary ataxia had osteopenia or
osteoporosis (Simonsen et al., 2016). These studies suggest the
need for routine BMD measurements in ataxia patients to initiate
prophylactic osteoporosis treatments. Further studies are needed
to determine molecular and genetic mechanisms as opposed
to lifestyle changes (e.g., reduced exercise/mobility, increased
falls) that may be causing bone loss. In addition, patients with
ataxia telangiectasia show immune dysregulation and premature
aging, both of which can affect bone loss (Ambrose and Gatti,
2013). Examining immune markers and comparing bones from
young ataxia patients to bones from the elderly may provide new
pathways for study.

Neural Development Disease
Autism Spectrum Disorder
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder with heterogeneous origin and symptomology,
including atypical autism, autism, and Asperger Syndrome, that
disproportionately impacts males (3:1) (Kim et al., 2011; Sinha
et al., 2015; Bhandari et al., 2020). Main symptoms include lack of
social interaction, abnormal emotional/sensory processing, and
repetitive, restricted behaviors, while secondary symptoms can
include irritability, anxiety, aggression, and comorbid disorders.
The etiology of ASD is complex and likely involves variations
in genes regulating synaptogenesis and signaling pathways, as
well as epigenetic and environmental factors, that ultimately lead
to neural plasticity dysfunction and the precipitation of social,
emotional, and sensory processing symptoms.

Poor nutrition, decreased physical activity, vitamin D
deficiency, and use of antipsychotic therapies (APTs) have
been associated with poor bone health in ASD. In a cross-
sectional study of adolescent boys aged 8–17 years, ASD patients
exhibited lower BMD in the lumbar spine, femoral neck, total
hip, and whole-body regions compared to age-matched controls
(Neumeyer et al., 2013). In addition to lower BMD scores,
adolescent boys with ASD had lower consumption levels of
protein, calcium, and phosphorus, and were less physically
active than typically developing adolescents. In another study
of prepubertal boys, patients with ASD were shown to have
lower BMD at both the hip and femoral neck regions compared
to healthy control patients, as well as lower levels of serum
vitamin D and decreased physical activity, pointing to vitamin D
deficiency and decreased overall activity as potential risk factors
for ASD-related bone loss in the adolescent ASD population
(Neumeyer et al., 2013).

Autism spectrum disorder also impacts bone
microarchitecture and fracture risk. In a cross-sectional study
of adolescent boys, ASD patients exhibited lower trabecular
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thickness, compressive stiffness, and failure load at the ultradistal
radius, as well as a 61% reduction in cortical area compared
to typically developing controls, with similar effects observed
in the distal tibia (Neumeyer et al., 2017). These ASD patients
also exhibited increased body fat, increased serum IGF-1, lower
lean mass, and decreased whole body and femoral neck BMD,
suggesting physical activity, nutrition, and changes in IGF-1
responsiveness may contribute to ASD-related changes in bone
density and microarchitecture. Increased fracture risk has also
been observed in the ASD patient population. In a national study
of emergency room visits, a higher rate of hip fractures was
observed in both children/adolescents (3–22 years) and adults
(23–50 years) with ASD compared to patients without ASD, with
a higher rate of forearm and spine fractures also observed in
adult women (Neumeyer et al., 2015).

While not all studies in the ASD population control for use of
APTs, such as risperidone, there is evidence that patients taking
APTs have decreased BMD. In a study of adolescent boys with
ASD, ∼49% of patients taking an APT had hyperprolactinemia
with decreased lumbar spine BMD, as well as decreased levels
of the bone turnover marker, carboxyterminal cross-linking
telopeptide of bone collagen, compared to patients taking APT
without hyperprolactinemia (Roke et al., 2012). Another study of
ASD boys aged 5–17 years taking risperidone showed decreased
trabecular BMD and decreased radius bone strength compared
to healthy controls (Calarge and Schlechte, 2017). Preclinical
studies have shed light on the biological mechanisms by which
ASD, as well as APT treatment, may impact bone health.
In a genetic mouse model for human 15q11-13 duplication,
decreased bone mass was observed and associated with osteoblast
reduction and decreased bone formation (Lewis et al., 2017).
Osteoblasts from ASD mice exhibited decreased proliferation,
differentiation, and mineralization, whereas osteoclasts were
minimally impacted. In a rat model of ASD, based on maternal
exposure to LPS, ASD rats showed decreased bone stiffness and
strength, in addition to a reduced number of OCN-positive cells
compared to control rats, also indicating that ASD leads to
impaired osteoblast proliferation and/or differentiation (Amini
et al., 2020). Treatment of ASD rats with risperidone led to
more extreme impacts on bone strength, providing evidence that
APT treatment exacerbates ASD-related bone effects. Additional
studies will help delineate the influence of APTs on bone health
in the context of ASD.

Cerebral Palsy
Cerebral palsy (CP) is the most common motor disorder in
children and causes a wide range of symptoms impacting
neurological (e.g., ataxia, impaired gross motor coordination),
orthopedic (e.g., hip dysplasia/dislocation), cognitive (e.g.,
autism, epilepsy), and visual/hearing systems (Brandenburg et al.,
2019; Vitrikas, 2020). CP etiology is complex and involves
pathophysiology in the brain and spinal cord. Spastic CP,
which accounts for > 80% of cases, is thought to result from
dysfunction in the spinal cord, leading to disinhibition of
motor neurons and causing symptoms of spasticity, impaired
coordination/movement, hyperreflexia, muscle contracture, and
weakness (Sheean and McGuire, 2009; Brandenburg et al., 2019).

While the pathological development of spastic CP is complex,
it has been linked to asphyxia, prenatal/neonatal hemorrhagic
or ischemic stroke, infection, brain malformation, trauma, and
genetic factors (Brandenburg et al., 2019).

In addition to neuromuscular dysfunction, children and
adolescents with CP often present with impaired bone health.
Children with quadriplegic CP had reduced BMD of the lumbar
spine compared to age-matched healthy children, with the most
severe bone impacts observed in patients at level V of the
Gross Motor Function Classification System (GMFCS) and in
malnourished patients, pointing to disease severity, mobility,
and malnutrition as potential risk factors for bone loss (Alvarez
Zaragoza et al., 2018). In addition to disease severity, changes
in the IGF-1 axis have been implicated in CP-induced bone
loss. BMD was significantly decreased in children with spastic
CP compared to healthy children and was associated with
low circulating IGF-1 levels, severe GMFCS level, and use of
anticonvulsive drugs. Children with CP also exhibited increased
fracture risk (Nazif et al., 2017).

There is conflicting evidence for the role of anticonvulsive
drugs as a risk factor for low BMD. In a study of non-ambulatory
children with CP, no significant differences in BMD were found
between children taking and not taking anticonvulsant therapies
(Cheng et al., 2016). However, nutritional status was implicated as
a risk factor. Studies comparing ambulatory and non-ambulatory
children with CP have shown that the main predictor of low
BMD in the distal femur is impaired mobility (Finbråten et al.,
2015). Adolescents and young adults with CP have shown similar
deficits in areal BMD, which were associated with reduced
mobility by the GMFCS (Trinh et al., 2019).

Although less well-studied, there is clinical evidence that adult
CP patients also exhibit bone loss. In a study of premenopausal
women and men under 50 years old, BMD was significantly
decreased at the lumbar spine, total hip, and femoral neck regions
compared to healthy controls. For the lumbar spine and hip,
BMD was associated with impaired motor ability by the GMFCS
(Fowler et al., 2015). In a demographically similar population,
BMD at the second metacarpal bone (mBMD) was found to
be decreased and correlated with use of anticonvulsant drugs
(Nakano et al., 2003). In men, abnormal calcium metabolism
was also associated with lower mBMD, whereas, impaired
mobility was associated with mBMD in women, suggesting the
mechanisms by which CP impacts bone health may be sex-
dependent and include both physical and biomolecular factors. In
a study of ambulatory versus non-ambulatory adult CP patients,
non-ambulatory patients had decreased BMD, lower PTH levels,
and higher SOST levels compared to ambulatory patients,
implicating systemic changes in hormones and bone remodeling
factors in CP-related bone loss in adult patients (Shin et al., 2017).
Taken together, these studies implicate disease severity, mobility
status, and alterations in hormones and bone remodeling factors
as critical risk factors for CP-associated bone loss.

Epilepsy
Epilepsy is a complex neurological disorder characterized by
repeated, unprovoked seizures. Diagnosis is made upon the
occurrence of two or more unprovoked seizures more than
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24 h apart or one unprovoked seizure with high probability of
recurrence ( > 60%) over the next 10 years (Beghi et al., 2015).
While the etiology of epilepsy is unknown, genetic predisposition,
brain injury, and infection have been implicated as causal
factors (Thijs et al., 2019). Epilepsy is a highly heterogeneous
disorder, with four major types (focal, generalized, combined
focal/generalized, and unknown) that can be divided based on
nature of seizure onset, as well as level of awareness, motor
symptoms, and non-motor symptoms (Thijs et al., 2019).

Patients with epilepsy have increased risk of developing
osteoporosis and increased fracture risk that is 2–6 times
higher than the general population, independent of seizure-
related fractures (Diemar et al., 2019a). Decreased exercise, a
more sedentary indoor lifestyle, and use of anti-epileptic drugs
(AEDs), which can lead to impaired coordination and disrupted
calcium/vitamin D metabolism, may contribute to poor bone
health (Kobau et al., 2004; Shellhaas and Joshi, 2010; Diemar
et al., 2019b). A meta-analysis of epileptic children showed a
significant BMD decrease at lumbar spine, trochanter, femoral
neck, and total body regions (Zhang et al., 2015). Decreased
serum vitamin D and increased serum alkaline phosphatase
(ALP) were also observed, suggesting abnormal vitamin D
and/or calcium metabolism may contribute to decreased BMD
in children with epilepsy.

Use of AEDs, especially cytochrome P450 enzyme-inducing
AEDs (EIAEDs), have been associated with poor bone health in
children and adult patients with epilepsy. In ambulant children
with epilepsy, use of > 2 EIAEDs was shown to be a significant
risk factor for low lumbar BMD (Fong et al., 2018). In a case-
control study of matched-pair adolescents, epileptic patients
taking AEDs had a significantly increased fracture risk and a 14%
reduction in trabecular volumetric BMD compared to matched
controls, demonstrating a link between AED use and poor bone
health (Simm et al., 2017). A similarly designed study of same-sex
twin/age-matched sibling pairs showed EIAED users exhibited
a greater reduction in hip and total body BMD, which was
not observed in non-enzyme-inducing AED (NEIAED) users,
pointing to EIAEDs as the primary driver of bone loss in
this patient population (Shiek Ahmad et al., 2017). Similarly,
patients on carbamazepine (CBZ), a widely used EIAED, have
increased hip and femoral neck BMD loss during initial years
of therapy compared to nonusers and have increased hip BMD
loss compared to users on NEIAEDs, including levetiracetam and
valproate. While the mechanisms by which EIAEDs impact bone
have not been fully elucidated, increased catabolism of vitamin
D to inactive metabolites, decreased calcium, increased PTH,
and increased bone turnover have been implicated (Pack, 2008).
In a study of epilepsy patients taking CBZ for > 12 months,
decreased BMD and decreased serum vitamin D were observed.
A concomitant increase in OCN was observed in CBZ users,
suggesting that, in addition to modulation of vitamin D, CBZ
may impact bone turnover (Suljic et al., 2018). In an epilepsy
rat model, CBZ was associated with decreased serum vitamin D
and elevated PTH, as well as decreased BMC, impaired collagen
crosslinks, and decreased microhardness, indicating CBZ therapy
may affect bone strength and microarchitecture (Garip Ustaoglu
et al., 2018). Although less well documented, there is evidence

to suggest that some NEIAEDs, including valproate, also impact
bone health in patients with epilepsy. In a meta-analysis of
valproate users, BMD was found to be decreased in spine and
femoral neck regions compared to healthy controls and was
associated with increased serum bone-specific alkaline phosphate
(BALP) (Fan et al., 2016). In addition to vitamin D deficiency,
use of AEDs has been associated with hyponatremia in epilepsy
patients. In a cross-sectional study of patients with epilepsy,
hyponatremia was observed in ∼10% of the population and was
independently associated with decreased BMD and increased
risk of osteoporosis, providing evidence that altered sodium
metabolism may contribute to AED-associated bone loss in
epilepsy (Diemar et al., 2019a). While additional mechanistic
studies are needed, current evidence points to altered vitamin D
and sodium metabolism, elevated PTH, and dysregulated bone
turnover in epilepsy patients taking AEDs.

Neuromuscular Disease
Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disorder characterized by loss of cortical,
brainstem, and spinal motor neurons that results in progressive
muscle atrophy. There is currently no cure for ALS. Most
patients eventually become dependent on mechanical ventilation
and usually die due to respiratory failure (Portaro et al., 2018).
How ALS may affect the skeleton and modify osteoporosis risk
is under-studied. Altered calcium metabolism, hypovitaminosis
D, reduced cortical bone mass, and vertebral defects have been
noted in ALS patients (Mallette et al., 1977; Yanagihara et al.,
1984; Joyce et al., 2012). In clinical studies, ALS patients had
14% more fractures than controls, and, in a Swedish population,
fracture was associated with higher incidence of ALS (Parfitt,
1994; Peters et al., 2017). ALS has also been associated with
increased bone turnover markers in the blood (Fang et al., 2010).
In a case report of an 81-year-old man with ALS, multiple hidden
vertebral fractures were found, with a low Z score but normal
TBS, suggesting normal bone structure (Portaro et al., 2018). It
is possible that reduced muscle strength from ALS resulted in
an unsupported spinal column, leading to these fractures. In a
mouse model of ALS, SOD1G93A mice demonstrated decreased
bone mass with notable whole bone biomechanical deficits
(Ko et al., 2018). Osteoblasts isolated from SOD1G93A mice
with muscle atrophy had impaired differentiation capacity,
while osteoclast activity was increased compared to wildtype
mice (Zhu et al., 2015). Aberrant Akt, Erk1/2, SOST, RANKL,
and β-catenin signaling pathways were noted, which could be
further links between ALS-induced muscle atrophy and bone
loss. Muscle and bone are known to cross-talk extensively, with
skeletal muscle providing an important source of osteogenic
growth factors (e.g., IGF-1, FGF-2), as well as driving bone
morphogenesis through mechanical load (Hamrick et al., 2010;
Sharir et al., 2011; Zhou et al., 2015). Thus, it is likely that muscle
atrophy is the key component linking ALS to bone loss and
increased fracture risk.

Another interesting mechanism that may link ALS to bone
is accumulation of neurotoxic metals. Neurotoxic metals, such
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as lead, have been found in the brain and CSF of ALS
patients and have been shown to affect bone mineralization,
whereby they accumulate in the bone and act as substitutes
for calcium in hydroxyapatite (Roos et al., 2013; Chen X.
et al., 2014; Roos, 2014). It is also possible that osteoporosis
can worsen neurodegenerative disease outcomes, as the bones
and CSF share circulation. Bone may act as a sink for
neurotoxic metals, releasing them during osteoporosis, thereby
facilitating neurodegeneration (Roos, 2014). Patients exposed
to high concentrations of neurotoxic metals should be more
closely monitored for osteoporosis and frequently tested for
neurotoxic metals. It is still unclear how any specific molecular
mechanism tied to ALS may influence bone homeostasis or if
increased risk is due primarily to lifestyle factors, as age, reduced
mobility, increased falls, and weight loss are all prevalent in
ALS and are common osteoporosis risk factors. Thus, more
studies are needed examining molecular mechanisms linking
ALS to bone, particularly any associated with muscle atrophy or
neurotoxic metals.

Myasthenia Gravis
Myasthenia gravis (MG) is a neuromuscular disorder that
results in weakening of the skeletal muscles. It is frequently a
product of autoimmune disease, resulting in attack on nicotinic
acetylcholine receptors or on muscle-specific tyrosine kinase
(MuSK). The exact cause of this autoimmune reaction is still
under investigation. Symptoms include difficulty breathing or
swallowing, fatigue, drooping of eyelids, problems walking or
lifting objects, trouble talking, and double vision. Regarding
impacts on bone, a study found that MG resulted in a 1.96-fold
increased risk of developing osteoporosis, likely due to lack of
outdoor activity leading to decreased sunlight exposure/vitamin
D and physical inactivity (Yeh et al., 2014). However, altered
acetylcholine signaling may also play a role, as osteoblasts
express acetylcholine receptors and elevated acetylcholine levels
induce osteoblast proliferation (En-Nosse et al., 2009; Sato et al.,
2010). In addition, MG patients prescribed antidepressants,
anxiolytics, or anticonvulsants had increased fracture risk
(Pouwels et al., 2013). The mechanism underlying this finding
is unknown but may be due to altered neuronal signaling, as
use of SSRIs reduces BMD in humans (Ducy and Karsenty,
2010; Haney et al., 2010; Brinton et al., 2019). The use of
anticonvulsants increases vitamin D catabolism, leading to
increased bone resorption (Kinjo et al., 2005). However, how
these mechanisms coincide with MG to increase fracture risk
remains unknown.

In addition to the effects of MG itself, corticosteroids, a
common treatment for MG, are known to cause bone loss,
with long-term corticosteroid use the most common mediator
of secondary osteoporosis (Buehring et al., 2013). Corticosteroids
have been shown to increase osteoporosis risk in MG (Pascuzzi
et al., 1984; Konno et al., 2015; Braz et al., 2017). A case
study reported an MG patient with eight spinal compression
fractures due to intensive and prolonged prednisone treatment,
but DEXA scanning and/or bisphosphonate treatment were
not mentioned as being used prophylactically (Raibagkar et al.,
2017). This situation may, unfortunately, not be uncommon

among neurologists, as there may be a lack of awareness
and non-implementation of iatrogenic osteoporosis treatment
guidelines, with limited requested DEXA scanning and a lack
of understanding in how to interpret T scores leading to
over- or under-treatment with bisphosphonates (Lewis and
Smith, 2001; Lozsadi et al., 2006; Gallagher and Sturrock,
2007). To demonstrate the benefits of prophylactic osteoporosis
treatment, BMD in 36 MG patients who had undergone long-
term prednisolone administration with concurrent treatment
with elcatonin was measured, and a decrease in BMD was
found in 31% of female patients and osteoporosis in 11.5%
compared to a presumptive rate of 22.6% in the general
population. No osteoporosis was detected in male patients
(Wakata et al., 2004). This suggests that prednisolone-treated
MG patients have an acceptable bone loss risk when monitored
and provided prophylactic osteoporosis treatment. Likewise, MG
patients with history of glucocorticoid treatment who were
treated with alendronate combined with alfacalcidol showed
increased BMD and decreased bone turnover biomarker levels
(Lv et al., 2018). Further studies are needed to dissect the
mechanistic roles by which MG impacts bone health independent
of corticosteroid use.

Neuromuscular Dystrophy
Neuromuscular dystrophy (NMD) is a group of degenerative
muscle diseases in which genetic mutations result in loss of
muscle mass and progressive weakness. Muscle-bone interactions
have been extensively studied, and it is thought that alterations in
muscle-derived myokines, bone deformation as a result of muscle
weakness, and direct effects of genetic defects on bone cells
may negatively impact bone in NMD, as well as low vitamin D,
nutritional deficits, immobility, and drug treatments (Kurek et al.,
1996; Febbraio and Pedersen, 2002; Veilleux and Rauch, 2017).

Duchenne muscular dystrophy (DMD) is the most common
form of NMD and is an X-linked recessive disorder linked
to a mutation in the dystrophin gene that is characterized by
progressive muscle weakness due to reduction of dystrophin and
destabilizing effects on the sarcolemmal membrane, ultimately
leading to premature death (Hoffman et al., 1987). There is
currently no cure. DMD is the most studied form of NMD
in regards to bone health, with reports dating back to 1941
(Maybarduk and Levine, 1941; Joyce et al., 2012). Boys with
DMD have abnormalities in bone geometry, presenting with
slender long-bone shafts, a likely risk factor for long bone
fracture (Veilleux and Rauch, 2017). Up to 90% of patients with
DMD have scoliosis, providing strong evidence for the role of
dystrophin in regulating bone health and development (Pecak
et al., 1980). Decreased BMD, increased fracture rate, and vitamin
D deficiency have been reported in DMD (Siegel, 1977; Larson
and Henderson, 2000; Vestergaard et al., 2001; McDonald et al.,
2002; Bianchi et al., 2003; Hawker et al., 2005; Perera et al., 2016;
Joseph et al., 2019). Aparicio et al. found that eight out of ten
boys aged 6–11 years with DMD years had osteoporosis in the
proximal femur, while the remaining two boys had osteopenia
(Aparicio et al., 2002). Bianchi et al. showed that DMD patients
had reductions in spine BMD, hypocalciuria, increased bone
turnover markers, and low vitamin D levels (Bianchi et al., 2003).
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Fall risk is also increased with DMD, thereby further increasing
fracture risk (McDonald et al., 2002).

Using the dystrophin-null mdx mouse, Rufo et al. found mdx
mice displayed changes in BMD in a manner similar to that
observed in humans. Osteoclasts and IL-6 levels were increased,
while RANKL:OPG ratio was altered in favor of increased bone
resorption. Human primary osteoblasts incubated with sera
from DMD patients showed decreased nodule mineralization,
downregulation of OSX and OCN, and upregulation of IL6,
IL11, inhibin-βA, and TGFβ2, suggesting DMD can directly
impact bone at a cellular and molecular level (Rufo et al.,
2011). This study also proposed anti-IL-6 therapy as a possible
treatment of bone disease in DMD. In regard to current DMD
treatment, increasing routine use of corticosteroids to treat
DMD is concerning, due to the known effects of chronic
glucocorticoid treatment on bone health (Bell et al., 2017).
In DMD, corticosteroid use may be increasing prevalence of
vertebral fracture (King et al., 2007; Houde et al., 2008; Annexstad
et al., 2019). However, robust evidence that corticosteroid
use increases fracture risk in DMD, specifically, is lacking.
Teriparatide has also been used with success in DMD, showing
improvements in BMD and quality of life with few, if any,
side effects (Catalano et al., 2016; Nasomyont et al., 2020). It
is clear that routine imaging, particularly of the spine, clinical
monitoring, consideration of skeletal delay, possible vitamin D
supplementation and/or teriparatide treatment are needed when
evaluating bone health and BMD Z-scores in patients with DMD
(Ko et al., 2020).

Another form of NMD, spinal muscular atrophy (SMA), an
autosomal recessive disorder due to mutations in survival motor
neuron 1 and (SMN1/2) that involves selective destruction of
anterior horn cells, is associated with fractures at birth and
increased rates of fracture throughout life. There are multiple
subtypes that present with different degrees of severity. Both
long bone and vertebral fractures are relatively common, as
well as scoliosis (Vai et al., 2015). Animal studies have shown
that the exon 7 splice variant of SMN upregulates osteoclast-
stimulating factor, promotes osteoclast formation, and enhances
bone resorption (Kurihara et al., 2001; Shanmugarajan et al.,
2009). However, more in depth mechanistic studies are needed in
humans to determine direct effects of SMA mutations on bone.

Psychological
Major Depressive Disorder
Major Depressive Disorder (MDD) is a highly prevalent,
heterogeneous mood disorder characterized by biases in
attending to and recalling negative emotional stimuli that
align with a negative mood state (Belmaker, 2008). The
etiology of MDD is complex and likely involves dysregulation
of serotonin and norepinephrine neurotransmission, increased
neuroinflammation, and environmental factors (Woelfer et al.,
2019). Significant clinical evidence shows MDD is associated with
poor bone health, including decreased BMD and increased risk
for osteoporosis. Patients with MDD were found to be 1.3 times
more likely to develop osteoporosis compared to patients without
MDD (Lee et al., 2015). In a population-based cohort study,

patients diagnosed with a depressive disorder were found to have
higher risk of vertebral fracture compared to healthy patients
(Lee et al., 2017). In a meta-analysis, MDD was associated with
lower BMD in the lumbar spine, femur, and total hip regions in
all age groups compared to healthy controls (Schweiger et al.,
2016). Differences in lumbar spine and femur BMD were more
prevalent in women, whereas differences in hip BMD were more
prevalent in men, suggesting sex-dependent effects of MDD on
bone. Clinical studies also point to age-dependent differential
effects of MDD on bone. Adolescent boys with MDD had lower
hip and femoral neck BMD compared to age-matched controls,
whereas no differences in BMD were found in girls with MDD
compared to healthy controls (Fazeli et al., 2013).

Although many clinical studies examining the impact of
MDD on bone do not stratify based on MDD subtype, different
subtypes of MDD may be associated with greater risk for low
BMD. In a study of premenopausal woman with melancholic,
atypical, or undifferentiated MDD, women with undifferentiated
MDD were more likely to exhibit low BMD at the femoral
neck compared to healthy control patients. Elevated levels of
adrenocorticotropic hormone (ACTH) were observed in women
with atypical MDD, while higher levels of leptin were observed
in women with melancholic MDD, suggesting differences in the
pathophysiology between MDD subtypes may also account for
observed differences in bone health (Cizza et al., 2010; Woelfer
et al., 2019). Psychological conditions commonly co-occurring
with MDD, including anxiety, may also contribute to bone loss. In
a study of postmenopausal women, patients with higher anxiety
levels exhibited decreased lumbar and femoral neck BMD and
increased fracture risk compared to patients with lower anxiety
levels (Catalano et al., 2018). A separate study in postmenopausal
women showed that anxiety level, as determined by the Hamilton
Anxiety Rating Scale (HAMA), was inversely correlated with
levels of vitamin D and this association was independent of
patient level of depression, suggesting that anxiety independently
impacts vitamin D metabolism and this may be one mechanism
by which anxiety contributes to bone loss and decreased patient
quality of life in the aging population (Martino et al., 2018a,b).
As SSRIs are used as a first-line therapy for MDD patients and
have negative bone effects, it is difficult to parse out how MDD
pathophysiology, versus SSRI treatment, impacts bone health.
Recurrent MDD in adult men was associated with decreased
forearm and total body BMD compared to men with no history
of MDD (Rauma et al., 2015). Further, antidepressant use
in this population was associated with lower BMD in lower-
weight men only. Interestingly, acute MDD episodes were found
to be associated with higher BMD at total hip, pointing to
differential effects of acute versus recurrent MDD. In a study
of adolescents and young adults who were either unmedicated
or within 1 month of starting SSRI treatment, SSRI use was
associated with increased lumbar spine areal BMD in females
and decreased lumbar spine areal BMD in males, suggesting
SSRIs independently impact bone health in a sex-dependent
manner in MDD (Calarge et al., 2014). In young to middle-aged
patients with an acute episode of depression, SSRI use had no
impact on BMD (Malik et al., 2013). However, increased levels
of OPG and increased levels of physical activity were observed in
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MDD patients, suggesting there may be protective/compensatory
mechanisms in acute MDD that temper SSRI-mediated bone
effects. In a study examining levels of bone turnover markers
in medication-free inpatients with recurrent MDD, patients with
MDD exhibited decreased levels of baseline OPG/RANKL and
plasma OPN, indicating MDD may modulate bone physiology
independent of SSRI use (Kadriu et al., 2018).

Bone loss in MDD patients may also be associated with
increased activation of the ACTH and PTH axis, dysregulation
of the OPG-RANK-RANKL axis, increased inflammation, and
autonomic dysfunction (Rosenblat et al., 2016; Elefteriou, 2018).
In postmenopausal women, patients with MDD exhibited
decreased BMD and increased levels of PTH and RANKL
compared to healthy controls (Atteritano et al., 2013). In
premenopausal women, patients with MDD exhibited lower
BMD at baseline, as well as increased PTH and ACTH at
baseline and 6-month follow-up compared to healthy controls
(Cizza et al., 2012). Levels of PTH remained higher in MDD
patients at 24 months, suggesting sustained activation of the
PTH axis may perpetuate negative bone effects. Calcium and
vitamin D levels were also significantly decreased in patients
with MDD compared to controls, indicating vitamin deficiency
is a contributing factor. Increased prevalence of low BMD at the
femoral neck and hip was observed in premenopausal women
with MDD compared to controls, with a concomitant increase
in circulating proinflammatory cytokines (e.g., IL-1β, IL-2, IL-
6, TNF-α) (Eskandari, 2007). Significant increases in plasma
IL-6 and changes in its diurnal release were also observed in
patients with active MDD and found to correlate with mood
ratings, providing additional evidence that inflammation may
dually mediate neurocognitive effects and bone effects in MDD
(Alesci et al., 2005). Patients with MDD also commonly present
with autonomic dysfunction (Kemp et al., 2010; Yang et al.,
2011; Brunoni et al., 2013). Studies in preclinical models show
that MDD-associated trabecular bone loss is associated with
increased levels of bone norepinephrine and can be attenuated
by treatment with propranolol, a beta-adrenergic antagonist
(Yirmiya et al., 2006). Together, these studies implicate increased
sympathetic output as a driver of MDD-associated bone loss,
although additional clinical studies will be necessary to determine
the mechanisms by which altered sympathetic signaling impacts
bone in MDD patients. Further, additional clinical studies that
carefully control for concomitant SSRI use, MDD subtype and
nature (acute versus recurrent), and comorbid conditions such
as anxiety, will better our understanding of MDD-driven bone
pathophysiology.

Post-traumatic Stress Disorder
Post-traumatic stress disorder (PTSD) is characterized by an
abnormal, persistent response to a traumatic event (Seal, 2007;
Heron-Delaney et al., 2013). Patients with PTSD exhibit re-
experiencing symptoms related to the initial traumatic event,
such as flashbacks and nightmares, as well as avoidance,
arousal/reactivity, cognitive, and mood symptoms, which can
manifest as being easily startled, difficulty sleeping, negative
thoughts, and angry outbursts (Qi et al., 2016). While the
pathophysiology of PTSD is complex and not fully understood,

dysregulations in the HPA axis and glucocorticoid signaling, as
well as increased neural and systemic inflammation, have been
implicated in disease initiation and development (Girgenti et al.,
2017; Dunlop and Wong, 2019).

In addition to primary psychological symptoms, studies in
adult, elderly adult, Veteran, and Prisoner of War populations
provide substantial evidence that PTSD negatively impacts bone
health (Glaesmer et al., 2011; Hain et al., 2011; Huang et al.,
2018). A large nationwide longitudinal study showed adults with
PTSD were more likely to develop osteoporosis at an earlier age,
compared to age-matched, healthy controls (Huang et al., 2018).
Similarly, the National Health and Resilience in Veterans study
showed that U.S. Veterans diagnosed with PTSD had significantly
increased risk for developing osteoporosis or osteopenia (El-
Gabalawy et al., 2018). Evidence also supports that PTSD patients
have an increased fracture risk (Jiang et al., 2018).

While the mechanisms by which PTSD impacts bone health
have not been fully elucidated, several molecular, hormonal, and
immune-related pathways implicated in PTSD pathophysiology
negatively impact bone and have been extensively reviewed
elsewhere (Kelly et al., 2019). In response to a stressor,
stimulation of the glucocorticoid axis can lead to activation
of inflammatory and RANK pathways via NF-kB, decreased
osteoblast function, and prolonged osteoclast viability (Vega
et al., 2007; Briot and Roux, 2015). Stress-induced increases
in catecholamines, the “fight-or-flight” hormones, can also lead
to activation of β-adrenergic receptors, stimulating RANKL
expression and promoting osteoclast differentiation (Rodrigues
et al., 2012). In a mouse model of PTSD, PTSD was associated
with significantly decreased BMC and BMD in the femur,
lumbar vertebra, and tibia 3 weeks following initial trauma,
providing evidence that activation of the stress response in
PTSD mice leads to bone loss (Yu et al., 2012). In addition
to dysregulated glucocorticoid and stress hormone signaling,
changes in IGF signaling and immune activation may contribute
to PTSD-related bone loss. IGFs have been implicated in stress
signaling and are known to be important regulators of the
osteoblast-osteoclast balance (Canalis, 2009; Zegarra-Valdivia,
2017). IGF-1 supports osteoblast differentiation, with decreasing
levels of IGF-1 in the aging population being associated
with osteoporosis (Perrini et al., 2010; Crane et al., 2013).
Increased levels of inflammatory factors, including IL-1β, IL-
6, and TNF-α, are upregulated in patients with PTSD and
have been implicated in mediating neurocognitive effects of
the disorder (Passos et al., 2015; Lindqvist et al., 2017; Imai
et al., 2018). Proinflammatory cytokines also promote osteoclast
formation and amplify bone resorption (Sims, 2016; Weitzmann,
2017). These studies suggest PTSD-induced inflammation may
negatively impact bone health, although additional studies are
needed to delineate these effects.

In addition to shared mechanisms of pathophysiology,
therapies used to treat PTSD may also negatively impact bone
health. First- and second-line treatment options for PTSD
patients, including SSRIs and antipsychotic drugs, are associated
with increased risk of developing osteoporosis and fracture
(Vestergaard et al., 2006, 2008; Haney et al., 2010; Alexander,
2012; Rabenda et al., 2013; Seifert and Wiltrout, 2013; Rauma
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et al., 2015). Therefore, it is reasonable to speculate that SSRI
use may exacerbate PTSD-associated bone loss. However, clinical
evidence of the combined effects of PTSD and SSRI use on bone
health is currently lacking.

Substance Abuse and Addiction
Substance use disorders (SUDs), including addictions to alcohol,
heroin, cannabis, ecstasy, cocaine, and amphetamines, are a
major global health concern. While addiction to different
substances can produce different neurobiological effects, there
are shared layers of symptomology between different substance
groups. These include a reduction in response to normal
biological activities like social cooperation and a loss of
ability to control drug-seeking behavior. Progressive changes
in dopamine transmission in the corticolimbic brain regions,
alterations in glutamatergic synapses, and environmental stress
have been implicated in the initiation and development of SUDs
(Reid et al., 2012).

In addition to changes in neural circuitry and plasticity,
SUDs have been associated with impaired bone health. The
impact of alcohol addiction on bone has been well studied and
will be the focus of this section, although opioid, cannabis,
and amphetamine addictions have also been associated with
decreased BMD and increased fracture risk (Gozashti et al.,
2011; Mosti et al., 2016; Gotthardt et al., 2017; Heydari et al.,
2017; Sophocleous et al., 2017). Chronic-excessive use of alcohol
has been shown to negatively impact bone health, resulting in
decreased BMD, decreased BMC, and increased fracture risk.
In a study of males classified as heavy drinkers, osteopenia was
observed in 23% of the population, with a significant inverse
correlation observed between total alcohol intake and BMD
(González-Calvin et al., 2009). In another study of chronic
alcoholic males, 34% of patients had osteoporosis, with low
BMD in the femoral neck and lumbar spine compared to
age-matched, healthy controls (Peris et al., 1995). In addition
to increased risk of vertebral and non-vertebral fractures,
chronic male alcoholics exhibited increased ALP and BALP,
as well as significantly reduced vitamin D and BGP levels
(Santori et al., 2008). Together, these studies point to impaired
bone formation as the major mechanism by which alcohol
addiction impacts bone. Although less well studied, chronic
female alcohol users also exhibit impaired bone health. In
a cross-sectional study of women aged 18–70 years, chronic
alcohol users exhibited decreased femoral neck and lumbar spine
BMD and had a higher prevalence of fractures compared to
non-alcohol-abusing women, although fracture risk could not
be attributed to alcohol use alone (Clark et al., 2003). In a
study of both male and female chronic alcohol users, BMD
directly correlated with total cholesterol and LDL-cholesterol,
independent of liver function, providing evidence that alcohol
addiction may mediate changes in lipid profiles that have
separate effects on bone health. Together, these studies provide
evidence that alcohol abuse negatively impacts bone health
and is closely intertwined with sex, overall nutrition, and
vitamin D deficiency.

Due to the nature of SUDs, it is difficult to parse out
the effects of substance versus substance-induced neurological

changes on bone. In vitro studies provide evidence that alcohol
can directly impact the osteoblast:osteoclast balance. Treatment
of BM cultures with alcohol or acetaldehyde directly impaired
osteoblast differentiation, decreased osteogenesis, and promoted
adipogenesis (Giuliani et al., 1999; Cui et al., 2011). Further,
ethanol treatment increased bone resorption by osteoclasts
in vitro (Cheung et al., 1995). In a rabbit model of alcoholism,
increased triglyceride-bearing osteocytes and increased empty
lacunae were observed, suggesting alcohol leads to impaired
osteocyte function and may promote osteocyte apoptosis (Wang
et al., 2003). Preclinical studies also point to a role for alcohol-
induced changes in leptin signaling, resulting in impaired
osteogenesis and increased adipogenesis (Wang et al., 2003;
Otaka et al., 2007; Maurel et al., 2011). In alcoholism and other
SUDs, it is likely that both direct effects of the substance itself and
indirect effects (e.g., neurobiological impacts on bone turnover)
are responsible for impaired bone health and will require further
study to fully dissect.

Trauma and Spinal Cord
Acute Spinal Cord Injury
The global incidence of spinal cord injury (SCI) is 10.4–83
cases/million/year. Bone loss below the level of the lesion is
rapid and as high as 4% per month in trabecular bone and
2% per month in cortical bone (Wilmet et al., 1995; Szollar
et al., 1997; Dauty et al., 2000). This bone loss persists for
∼2 years post-SCI, with peak loss at 3–5 months, resulting in
increased risk of fracture and osteoporosis (Roberts et al., 1998;
Maïmoun et al., 2006; Smith and Carroll, 2011). Post-SCI, bone
resorption markers increase with a lack of concomitant increase
in bone formation markers (Smith and Carroll, 2011; Thakkar
et al., 2020). Numerous mechanisms have been implicated in
SCI-related bone loss, including mechanical unloading from
loss of motor function, as well as metabolic, endocrine, neural
denervation, and vascular changes (Jiang et al., 2006b). Each
of these can result in osteoblast:osteoclast imbalance, leading to
bone loss, osteoporosis, and fragility fractures. In the absence of
mechanical strain, osteocytes signal to reduce osteoblast activity,
resulting in reduced bone formation (Jiang et al., 2006a,b).
SCI also impacts the OPG-RANKL system and Wnt signaling,
shifting the balance to bone resorption over bone formation
(Maïmoun et al., 2006; Bonewald and Johnson, 2008). Altered
vasoregulation due to injury impacts viability of oxygen and
nutrients to bone, promoting osteoclast formation and bone
resorption (Jiang et al., 2006a,b). Decreased innervation due
to SCI may also affect availability of neuropeptides, such as
vasoactive intestinal peptide (VIP) and calcitonin gene-related
peptide (CGRP), which suppress bone resorptive activities
through RANKL/OPG pathway (Yoon et al., 2004). Decreased
PTH has also been reported 4–12 months post-SCI, which
can lead to decreased vitamin D and subsequent impaired
absorption of dietary calcium (Giangregorio and Blimkie, 2002;
Jiang et al., 2006a,b). Thus, while disuse is considered to be the
most impactful factor in post-SCI osteoporosis and associated
fractures, it is clearly a more complex, multi-factorial process, and
this should be considered when developing therapeutic strategies.
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Traumatic Brain Injury
Traumatic brain injury (TBI) results in temporary to permanent
neurological damage and dysfunction and is associated with
increased mortality and morbidity. TBI is often referred to as
the “silent epidemic,” and, while the incidence has been difficult
to determine, reports suggest 69 million individuals suffer TBI
from all causes annually (Dewan et al., 2019). Patients with
TBI exhibit an elevated risk for fracture and reduced BMD.
A recent study demonstrated that patients recovering from
TBI had suboptimal BMD measurements that were low for
their age and gender, with 18% of the participants meeting
criteria for osteopenia measured at the radius and 51% meeting
the criteria for osteopenia/osteoporosis measured at the tibia
(Banham-Hall et al., 2013). Markers of bone turnover, including
OCN, type I collagen, and PTH, were dysregulated during the
early post-traumatic period, suggesting an imbalance between
bone formation and resorption that occurred rapidly post-
injury (Trentz et al., 2005). Recent preclinical studies suggest
inflammatory stress on bone and BM following TBI leads to
NFκB activation, which, in turn, induces osteoclastogenesis and
bone resorption (Singleton et al., 2019). Pre-clinical studies
from Mohan’s group using a repetitive mouse TBI model have
shown reduced BMC, bone area, bone strength, and BMD
in TBI mice accompanied by negative impacts on cortical
structure and trabecular architecture (Yu et al., 2014a,b). Their
work also demonstrated that mild TBI and bony effects were
associated with decreased circulating IGF-1 levels (Yu et al.,
2014a). Pituitary dysfunctions post-TBI are common, present
in 25–70% of patients (Rosario et al., 2013). Deficiencies in
pituitary hormones, including those that impact bone formation
and contribute to peak bone mass (e.g., IGF-1), can result in
negative effects on skeletal maintenance (Mohan et al., 2003;
Mohan and Baylink, 2005; Xing et al., 2012). An additional
contributor to low BMD risk in TBI patients is the use of
anti-epileptic drugs, which induce the cytochrome P450 system
and likely increase the conversion of vitamin D to its inactive
forms, resulting in less biologically active vitamin D, decreased
calcium absorption, hypocalcemia, increased PTH levels, and
compensatory mobilization of calcium stores from bone (Smith
et al., 2016). Polytrauma with TBI and concomitant fracture has
been shown to result in higher functional deficits and mortality
rates (Albrecht et al., 2019). Studies using two mouse models of
TBI showed that neurological inflammation and brain damage
was increased in animals with fracture and that this damage could
be alleviated by blocking the inflammatory effects of fracture
(Shultz et al., 2015; Yang et al., 2016). While mechanisms driving
the effects of fracture on TBI outcomes are still being elucidated,
these studies suggest that exacerbated neuroinflammation may be
an important contributing factor.

Vascular Disease
Stroke
Stroke is one of the most common neurologic problems,
with hemiplegia being a common outcome that results in
loss of voluntary movement, immobilization, and sensory
disturbances. There is a robust and long literature examining

the effects of stroke on bone health and fracture, notably
in the hip (Peszczynski, 1957). The relative risk of fracture
after hospitalization for stroke is greater than 7 times the
rate of fracture in age- and sex-matched control populations
(Kanis et al., 2001). BMD is lower following stroke, while
low BMD may also be a prospective risk factor for stroke
(Ramnemark et al., 1999; Jørgensen et al., 2000; Myint et al.,
2007, 2014; Lee et al., 2013; Lam et al., 2016). Low BMD may
increase stroke risk through altered estrogen/OPG signaling
that leads to increased risk of intracerebral hemorrhage (Strand
et al., 2007). Cibelli et al. showed that aseptic long bone
fracture caused neuroinflammation and cognitive decline (Cibelli
et al., 2010). Thus, determining the cause-and-effect relationship
between stroke and fracture can be complex. A meta-analysis
showed that, in subacute and chronic stroke, skeletal sites
in the affected/paretic limbs had greater decline in bone
quality and deleterious changes in bone geometry compared to
unaffected/non-paretic limbs. This rate of change slowed as post-
stroke duration increased, with the greatest changes occurring
in the first few months post-stroke. A strong relationship
between bone density/strength index and muscle strength/mass
was also noted, demonstrating the importance of muscle-bone
interactions and how they may act as a functional unit, as
proposed by Schoenau (2005). These findings suggest muscle
strength training and early intervention are key to minimizing
negative bone effects of stroke (Borschmann et al., 2018; Yang
et al., 2020). To this end, a mix of resistance, aerobic, and dynamic
loading exercises resulted in better bone outcomes in the hip and
tibia on the affected side in chronic stroke patients (Pang et al.,
2005, 2006).

Muscle imbalance may not be the only mechanism by
which stroke affects bone health. Lower bone turnover markers
have been noted in serum from stroke patients, suggesting
dysregulated remodeling at the bone multicellular unit (Sato
et al., 2000). Stroke patients also have higher energy expenditure,
with this interruption of energy homeostasis potentially
negatively impacting the skeleton during bone remodeling
(Detrembleur et al., 2003; Lee et al., 2007; Driessler and Baldock,
2010). Additionally, reduced vitamin D levels, degree of recovery,
increased fall risk, and use of anticoagulants may increase bone
loss post-stroke (Jørgensen et al., 2000; Smith and Carroll, 2011;
Batchelor et al., 2012; Signorelli et al., 2019). Thus, increased
bone screening measures are needed in stroke patients, as
screening may currently be infrequent (Kapoor et al., 2019).
Osteoporosis treatments, such as bisphosphonates, may be
beneficial for preserving BMD post-stroke, but there is little
evidence to date (Hsieh et al., 2020). More studies are needed to
dissect the molecular mechanisms at the intersection of bone and
stroke to guide treatment and screening recommendations.

Other Disorders
Chronic Fatigue
Chronic fatigue syndrome (CFS) is a complex neurological
disorder associated with persistent, overwhelming fatigue that
affects > 3% of the population in Western countries and is more
prevalent in women (Griffith and Zarrouf, 2008). Diagnostic

Frontiers in Psychology | www.frontiersin.org 14 November 2020 | Volume 11 | Article 612366

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-612366 November 24, 2020 Time: 16:14 # 15

Kelly et al. Neurological Disorders and Bone

criteria include severe, persistent fatigue for at least 6 months,
exclusion of other medical disorders, and observation of at
least four minor symptoms, including impaired memory, nausea,
extreme post-exertion fatigue, headaches, muscle pain, sore
throat, and poor sleep (Committee on the Diagnostic Criteria
for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome et al.,
2015). There remains a lack of treatment and diagnostics tools
for CFS, although glucocorticoids have been used (McKenzie
et al., 2000). Bone loss and increased fracture risk have been
reported in individuals with CFS, independent of glucocorticoid
use. Hoskin et al. found that hip BMD was approximately 7%
lower in women with CFS (Hoskin et al., 2006). A prospective
study reported a 1.16-fold increased risk of fracture in the
CFS cohort without osteoporosis compared to the non-CFS
cohort (Chen C.-S. et al., 2014). However, no mechanistic
insights were provided in these studies. Other studies have
reported that IGF-1 levels are altered in CFS patients (Buchwald
et al., 1996; Berwaerts et al., 1998; Cleare et al., 2000; Nijs
et al., 2003). IGF-1 is essential for osteoblast proliferation,
thus impaired secretion could lead to bone loss. Studies are
needed to further characterize those CFS patients with low
serum IGF-1 to determine if these subgroups have increased
fracture risk compared to CFS patients with normal or high
levels of IGF-1. High prevalence of mycoplasma infections has
also been reported in CFS patients (Choppa et al., 1998; Nasralla
et al., 1999), which can stimulate macrophage activation and
release of pro-inflammatory cytokines that enhance osteoclast
activity. M. fermentans has been shown to produce 2-kDa
macrophage-activating lipopeptide (MALP-2), which stimulates
macrophages and bone resorption in a dose-dependent manner
and is increased with CFS (Piec et al., 1999). Thus, chronic fatigue
may induce bone loss or increase fracture risk through increased
inflammation and/or dysregulation of growth factors.

Sleep Disorders
Chronic sleep deprivation is becoming a widespread problem,
with at least one-third of adults reporting less than 6.5 h of
sleep per night compared to about 9 h of average sleep in
the early 1900s (Bonnet and Arand, 1995; Spiegel et al., 1999;
Specker et al., 2007). Sleep deprivation can negatively impact
health by decreasing cardiovascular health and increasing risk
for development of diabetes and obesity. Since circadian rhythm
has been extensively shown to regulate bone, sleep disorders may
also affect bone homeostasis (Swanson et al., 2015, 2018; Song
et al., 2018). Spiegel et al. found that cortisol concentrations were
higher in the evening with sleep deprivation, a known risk factor
for bone loss (Spiegel et al., 1999). Three weeks of sleep restriction
has been shown to cause a decline in N-terminal propeptide
of type 1 procollagen (P1NP), a bone formation marker, with
stable resorption markers (e.g., CTX), suggesting an uncoupling
of bone remodeling. Importantly, this observed decrease in P1NP
was not rescued with ongoing exposure, suggesting BMD could
be lowered over time when paired with poor sleeping habits
(Swanson et al., 2017, 2019). Sleep-deprived women had lower
cortical BMD compared to women with normal sleeping habits,
and sleep quality, sleep latency, and sleep timing, but not sleep
duration, were associated with osteopenia and sarcopenia in

middle-aged individuals (Specker et al., 2007; Lucassen et al.,
2017). Shiftwork may also lower BMD, providing evidence that
circadian rhythm, and not just amount of sleep, can significantly
impact bone (Quevedo and Zuniga, 2010; Kim et al., 2013).

Obstructive sleep apnea (OSAS) has also been shown to lower
BMD and vitamin D levels, possibly due to increased hypoxia,
which can cause oxidative stress, SNS activity, endothelial
dysfunction, and stimulation of osteoclasts (Shahar et al., 2001;
Arnett, 2010; Uzkeser et al., 2013; Terzi and Yılmaz, 2016; Eimar
et al., 2017). Further, OSAS increases systemic inflammation,
with resultant increased IL-6, TNF-α, and C-reactive protein
(CRP) production, known risk factors for bone loss (Tomiyama
et al., 2008). Fracture can also affect sleep disturbance, likely
due to effects on emotional well-being (Shulman et al., 2015).
Likewise, vertebral fractures have been associated with poor sleep,
and those with osteoporosis were 67% more likely to report
decreased sleep. These studies suggest a negative feedback loop
may be occurring between reduced sleep and poor bone health
(Silverman, 1992; Foley et al., 2004). Interestingly, Cikrikcioglu
et al. found that women with restless legs syndrome had increased
lumbar BMD, despite lower vitamin D levels, possibly due to
unconsciously performing exercise (Cikrikcioglu et al., 2016).

Thus, there are many mechanisms that may link disrupted
sleep to bone loss, including increased systemic inflammation,
hypoxia, insulin resistance, and oxidative stress, as well as altered
circadian rhythm, decreased growth hormone secretion, and
physical inactivity. Large-scale, prospective studies are needed
to elucidate if sleep loss and/or OSAS are independent risk
factors for osteoporosis (Schiza et al., 2013). Further, other sleep
disorders, such as narcolepsy or somnambulism, need to be
studied in more detail for their potential effects on bone.

Vertigo
Vertigo is a symptom in which someone feels like they are moving
or surrounded by moving objects when they are not. This can be
associated with nausea, sweating, vomiting, hearing loss, and/or
difficulties in walking and balance. As bone mediates hearing
and movement and vestibular changes alter SNS output, vertigo
may be linked to alterations in bone (Radaei and Gharibzadeh,
2013; Mendy et al., 2014; Yates et al., 2014). Although there are
many types of vertigo, one of the most common types, benign
paroxysmal positional vertigo (BPPV), has been studied in the
context of BMD and vitamin D changes. BPPV is a vestibular
dysfunction that is typically unilateral and characterized by
short, intense episodes of vertigo. BPPV represents 20–30% of
dizziness diagnoses, with no current consensus on its etiology
and pathogenesis (Grill et al., 2014; Bazoni et al., 2020). However,
the incidence of BPPV increases with age and is believed to
involve abnormal stimulation of the cupula by otoliths in any
of the three semicircular canals upon changes in head position
(Furman and Cass, 1999).

Some studies have noted that reductions in bone mass
correlate with both occurrence and recurrence of BPPV (Vibert
et al., 2003; Jang and Kang, 2009; Jeong et al., 2009; Kim et al.,
2017; Wu et al., 2018; Wang et al., 2020). A meta-analysis found
significantly higher incidence of osteoporosis and osteopenia in
BPPV patients (He et al., 2019). In addition, BPPV has been

Frontiers in Psychology | www.frontiersin.org 15 November 2020 | Volume 11 | Article 612366

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-612366 November 24, 2020 Time: 16:14 # 16

Kelly et al. Neurological Disorders and Bone

FIGURE 1 | Proposed methods to improve bone health in patients with neurological disorders. There is considerable clinical evidence demonstrating negative
impacts of neurological diseases on bone across many disease categories. Patients with neurological diseases exhibit decreased BMD, as well as increased risk for
osteoporosis and fracture. Careful clinical monitoring, clinical intervention, and positive lifestyle changes may lead to better bone outcomes in certain subsets of
neurological disease patients.

associated with vitamin D deficiency, which can affect both
bone and the inner ear (Jeong et al., 2013). BPPV frequently
occurs in females over 50 years old, suggesting estrogen loss
may be involved in onset (Vibert et al., 2003). Incidence of
BPPV recurrence was significantly higher in post-menopausal
women with osteoporosis (56.3%) than those with normal BMD
(16.1%), and frequency of recurrence increased with decreasing
BMD (Yamanaka et al., 2013). Estrogen deficiency can cause
low bone mass by altering calcium metabolism, inducing a
calcium insufficiency (Riggs et al., 1998). Calcium is important
in the synthesis and absorption of otoconia and otoliths, which
mature by absorbing calcium. Thus, if there is a shortage of
calcium with reduced bone mass, incomplete maturation of
otoliths could occur, leading to BPPV. The otolith also acts
as a calcium reservoir to maintain calcium homeostasis when
necessary, such as in postmenopausal women with osteoporosis
(Campos et al., 1999). Thus, altered calcium metabolism caused
by decreased estrogen secretion may be a pathophysiological
mechanism shared by both BPPV and osteoporosis. Additionally,
as electrical signals from the inner ear are relayed to the CNS
to maintain body balance and vestibular dysfunction alters
SNS output, vertigo may affect bone remodeling and bone
mass, as well as fall risk, leading to increased fracture risk. In
support of this, fracture risk has been shown to be increased
with BPPV (Nakada et al., 2018). Likewise, the reduction
in bone mass caused by vertigo may further alter calcium
metabolism, increasing vertigo incidence and creating a negative
feedback loop. Osteoporosis is, therefore, a risk factor for BPPV
recurrence and prognosis may be clinically predicted by BMD
reduction, while BPPV itself may increase osteoporosis-related
fracture incidence.

CONCLUSION

It is becomingly increasingly clear that bone is a dynamic organ
with complex signaling responses throughout the body. Recent
studies have led to a better understanding of the brain-bone
axis, which regulates skeletal metabolism, hormonal response,
and sensory innervation. In this review, we discussed how
different neurological disorders impact bone health and how
bone itself can affect cognitive function and development. Across
many subcategories of neurological disease, there is direct pre-
clinical and clinical evidence that deficits in the brain can
cause deficits in the bone, including osteopenia/osteoporosis
and increased fracture risk. This is due to a complex mixture
of neuronal (e.g., SNS/PNS dysregulation), psychological (e.g.,
HPA/stress), mechanical (e.g., muscle-bone interactions), cellular
(e.g., macrophage, neuron, osteoblast, osteoclast), molecular
(e.g., IGF-1, IL-6, PTH, Wnt), lifestyle (e.g., falls, malnutrition,
physical inactivity, vitamin D deficiency), and treatment (e.g.,
AED, glucocorticoid, SSRI) factors. Current treatments for
osteoporosis, including bisphosphonates, estrogen replacement
therapy, and anabolic therapies (e.g., teriparatide, romosozumab)
may be beneficial for certain subsets of patients with neurological
diseases (Figure 1). A better understanding of the mechanisms
that lead to bone loss in neurological disorders is of clinical
importance and may better inform treatment approaches,
encourage lifestyle change, and aid in development of novel
osteoporosis therapies. Similarly, a better understanding of how
bone regulates the brain will provide new insights into the
etiology and development of neurological disorders. Clinicians
should consider taking a whole-body approach when treating
neurological patients and ensure that treatments directed at the
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brain (e.g., glucocorticoids) are not causing deleterious effects
elsewhere in the body, such as in the skeleton, which may
concurrently signal through negative feedback loops to impact
disease severity.

NOMENCLATURE

Aβ, Amyloid-β; ACTH, Adrenocorticotropic Hormone; AD,
Alzheimer’s Disease; AED, Anti-Epileptic Drug; AKT, Protein
Kinase B; ALP, Alkaline Phosphatase; ALS, Amyotrophic Lateral
Sclerosis; ApoE, Apolipoprotein E; App, Amyloid Precursor
Protein; APT, Antipsychotic Therapy; ASD, Autism Spectrum
Disorder; BALP, Bone-Specific Alkaline Phosphatase; BBB,
Blood-Brain Barrier; BGP, Bone GLA Protein; BM, Bone Marrow;
BMC, Bone Mineral Content; BMD, Bone Mineral Density;
CBZ, Carbamazepine; CFS, Chronic Fatigue Syndrome; CGRP,
Calcitonin Gene-Related Peptide; CNS, Central Nervous System;
CP, Cerebral Palsy; CRP, C-Reactive Protein; CSF, Cerebrospinal
Fluid; CTX, C-Terminal Telopeptide Of Type I Collagen; DEXA,
Dual-Energy X-Ray Absorptiometry; DMD, Duchenne Muscular
Dystrophy; DRN, Dorsal Raphe Nucleus; EBV, Epstein-Barr
Virus; EDSS, Expanded Disability Status Scale; EIAED, Enzyme-
Inducing Anti-Epileptic Drug; ERK, Extracellular Signal-
Regulated Kinase; FDRA, Friedreich Ataxia; FRAX, Fracture
Risk Assessment; GMFCS, Gross Motor Function Classification
System; GPR158, G Protein-Coupled Receptor 158; HAMA,
Hamilton Anxiety Rating Scale; HPA, Hypothalamic-Pituitary-
Adrenal; IκB-α, Nuclear Factor Of Kappa Light Polypeptide
Gene Enhancer In B-Cells Inhibitor, Alpha; IGF-1, Insulin-Like
Growth Factor-1; IL, Interleukin; LDL, Low-Density Lipoprotein;
LRP5/6, Lipoprotein-Receptor-Related Protein-5/6; MALP-2, 2-
kDa Macrophage-Activating Protein; mBMD, Metacarpal Bone
Mineral Density; MCI, Mild Cognitive Impairment; MDD, Major
Depressive Disorder; MG, Myasthenia Gravis; MJD, Machado-
Joseph Disease; MS, Multiple Sclerosis; MuSK, Muscle-Specific

Tyrosine Kinase; NEIAED, Non-Enzyme-Inducing Antiepileptic
Drug; NF-κB, Nuclear Factor Kappa B; NFT, Neurofibrillary
Tangle; NMD, Neuromuscular Dystrophy; OCN, Osteocalcin;
OPG, Osteoprotegerin; OPN, Osteopontin; OSAS, Obstructive
Sleep Apnea; OSX, Osterix; P1NP, N-Terminal Propeptide Of
Type I Collagen; PD, Parkinson’s Disease; PNS, Parasympathetic
Nervous System; PTH, Parathyroid Hormone; PTSD, Post-
Traumatic Stress Disorder; RANK, Receptor Activator of Nuclear
Factor Kappa B; RANKL, Receptor Activator of Nuclear Factor
Kappa B Ligand; SAD, Substance Use Disorder; SAE, Sepsis-
Associated Encephalopathy; SCI, Spinal Cord Injury; SMA,
Spinal Muscular Atrophy; SMN, Survival Motor Neuron;
SNS, Sympathetic Nervous System; SOST, Sclerostin; SSRI,
Selective Serotonin Reuptake Inhibitor; SUD, Substance Use
Disorder; TBI, Traumatic Brain Injury; TBS, Trabecular Bone
Score; TGF-β2, Transforming Growth Factor Beta 2; TNF-α,
Tumor Necrosis Factor Alpha; TREM2, Triggering Receptor
Expressed On Myeloid Cells-2; VIP, Vasoactive Intestinal
Peptide; Wnt, Wingless-Type Murine-Mammary-Tumor Virus
Integration Site.

AUTHOR CONTRIBUTIONS

RK and SS: conception and design, drafting, and revising of the
manuscript. AL: drafting and revising of the manuscript. All
authors read and approved the final manuscript.

FUNDING

Development of this manuscript was supported by the
Biomedical Laboratory Research and Development Program
of the Department of Veterans Affairs (VA Merit Award
to AL, BX000333).

REFERENCES
Aharon-Peretz, J., Harel, T., Revach, M., and Ben-Haim, S. A. (1992). Increased

sympathetic and decreased parasympathetic cardiac innervation in patients
with Alzheimer’s disease. Arch. Neurol. 49, 919–922. doi: 10.1001/archneur.
1992.00530330041013

Albrecht, J. S., Al Kibria, G., Gruber-Baldini, A., and Magaziner, J. (2019). Risk
of mortality in individuals with hip fracture and traumatic brain injury: TBI
and mortality in individuals with hip fracture. J. Am. Geriatr. Soc. 67, 124–127.
doi: 10.1111/jgs.15661

Alesci, S., Martinez, P. E., Kelkar, S., Ilias, I., Ronsaville, D. S., Listwak, S. J.,
et al. (2005). Major depression is associated with significant diurnal elevations
in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss
of physiological complexity in its secretion: clinical implications. J. Clin.
Endocrinol. Metab. 90, 2522–2530. doi: 10.1210/jc.2004-1667

Alexander, W. (2012). Pharmacotherapy for post-traumatic stress disorder in
combat veterans. P T 37, 32–38.
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