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ABSTRACT The gut microbiota of autism spectrum disorder (ASD) children differs
from that of children without ASD. The maternal gut microbiota impacts offspring
gut microbiota. However, the relationship between the development of ASD and
gut bacteria shared between children and their mothers remains elusive. Our study
recruited 76 children with ASD and 47 age- and gender-matched children with typi-
cal development (TD), as well as the mothers of both groups, and investigated their
gut microbiota using amplicon sequence variants (ASVs). The gut microbiota of ASD
children was altered compared with that of children with TD, while no significant
alterations were found in their mothers. We established 30 gut bacterial coabun-
dance groups (CAGs) and found the relative abundances of CAG15 and CAG16 sig-
nificantly decreased in ASD children. CAG15 showed a positive correlation with de-
velopmental level. The proportion of ASD children who shared either one of the two
Lachnospiraceae ASVs from CAG15 with their mothers was significantly lower than
that of children with TD. Moreover, we found that CAG12, CAG13, and CAG18 nega-
tively correlated with the severity of social deficits in ASD children. ASD children
who shared any one of the four (two Ruminococcaceae, one Lachnospiraceae, and
one Collinsella) ASVs in CAG13 and CAG18 with their mothers showed a lower level
of social deficits than ASD children that did not share those with their mothers.
These data demonstrate that these shared gut bacteria in ASD children are associ-
ated with their developmental level and social deficits. This work provides a new
direction toward understanding the role of the gut microbiota in the pathogenesis
and development of ASD. (This study has been registered in the Chinese Clinical
Trial Registry under number ChiCTR-RPC-16008139.)

IMPORTANCE Gut microbiota may contribute to the pathogenesis and development
of autism spectrum disorder. The maternal gut microbiota influences offspring gut
microbial structure and composition. However, the relationship between the clinical
symptoms of autism spectrum disorder and the gut bacteria shared between chil-
dren and their mothers is not yet known. In our study, the gut microbiota of chil-
dren with autism spectrum disorder differed from that of children with typical devel-
opment, but there were no differences in the gut microbiota of their mothers. More
importantly, gut bacteria shared between children with autism spectrum disorder
and their mothers were related to developmental disabilities and social deficits.
Thus, our study suggests that these shared gut bacteria may play an important role
in the development of autism spectrum disorder. This provides a new direction for
future studies aiming to explore the role of the gut microbiota in autism spectrum
disorder.
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Autism spectrum disorder (ASD), first described by Leo Kanner in 1943, is a set of
neurodevelopmental disorders (1). The core symptoms of ASD are social deficits,

restricted interests, and repetitive behaviors (2). Developmental disabilities are com-
mon complications in children with ASD (3). According to epidemiological data from
the United States, Western Europe, and Asia Pacific, the prevalence of ASD is 1.5% to
2.2% in children aged 3 to 17 years (4–6). The exact biological mechanisms of ASD are
still unclear, but genetic, epigenetic, and environmental factors are all reported to
have possible roles in the pathogenesis of ASD (7).

Emerging evidence suggests that the gut microbiota may be an important factor in
the development of ASD. The structure and composition of gut microbiota in ASD chil-
dren differ from those in healthy controls (8–10). Microbiota transfer therapy (MTT)
and dietary modulation of gut microbiota can both alleviate gastrointestinal (GI) dys-
function and behavioral symptoms in children with ASD (11, 12). Gut microbiota can
modulate the development of the central nervous system (CNS) through the brain-gut-
microbiota (BGM) axis, and this may influence the development of ASD (13). The strain
Bacteroides fragilis NCTC 9343 was reported to reduce the level of chronic inflamma-
tion in the offspring of mice with immune activation, which alleviated ASD-like behav-
ioral abnormalities such as defects in communication and stereotypic behaviors (14).
Buffington et al. showed that the strain Lactobacillus reuteri MM4-1A (ATCC PTA-6475)
ameliorated the ASD-like behavioral abnormalities in offspring of obese mice via oxyto-
cin stimulation (15). Moreover, 5-aminovaleric acid (5AV) and taurine, two gut micro-
bial metabolites, alleviated social deficits and repetitive behaviors in the offspring of
mice transplanted with the gut microbiota from ASD patients (16). Collectively, these
findings suggest that alterations in the gut microbiota may contribute to the patho-
physiology of ASD.

A clinical study showed that the gut microbial alterations in ASD children were con-
sistent with those in their mothers (17), suggesting that alterations in maternal gut
microbiota are related to the increased risk of ASD in children. A possible mechanism
to explain this finding is that maternal microbes impact the heath of offspring by verti-
cal transmission. In mammals, maternal microbes can be transmitted to the offspring
via natural childbirth, dermal contact, breast feeding, etc. (18). This transmission is criti-
cal in establishing the gut microbial structure and composition in the offspring (19)
and therefore impacts gut microbial functions in the offspring, which include processes
affecting growth (20), regulation of the immune system (21), and cerebral develop-
ment (22). Conversely, alterations in this maternal transmission are associated with the
development of human diseases, including neurodevelopmental disorders (23). Thus,
the relationship between the gut bacteria shared by children and their mothers and
the development of ASD merits further investigation.

To answer the questions above, 76 children with ASD and their mothers (MA) were
recruited to the study along with 47 age- and gender-matched children with typical
development (TD) and their mothers (MT). The gut microbiota of these groups were
analyzed by sequencing the V3-V4 regions of the bacterial 16S rRNA gene in fecal sam-
ples. Gut microbiota of children with ASD differed from that of children with TD, but
no significant differences were found between the gut microbiota of their mothers.
Gut bacteria shared between children with ASD and their mothers were found to be
associated with ASD behavioral symptoms.

RESULTS
Developmental level and gastrointestinal symptoms in ASD children. In the

Children’s Mental Health Research Center of the Affiliated Brain Hospital of Nanjing
Medical University, 76 children (2.6 to 8.2 years old) were screened using the childhood
autism rating scale (CARS) and were diagnosed with ASD based on the autism
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diagnostic interview (ADI-R) and autism diagnostic observation schedule (ADOS) (see
Table S1 in the supplemental material). Forty-seven children with TD (2.5 to 5.9 years
old) in Nanjing were also recruited to the study. The age and sexual ratios were not sig-
nificantly different between the ASD and TD groups (Table 1), and there were no signif-
icant differences in mode of delivery in childbirth, body height, body weight, body
mass index (BMI), head circumference, and waist/hip ratio between the two groups. In
addition, no significant differences in intake of total energy, protein, fat, carbohydrate,
fiber, vitamin A, vitamin B1, vitamin C, Na, Ca, Mg, Fe, and Zn were found between the
ASD and TD groups (see Table S2). However, waistline and hipline measurements of
the ASD group were significantly lower than those of the TD group (Table 1). The ASD
group showed a significantly lower level of vitamin B2 intake than the TD group
(Table S2). The GI severity index in the ASD group was significantly higher than that in
the TD group (see Fig. S1). The proportion of ASD children (91.4%) with GI symptoms
was significantly higher than that of children with TD (69%). The proportions of ASD
children with constipation and unexplained daytime irritability were significantly
higher than those of children with TD (50.0% versus 23.8% for constipation and 48.6%
versus 16.7% for unexplained daytime irritability) (see Table S3). Development quotient
(DQ) scores of adaptive behavior, gross motor, fine motor, language, and personal
social behavior, the five parameters of the Gesell developmental scale (GDS), were sig-
nificantly decreased in the ASD group compared to scores in the TD group (Table 2),
suggesting that the developmental level of ASD children was lower than that of chil-
dren with TD.

Gut microbiota in ASD children and their mothers. Gut microbial alterations in
ASD children and their mothers (MA) (28 to 41 years old) were explored in comparison
with those in children with TD and their mothers (MT) (30 to 40 years old) by sequenc-
ing the bacterial 16S rRNA gene V3-V4 regions in fecal samples from these groups.
Totally, 5,755,973 high-quality sequencing reads (23,3986 4,753 reads per sample)
were denoised into 3,642 amplicon sequence variants (ASVs). Richness (observed spe-
cies) of the gut microbiota in the ASD group was significantly greater than that in the
TD group (Fig. 1A). There was no significant difference in richness between the MA and
MT groups. Both the ASD and TD groups had significantly lower gut microbial richness

TABLE 1 General anthropometric parameters in the ASD and TD groups

Parameter

Values for children with:a

P valuebASD (n=76) TD (n=47)
Age (yrs) (n, mean6 SEM)c 76, 3.966 0.12 47, 4.256 0.12 0.15
Gender (n, %)c 0.50
Male 61, 80.26 41, 87.23
Female 15, 19.74 6, 12.77

Mode of delivery (n, %) 0.18
Eutocia 32, 47.46 25, 60.98
Cesarean 35, 52.24 16, 39.02

Measurements (n, mean6 SEM)
Height (cm) 70, 105.316 1.02 46, 106.676 1.215 0.39
Weight (kg) 69, 17.706 0.57 46, 18.896 0.71 0.18
BMId 67, 15.786 0.34 46, 16.376 0.32 0.23
Head circumference (cm) 71, 50.526 0.21 45, 50.666 0.20 0.65
Waistline (cm) 67, 49.826 0.69 45, 53.066 1.00 0.002
Hipline (cm) 67, 54.416 0.62 45, 58.086 1.03 0.003
Waist/hip ratio 66, 0.926 0.01 45, 0.916 0.01 0.56
aTD, typical development; ASD, autism spectrum disorder.
bPearson chi-square was used to analyze variations in gender and mode of delivery between the ASD and TD
groups, and Student’s t test was utilized to analyze changes in other clinical outcomes.

cThe data were measured as in Li et al.’s study (47).
dBMI, body mass index.
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than their mothers (Fig. 1A). No significant differences in gut microbial diversity
(Shannon index) were observed among the ASD, MA, TD, and MT groups (Fig. 1B).

Principal-coordinate analysis (PCoA) of the Bray-Curtis distance based on the ASV
data revealed that the overall structure of the gut microbiota in the ASD group signifi-
cantly differed from that in the TD group (Fig. 1C and see Fig. S2A) (P = 0.002 with per-
mutational multivariate analysis of variance [PERMANOVA], 9,999 permutations), but
there was no significant difference in the gut microbial structures between the MA and
MT groups (Fig. S2B). Compared with those of their mothers, the ASD and TD groups
had significantly different gut microbial structures (P = 0.001 versus P = 0.001, respec-
tively, with PERMANOVA, 9,999 permutations). Based on Bray-Curtis distance, we showed
that the similarity of gut microbial structures between ASD children and their mothers
was higher than that between children with TD and their mothers (see Fig. S3).

Alterations in gut microbial compositions of children with ASD were further
explored via the construction of a coabundance network based on Spearman’s correla-
tion coefficients among the 261 ASVs that existed in .10% of children in the ASD and
TD groups (Fig. 2A). These ASVs were clustered into 30 coabundance groups (CAGs)
(see Table S4). Relative abundances of CAG15 and CAG16 were significantly lower in

FIG 1 The gut microbial diversity, richness, and structures in ASD children and their mothers and in
children with TD and their mothers. Observed species (A) and Shannon indexes (B) among the ASD,
TD, MA, and MT groups. The boxes represent the interquartile ranges, lines inside the boxes stand for
medians, and whiskers represent the minimum and maximum values. Student’s t tests were used to
analyze the variations in ASD versus TD and MA versus MT, while paired t tests were used in ASD
versus MA and TD versus MT. *, P , 0.05 for comparison in ASD versus TD and MA versus MT; #, P ,
0.05 for comparison in ASD versus MA and TD versus MT. (C) Principal-coordinate analysis plot of the
gut microbiota in the TD, ASD, MT, and MA groups based on Bray-Curtis distance. Data in panel C
were processed by log(10) transformation. TD, children with typical development (n= 47); ASD, autism
spectrum disorder children (n=76); MT, mothers of children with TD (n= 47). MA, mothers of ASD
children (n= 76).

TABLE 2 Developmental levels

Parameter of GDSa

Developmental quotient score (mean6 SEM)b

ASD group (n=76) TD group (n=46)
Adaptive behaviorc 66.056 1.86 101.376 1.86
Gross motorc 74.076 1.58 102.266 1.96
Fine motorc 71.616 1.85 99.806 1.75
Languagec 54.166 2.52 108.006 2.49
Personal social behaviorc 57.266 1.87 110.836 3.70
aGDS (Gesell developmental scale) measured according to Li et al.’s study (47).
bTD, typical development; ASD, autism spectrum disorder.
cP, 0.01 by Student’s t test.
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the ASD group than in the TD group (Fig. 2B and C; see also Fig. S4). CAG15 mainly
contained ASVs belonging to the family Lachnospiraceae, while CAG16 predominantly
comprised ASVs from the family Lachnospiraceae and the genus Bacteroides (Table S4).

Association of gut bacteria shared between ASD children and their mothers
with developmental level. The relationship of gut microbiota to GI severity and devel-
opmental level, which were significantly altered in the ASD group, was examined by
calculating Spearman’s correlation coefficients in gut bacterial CAGs versus the GI se-
verity index and CAGs versus GDS in the ASD and TD groups. None of the CAGs
showed a significant correlation with the GI severity index, while the relative abun-
dance of CAG15 showed a significant positive correlation with DQ scores of adaptive
behavior, gross motor, fine motor, language, and personal social behavior, the five pa-
rameters of the GDS (Fig. 3A).

In our work, if an ASV was detected in a child and his/her mother, then the ASV was
considered shared in this child-mother pair. In other words, if an ASV was detected in
either a child or his/her mother, or was not detected in either of them, we considered
that the ASV was not shared in this mother-child pair. For CAG15, 10 ASVs were shared
in child-mother pairs. The proportion of children with ASD who shared any one of
these 10 ASVs with their mothers was then compared with that of children with TD
who shared this ASV with their mothers (Table 3). The proportions of ASD children that
shared Lachnospiraceae ASV3491 and Lachnospiraceae ASV790 (Table S4) with their
mothers were significantly lower than those of children with TD (13.2% versus 27.7%,
respectively, for ASV3491 and 2.6% versus 12.8%, respectively, for ASV790).

Association of gut bacteria shared between ASD children and their mothers
with ASD score symptoms. The association of members of the gut microbiota with
ASD core symptoms, including social deficits, restricted interests, and repetitive behav-
iors, was explored by calculating correlations between gut bacterial CAGs and scores
for CARS, ADI-R, and ADOS in the ASD group. CAG13 showed a significant negative cor-
relation with communication in the ADI-R, while CAG12, CAG13, and CAG18 each
showed significant negative correlations with verbal communication (VC) in the ADI-R
(Fig. 3B). This suggests that CAG13, CAG12, and CAG18 may be beneficial in alleviating
the social deficits of children with ASD. CAG12 and CAG13 contained ASVs from the
families Ruminococcaceae and Lachnospiraceae, while ASVs in CAG18 belonged to the
genera Bifidobacterium and Collinsella (Table S4).

For CAG12, CAG13, and CAG18, the number of ASVs shared in ASD child-mother
pairs were 8, 10, and 7, respectively. ASD children who shared any one of these ASVs in
CAG12, CAG13, and CAG18 with their mothers were annotated as “shared” the ASV (S
plus the identifier [ID] of the ASV) group, while ASD children who did not share the
ASV with their mothers were annotated as “no-shared” the ASV (NS plus ID of the ASV)
group. For example, ASD children who shared ASV1617 with their mothers were anno-
tated as the S1617 group, and ASD children who did not share the ASV with their
mothers were annotated as the NS1617 group. The social deficits of these S groups
and their NS groups were then compared. The S1617, S2314, and S330 groups had sig-
nificantly decreased scores of communication compared with those for the NS1617,
NS2314, and NS330 groups, respectively (Fig. 4A, B, and C). Ruminococcaceae ASV1617,
Lachnospiraceae ASV2314, and Ruminococcaceae ASV330 were all located in CAG13
(Table S4). In addition, the S485 group showed significantly lower scores of VC than
the NS485 group (Fig. 4D), and Collinsella ASV485 was from CAG18.

In summary, we found specific gut bacteria that were shared between ASD children
and their mothers and which related to social deficits.

DISCUSSION

In this study, we found an altered gut microbiota in ASD children compared with
that in age- and gender-matched children with TD, while there were no significant dif-
ferences with the gut microbiota of their mothers. The similarity of gut microbial struc-
ture between ASD children and their mothers was higher than that between children
with TD and their mothers. Furthermore, specific gut bacteria shared between children
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FIG 2 Gut bacterial coabundance groups (CAGs) of 261 ASVs shared by .10% of children in the ASD and TD groups. (A) Amplicon sequence variant
(ASV)-level network diagram of the 261 ASVs. Node size stands for the mean abundance of each ASV, with line width indicating correlation magnitude. Red
lines or blue lines between nodes represent positive or negative correlations between the nodes they connect, respectively. Only lines corresponding to
correlations with a magnitude greater than 0.35 are drawn. The 261 ASVs are clustered into 30 gut bacterial CAGs using the WGCNA package in R.
Compared with those in the TD group, the relative abundances of CAG15 (B) and CAG16 (C) in the ASD group were significantly decreased. Boxes and
whiskers are denoted as for Fig. 1. Mann-Whitney test was used to analyze the variations. *, P , 0.05, ***, P , 0.001. TD, children with typical development
(n= 47); ASD, autism spectrum disorder children (n=76).
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and their mothers were associated with neurodevelopmental level and social deficits
in children with ASD.

In our work, the composition of gut microbiota in children with ASD was different
from that of age- and gender-matched children with TD. For example, the numbers of
specific gut bacteria, which were predominantly from the family Lachnospiraceae and
the genus Bacteroides, decreased in ASD children. These results were consistent with
previous studies that reported the abundances of this family and genus were
decreased in Chinese ASD children (24, 25). However, a previous study, involving a
Spanish cohort, showed that the abundance of Bacteroides increased in ASD children,

FIG 3 Heat maps of correlations between gut bacterial CAGs and clinical parameters of ASD. (A) GI severity
index and GDS in the ASD and TD groups. (B) CARS, ADI-R, and ADOS in the ASD group. The color of the cells
represents Spearman’s correlation coefficient between each CAG and clinical parameter. *, P , 0.05; **, P ,
0.01; ***, P , 0.001 (adjusted according to Benjamini and Hochberg [53]). GI severity index, n=112; GDS, Gesell
developmental scale, n=122; CARS, childhood autism rating scale, n=76; VC, verbal communication, n=47; NVC,
nonverbal communication, n=29. Reciprocal social interaction (RSI) and repetitive behavior and stereotyped
patterns (RBSP) in ADI-R (autism diagnostic interview-revised) and ADOS (autism diagnostic observation schedule),
n=76; CAG, coabundance group; TD, children with typical development; ASD, autism spectrum disorder children.

TABLE 3 Numbers of children with ASD and TD that shared ASVs in CAG15 with their
mothers

ASV ID

No. of children with ASVs shared or not with their mothera

ASD group (n=76) TD group (n=47)

Shared Not shared Shared Not shared
ASV3051 70 6 45 2
ASV406 31 45 15 32
ASV3419b 10 66 13 34
ASV790b 2 74 6 41
ASV4196 2 74 3 44
ASV3792 2 74 0 47
ASV1765 2 74 2 45
ASV493 2 74 4 43
ASV4568 1 75 1 46
ASV2839 0 76 2 45
aTD, typical development; ASD, autism spectrum disorder.
bP, 0.05 by Pearson chi-square test.
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which is inconsistent with our finding (26). On the other hand, our study also found
the specific ASVs belonging to Lachnospiraceae and Bacteroides were not significantly
different between ASD children and those with TD (see Fig. S4 and Table S4 in the sup-
plemental material). This suggested that the alterations in ASVs which were from the
same family or genus in ASD children may be different. These differences might be at-
tributable to species- or even strain-specific functions of the bacteria (27). Future stud-
ies should examine the relationship between the gut microbiota and the development
of ASD at the strain level.

Previous studies showed that coabundance analysis may be a more ecologically rel-
evant method to identify the critical members of the gut microbiota involved in human
disease (28, 29). Using this type of analysis, the specific gut bacteria, which mainly
belonged to Lachnospiraceae, Ruminococcaceae, and Bifidobacterium, were found to be
negatively correlated with the severity of ASD behavioral symptoms, including devel-
opmental delay and social deficits. Deficiencies of these bacteria have been reported
to play a role in ASD behavioral abnormalities. Many members of the family
Lachnospiraceae are known as butyrate-producing bacteria (30, 31). A previous study
revealed that butyrate alleviated the acylation deficiency (caused by the mutations of
in the bromodomain- and PHD finger-containing protein 1 Brpf1 gene) of histone H3
at lysine 23 in mouse embryos and fibroblasts and human embryonic kidney 293 cells,
and this deficiency was also found in children with neurodevelopmental delay (32).
This study suggests that butyrate may alleviate the severity of neurodevelopmental
delay in children. Many members of the family Ruminococcaceae produce acetate
(33–37), which is reported to be decreased in ASD children (24). Acetate was shown to
decrease the permeability of the blood-brain barrier (BBB) in germfree mice (38), which
alleviated the severity of social deficits in a mouse model of ASD (39). The genus

FIG 4 Alterations in children’s gut bacteria shared with their mothers with the severity of social
deficits. The ASD group who shared ASV1617 (A), ASV2314 (B), or ASV330 (C) with their mothers
showed significantly decreased scores of communication in the autism diagnostic interview (ADI-R).
(D) The ASD group who shared ASV485 with their mothers showed significantly decreased scores of
VC. Boxes and whiskers are denoted as for Fig. 1. Student’s t test was used to analyze the variations. *,
P , 0.05; **, P , 0.01. NS1678, children who do not share ASV1678 with their mothers in the ASD
group, n=45; S1678, children who share ASV1678 with their mothers in the ASD group, n=31; NS2314,
children who do not share ASV2314 with their mothers in the ASD group, n=71; S2314, children who
share ASV2314 with their mothers in the ASD group, n=5; NS330, children who do not share ASV330
with their mothers in the ASD group, n=66; S330, children who share ASV330 with their mothers in
the ASD group, n=10; NS485, children who do not share ASV485 with their mothers in the ASD group,
n=32; S485, children who share ASV485 with their mothers in the ASD group, n=15; VC, verbal
communication; TD, children with typical development; ASD: autism spectrum disorder children.
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Bifidobacterium contains gamma-aminobutyric acid (GABA)-producing bacteria (40,
41). A previous study showed that excessive sequestration of GABA into the mitochon-
dria of cerebral cells caused social deficits in Drosophila, while release of the seques-
trated GABA or increase in the level of GABA in the brain alleviated these social deficits
(42). Thus, the gut bacteria identified as related to ASD behavioral symptoms in this
study may contribute to the pathophysiology and development of ASD. In the future,
we should explore the mechanisms by which these gut bacteria alleviate the behav-
ioral symptoms of ASD.

A previous study, involving a Chinese cohort, reported that the gut microbiota of
ASD children were different from those of healthy children, and mothers of ASD chil-
dren also had altered gut microbiota compared to those of mothers of healthy chil-
dren. Moreover, alterations in gut microbiota of ASD children and their mothers were
consistent (17). Our study found no significant differences in maternal gut microbiota
of children with ASD and children with TD. Deficiencies in specific gut bacteria were
shared between children and their mothers and were related to the ASD behavioral
symptoms. Together, our findings suggest that vertical transmission of gut microbiota
between children with ASD and their mothers may be altered. Previous studies demon-
strated that alterations in vertical transmission of maternal gut microbiota, such as
those caused by caesarean section, formula feeding, and antibiotic exposure during
delivery, led to the deficiencies in potential beneficial bacteria in their children. These
microbial deficiencies are associated with increased risks of many human diseases,
including neurodevelopmental disorders (43–46). Therefore, long-term follow-up clini-
cal studies should be performed with a larger cohort to validate and understand the
mechanisms of interaction between this vertical transmission of gut microbiota and
the pathophysiology and development of ASD. We did not obtain maternal GI and die-
tary data from these children with ASD and TD, which is a limitation of our study.

In conclusion, our work demonstrates that the gut microbiota is altered in ASD chil-
dren but not in their mothers. In addition, gut bacteria shared by children and their
mothers is associated with developmental level and social deficits in children with
ASD. Children’s gut bacteria shared with their mothers may play an important role in
the development of ASD, providing a new direction for future studies aiming to
explore the role of the gut microbiota in ASD.

MATERIALS ANDMETHODS
Clinical investigation. This trial was registered in the Chinese Clinical Trial Registry under the regis-

tration number ChiCTR-RPC-16008139. All participants completed an informed consent form, and the
procedures of this study were approved by the Institutional Review Board of Nanjing Brain Hospital of
Nanjing Medical University (permit number 2016-KY017). This clinical trial recruited 184 children and
mothers of 123 of these children. Participants in our study comprised 123 children and their mothers,
while participants in Li et al.’s study were the 184 children (47).

Seventy-six children with ASD and their mothers were recruited to the trial. The children were
screened by CARS and diagnosed with ASD by ADI-R and ADOS in the Children’s Mental Health
Research Center of the Nanjing Brain Hospital affiliated with Nanjing Medical University. Then, 47 chil-
dren with TD from Ying Hua kindergarten (Nanjing) and their mothers were recruited. Children with ASD
who suffered from other neurological conditions, such as epilepsy and attention deficit hyperactivity dis-
order (ADHD), and serious organic diseases, such as hepatorenal function disorder, were excluded.
Children with TD were confirmed by at least two clinicians as not having any neurodevelopmental disor-
ders, serious organic disease, such as hepatorenal function disorders, or any gastrointestinal surgery.

Clinical parameters, including general anthropometric parameters, GDS, CARS, ADI-R, and ADOS, of
children were measured based on the methods described in previous studies (29, 48, 49). GI symptoms
in both groups of children were evaluated based on GI severity index, including constipation, diarrhea,
average stool consistency, stool smell, flatulence, abdominal pain, unexplained daytime irritability,
nighttime awakening, and abdominal tenderness (during examination), as described in a previous study
(50). A 24-h dietary record was used to estimate nutritional intake of the ASD and TD groups for 24 h
before the collection of fecal samples based on the China Food Composition 2009, as previously
described (28).

Tools for fecal collection were provided to participants who had not suffered from fever or used anti-
biotics or any other medications for more than 3 days in the previous month. Maternal fecal samples
were collected the next day, and samples from children were collected within 1 week of the psychologi-
cal assessments. Fecal samples stored in stool collection tubes with DNA stabilizer (1038111300; Stratec
Molecular, Germany) were collected in participants’ homes by their mothers (children) or themselves.
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The tubes with DNA stabilizer protect gut bacteria in fecal samples at room temperature for at least
24 h. Fecal samples received at the Children’s Mental Health Research Center of the Affiliated Brain
Hospital of Nanjing Medical University were immediately stored at280°C until fecal DNA extraction.

Fecal DNA extraction and 16S rRNA gene V3-V4 region sequencing. Gut microbial DNA in fecal
samples was extracted using methods reported in previous studies. An Illumina MiSeq platform
(Illumina, Inc., USA) with MiSeq reagent kit v3 (600-cycle) (MS-102-3033; Illumina, USA) was used to
sequence the 16S rRNA gene V3-V4 regions of gut bacteria in fecal samples. A two-step amplification
(amplification of 16S rRNA gene V3-V4 region and the index PCR) was used to prepare the library accord-
ing to the manufacturer’s instructions (part number 15044223 rev. B; Illumina) with modifications described
by Zhang et al. (51).

Bioinformatics analysis of sequencing data. Sequence data from the Illumina MiSeq platform
were inputted to QIIME2 as type “SampleData[PairedEndSequencesWithQuality],” and all steps of
sequence processing and quality control were performed in QIIME2 (version 2018.06). Adapter sequen-
ces were trimmed by using the script “qiime cutadapt trim-paired.” The DADA2 pipeline, including error
filtering, trimming, denoising, merging of paired reads, and removal of chimeras, was used to cluster
high-quality reads into amplicon sequence variants (ASVs) which were annotated using the SILVA refer-
ence database (version 132). These reads of each sample were downsized to 10,000 to normalize the
even sampling depths.

Clustering of gut bacterial coabundance groups. Correlation relationships among 261 ASVs, which
existed in .10% of children with ASD and children with TD, were calculated by using the Spearman’s
correlation coefficient (R) based on their relative abundance. This R matrix, also known as topological
overlap matrix (TOM), was converted to a correlation distance (1 2 R) matrix, also known as dissTOM, in
the R (version 3.5.1) package WGCNA (52). Using this package, a hierarchical clustering tree of these
ASVs based on dissTOM was produced by using the Ward.D2 clustering algorithm. Based on this hier-
archical clustering tree, the 261 ASVs were clustered into 30 CAGs. The CAG network was visualized in
Cytoscape (version 3.2.1).

Statistical analysis. Student’s t test and chi-square test, performed using the statistical software
SPSS22.0 (IBM Corp., Armonk, NY, USA), were used to analyze the clinical parameters of volunteers.
Permutational multivariate analysis of variance (PERMANOVA) was utilized to evaluate the significance
of the differences in gut microbial structures in ASD, TD, MA, and MT groups in QIIME2. To adjust the P
value for multiple testing, false-discovery rate (FDR) values were estimated using the Benjamini-Yekutieli
method in correlation analysis between CAGs and clinical parameters with Spearman’s algorithm. P val-
ues of ,0.05 were regarded as statistically significantly different.

Data availability. The 16S rRNA V3-V4 amplicon sequencing data are available in the NCBI Short
Read Archive (SRA) repository under accession number PRJNA644763.
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