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Aim: Coronary artery disease (CAD) is a heterogeneous disorder with high

morbidity, mortality, and healthcare costs, representing a major burden on

public health. Here, we aimed to improve our understanding of the genetic

drivers of ferroptosis and necroptosis and the clustering of gene expression in

CAD in order to develop novel personalized therapies to slow disease

progression.

Methods:CADdatasets were obtained from theGene ExpressionOmnibus. The

identification of ferroptosis- and necroptosis-related differentially expressed

genes (DEGs) and the consensus clustering method including the classification

algorithmused kmand distance used spearmanwere performed to differentiate

individuals with CAD into two clusters (cluster A and cluster B) based expression

matrix of DEGs. Next, we identified four subgroup-specific genes of significant

difference between cluster A and B and again divided individuals with CAD into

gene cluster A and gene cluster B with same methods. Additionally, we

compared differences in clinical information between the subtypes

separately. Finally, principal component analysis algorithms were

constructed to calculate the cluster-specific gene score for each sample for

quantification of the two clusters.

Results: In total, 25 ferroptosis- and necroptosis-related DEGs were screened.

The genes in cluster A were mostly related to the neutrophil pathway, whereas

those in cluster B were mostly related to the B-cell receptor signaling pathway.

Moreover, the subgroup-specific gene scores and CAD indices were higher in

cluster A and gene cluster A than in cluster B and gene cluster B. We also

identified and validated two genes showing upregulation between clusters A

and B in a validation dataset.

Conclusion: High expression of CBS and TLR4 was related to more severe

disease in patients with CAD, whereas LONP1 and HSPB1 expression was

associated with delayed CAD progression. The identification of genetic

subgroups of patients with CAD may improve clinician knowledge of disease
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pathogenesis and facilitate the development of methods for disease diagnosis,

classification, and prognosis.
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coronary artery disease, ferroptosis, necroptosis, subgroup, single-sample gene set
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Introduction

Coronary artery disease (CAD) is a common cardiac disease

and the primary cause of cardiovascular disease-related death

(Agha et al., 2019; McCaffrey et al., 2021). CAD is caused by

atherosclerosis or atherosclerotic occlusions of the coronary

arteries (Thomas et al., 2018). Numerous environmental and

genetic variables, including age, smoking habit, hypertension,

dyslipidemia, obesity, diabetes, and family history, contribute to

CAD (Chiu et al., 2018; Madhavan et al., 2018; Zhang H.W. et al.,

2020). According to the CAD prediction model, approximately

20 million deaths and 16 million cases of reduced worker

productivity were attributable to CAD in China between

2010 and 2015. Similar numbers are expected between

2000 and 2029 (Moran et al., 2008). The prevalence of CAD

continues to increase, and clinical outcomes remain

unsatisfactory. Although several studies have reported

remarkable progress in the identification of diagnostic

biomarkers for CAD in the blood (including long noncoding

RNAs, methylation, and mRNAs) (Wang et al., 2020; Zhang X.

et al., 2020; Chen Z. et al., 2021; Yang and Xu, 2021; Zhang L.

et al., 2021) only two studies have described clinical heterogeneity

in patients with different CAD severities (Zhang X. et al., 2020;

Zhang B. et al., 2021). Therefore, scientific classification and

targeted treatment may facilitate effective management of CAD.

Current categorization approaches are based on pathological

characteristics, disease development, and clinical symptoms,

and the use of genotypic subgroups is developing slowly

(Davies et al., 2021). The development of gene chip makes it

possible to study the occurrence and development of CAD at the

gene level (Franchini, 2016; Musunuru and Kathiresan, 2019).

At present, a review has reported forms of cell death that

could affect CAD risk, such as apoptosis, pyroptosis, parthanatos,

and autophagy, which have been previously implicated in CAD

pathogenesis (Del Re et al., 2019). Additional, both ferroptosis

and necroptosis are also involved in the development of CAD

(Del Re et al., 2019). At present, Zhou et al.( 2021) has reported

the specific mechanism of ferroptosis combined with pyroptosis

in coronary atherosclerosis, and screened important marker

genes. However, there is no study on ferroptosis combined

with necroptosis in CAD. Ferroptosis, a novel type of cell

death discovered in the last few years, is accompanied by

accumulation of large amounts of iron and lipid peroxidation

during the cell death process (Li et al., 2020). Furthermore,

ferroptosis is an independent process triggered by the

presence of harmful lipid reactive oxygen species and the

consumption of polyunsaturated fatty acids (Li et al., 2020);

these features distinguish ferroptosis from apoptosis, necrosis,

and autophagy. Bai et al. (2020) fed apolipoprotein E (ApoE)−/−

mice a high-fat diet (HFD) to induce atherosclerosis in the

presence or absence of the widely utilized ferroptosis inhibitor

Ferrostatin-1 (Fer-1) and showed that Fer-1 treatment

dramatically reduced atherosclerotic lesions, suggesting that

ferroptosis occurs in mice with HFD-induced atherosclerosis.

Further in vitro investigations using mouse aortic endothelial

cells indicated that endothelial dysfunction significantly

contributes to ferroptosis in the setting of atherosclerosis.

Necroptosis is another newly defined form of cell death

similar to necrosis and apoptosis in terms of morphology

(e.g., cell swelling and rupture) (Vandenabeele et al., 2010).

The necrotic features of necroptosis are marked by cell

rupture and the release of immunogenic intracellular

components, which activate inflammatory responses,

highlighting the pro-inflammatory features of necroptosis.

Vandenabeele et al. (2010) found that lipid peroxidation

enhances oxidized low-density lipoprotein (ox-LDL) buildup

and necroptosis. Moreover, the powerful pro-inflammatory

effects of necroptosis can cause atherosclerosis. Therefore,

necroptosis and ferroptosis inhibitors are promising strategies

for targeting atherosclerosis, oxidative stress, and inflammatory

responses. Initially, apoptosis, autophagy, and necrosis were

thought to be mutually exclusive. However, recent studies

have shown a delicate balance among these modes of death,

suggesting that inhibition of one mode of death may increase the

sensitivity of cells to activation of the other mode of death (Chen

et al., 2018).

As gene chip analysis becomes more affordable, more

researchers are using this approach to uncover the molecular

pathways underlying the development and progression of CAD.

However, most studies have only evaluated differences between

CAD cases and normal controls, ignoring variances within CAD

cases. Tumor samples are frequently subtyped in cancer research

based on the expression patterns of ferroptosis- (Shan et al.,

2021), pyroptosis- (Shao et al., 2021), DNA methylation- (Ding

et al., 2019), and necroptosis-related genes (Zhao et al., 2021);

such analyses can reveal intertumor heterogeneity, predict

clinical endpoints, and guide treatment.

Therefore, in this study, we aimed to elucidate themechanisms

through which ferroptosis- and necroptosis-related genes

contribute to CAD progression by typing CAD cases according

to these genes. We also investigated the correlations between the

typing results and clinical characteristics.
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Materials and methods

Data collection and processing

mRNA expression profiles obtained from whole-blood

samples of patients were downloaded from GEO (https://

www.ncbi.nlm.nih.gov/geo/). GSE12288 (Sinnaeve et al., 2009)

included 110 CAD samples and 112 normal samples based on the

GPL96 platform, GSE20680 (Beineke et al., 2012) included

143 CAD samples and 52 normal samples based on the

GPL4133 platform, and GSE20681 (Beineke et al., 2012)

included 99 CAD samples and 99 normal samples based on

the GPL4133 platform; these three datasets were used as training

sets. GSE180083dataset by merging GSE180081 and

GSE180082 datasets (McCaffrey et al., 2021) included

116 CAD samples and 60 normal samples based on the

GPL14761 platform and was used as the validation dataset.

Additionally, information regarding age, CAD index, and sex

was collected. The Duke Coronary Artery Disease Index (CAD

index) (Felker et al., 2002)was used to quantify the severity of

lesions and diseased arteries and to assess the presence of lesions

in the left anterior descending branch and main stem as an

indicator of the severity of CAD.

The “normalizeBetweenArrays” function of limma

package (Ritchie et al., 2015) was used to adjust the

microarray data to quartiles for expression matrix of

GSE12288, GSE20680 and GSE20681 datasets. Each gene

was annotated using platform-provided annotation data. If

a gene had several probes, the average expression level was

determined. Batch effects were eliminated by combining

GSE12288, GSE20680, and GSE20681 into a single dataset

using the “sva” package in R software. A two-dimensional

principal component analysis (PCA) cluster plot was used to

illustrate intersample correction.

Identification of ferroptosis- and
necroptosis-related differentially
expressed genes between normal and
CAD samples

Ferroptosis- and necroptosis-related genes (n = 67 for

necroptosis, n = 259 for ferroptosis) were retrieved from the

molecular signature database (MSigDB4) and FerrDb5 (Zhou

and Bao, 2020) (Supplementary Table S1). We performed

differential analysis of ferroptosis- and necroptosis-related

genes between normal and CAD samples using the wilcoxon

test. Finally, we extracted 25 ferroptosis- and necroptosis-related

DEGs (i.e., NCF2, BNIP3, CBS, FTL, RPL8, HSPB1, MAP3K5,

MAPK14, ELAVL1, HIC1, STAT3, PGD, SCP2, SLC38A1, MYB,

TLR4,MTDH, LONP1, FADD, ITPK1,MYC, TNFSF10, DNMT1,

BACH2, and LEF1) from the dataset using difference analysis

between normal and CAD samples.

Construction of subgroups based on
consensus clustering

We used consensus clustering (Wilkerson and Hayes, 2010)

to categorize patients with CAD into distinct subgroups based on

the expressed matrix of ferroptosis- and necroptosis-related

DEGs between normal and CAD samples. Clustering was

carried out using the Kmeans method and the Spearman

distance. The maximum number of clusters was set at nine.

The consensus matrix determined the final cluster number.

Comparing the clinical characteristics of
the two subgroups

Clinical data, such as age, sex, and CAD index, were obtained

using the series matrix file downloaded from the three gene sets

GSE12288, GSE20680, and GSE20681 in the GEO database. The

continuous variables were age and CAD index, which were

compared using the pairwise Wilcoxon rank sum test (Divine

et al., 2013) and shown using box plots. Male patient proportions

were examined as a categorical variable (ratios) and shown using

histograms.

Identification of DEGs between the two
subgroups and gene ontology functional
enrichment analysis

We utilized the R package “limma” to search for DEGs

between the two subgroups. The screening criteria were as

follows: |log (fold change [FC])| > 0.5 and adjusted p < 0.05.

Next, we extracted 22 ferroptosis- and necroptosis-related DEGs

using difference analysis between the two subgroups. The genes

included NCF2, BNIP3, CBS, FTL, RPL8, HSPB1, MAP3K5,

MAPK14, STAT3, PGD, SCP2, SLC38A1, TLR4, MTDH,

LONP1, FADD, ITPK1, MYC, TNFSF10, DNMT1, BACH2,

and LEF1. Using the “clusterProfiler” function in R, we

investigated DEGs between cluster A and B enrichment in

gene ontology (GO). GO functional enrichment analysis was

used to determine the mechanisms in which the upregulated

DEGs were involved in the two subgroups, and the findings were

represented using an enrichment circle diagram. Results of

enrichment analysis were considered statistically significant

when p value was <0.05 and q value was <0.05.

Estimation of immune cell infiltration

The abundance of immune cells in CAD samples was

evaluated utilizing single sample gene set enrichment analysis

(ssGSEA) and the “GSVA” R package. Gene set variation analysis

(GSVA) is a non-parametric, unsupervised technique for
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calculating the variation of gene set enrichment across an

expression dataset’s samples. Each ssGSEA enrichment score

reflects the extent to which the genes in a specific gene set are

coordinately up- or down-regulated in a sample. The essential

criteria were as follows: abs.ranking = TRUE and kcdf =

“Gaussian” and method = “ssgsea”. Based on the preceding

analysis, we calculated the amount of immune cells in each

sample (Xiao et al., 2020).

Screening of subgroup-specific genes and
consensus clustering between subtypes

Subgroup-specific genes (LONP1, TLR4, CBS, and HSPB1)

were identified by intersection of the 22 ferroptosis- and

necroptosis-related DEGs and DEGs between cluster A and B.

Additionally, we typed all CAD samples (gene cluster A and B)

again based on the four subgroup-specific gene expression matrix

using the typing method described above. Finally, we compared

the clinical characteristics of gene cluster A and B.

Estimation of the subgroup-specific gene
signature

Then, using principal component analysis (PCA), a

subgroup-specific gene signature was constructed.

Components 1 and 2 were both chosen to act as signature

scores. This method had the advantage of focusing the score

on the set containing the largest block of highly correlated (or

anticorrelated) genes, while down-weighting contributions from

genes that do not track with other set members in the set. The

subgroup-specific gene score was subsequently calculated using

the following formula: subgroup-specific gene score = ∑(PC1i +

PC2i) where PC1 denotes principal component 1 and

PC2 denotes principal component 2, and i reflects the

expression of subgroup-specific genes (Zhang B. et al., 2020).

Validation of 4 subgroup-specific genes in
GSE180083

We used the dataset to validate the differences in 4 subgroup-

specific genes (HSPB1, LONP1, TLR4 and CBS) in normal and

CAD samples in the merged dataset and GSE180083 dataset.

Results with P values less than 0.05 were considered statistically

significant using two-sided tests.

Results

Figure 1 depicts the procedures used in our cohort

investigation. Supplementary Table S2 lists feature

information for the training datasets (GSE12288, GSE20680,

and GSE20681) and validation dataset (GSE180083).

Elimination of batch effects

First, we assessed the batch effects among GSE12288,

GSE20680, and GSE20681 using a PCA cluster diagram. The

results indicated that a batch effect did exist among the datasets

(Figure 2A). Thus, using the R package “sva”, these three gene

expression matrices were normalized and processed. After

normalization and elimination of the batch effect, the data

were depicted using a PCA cluster diagram (Figure 2B). The

findings demonstrated unequivocally that the batch effect

between GSE12288, GSE20680, and GSE20681 had been

eliminated.

Expression of 25 significant ferroptosis-
and necroptosis-related DEGs in normal
and CAD samples

The “limma” package in R was utilized to analyze the

differential expression levels of ferroptosis- and necroptosis-

related genes in normal and CAD samples. Twenty-five

significant ferroptosis- and necroptosis-related DEGs (NCF2,

BNIP3, CBS, FTL, RPL8, HSPB1, MAP3K5, MAPK14,

ELAVL1, HIC1, STAT3, PGD, SCP2, SLC38A1, MYB, TLR4,

MTDH, LONP1, FADD, ITPK1, MYC, TNFSF10, DNMT1,

BACH2, and LEF1) were identified between normal and CAD

samples and visualized using a heat map and box plot (Figures

3A–D). We found that the necroptosis-related genes MYC,

DNMT1, BACH2, LEF1, and BNIP3 and the ferroptosis-

related genes BNIP3, RPL8, HSPB1, ELAVL1, HIC1, SCP2,

SLC38A1, MYB, MTDH, and LONP1 were overexpressed in

normal samples compared with CAD samples. By contrast,

the necroptosis-related genes FADD, ITPK1, TNFSF10, STAT3,

and DNMT1 and the ferroptosis-related genes NCF2, CBS, FTL,

MAP3K5, MAPK14, STAT3, PGD, SLC38A1, MYB, MTDH, and

LONP1 displayed decreased expression in normal samples

compared with those in CAD samples.

Two subtypes were identified based on
the expression of ferroptosis- and
necroptosis-related DEGs

Using the “ConsensusClusterPlus” package in R software, we

performed consensus clustering to identify two subgroups

(cluster A and cluster B) based on the expression of the

25 significant ferroptosis- and necroptosis-related DEGs in all

CAD samples (n = 352) (Figures 4A–F, Supplementary Table S3).

Cluster A included 141 cases, whereas cluster B included
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211 cases. The heat map and box plot were then used to depict the

differential expression levels of the 25 significant ferroptosis- and

necroptosis-related DEGs between the cluster A and B (Figures

5A,B).NCF2,CBS, FTL,MAP3K5,MAPK14, STAT3, PGD, TLR4,

FADD, ITPK1, and TNFSF10were all expressed at higher levels in

cluster A than in cluster B, whereas RPL8, HSPB1, ELAVL1,

HIC1, SCP2, SLC38A1,MTDH, LONP1,MYC, DNMT1, BACH2,

and LEF1 showed the opposite trends. There were no significant

differences in ELAVL1, HIC1, or MYB expression between

cluster A and cluster B. According to PCA, the expression of

the 25 significant ferroptosis- and necroptosis-related DEGs

could fully separate the cluster A and B (Figure 5C). Between

the cluster A and B, 91 DEGs were identified (Figure 6A; Table 1).

To elucidate the potential mechanisms through which 91 DEGs

contributed to CAD, we used GO functional enrichment analysis

and illustrated the findings using an enrichment circle diagram

(Figures 6B–E, Supplementary Table S4). We found that the

majority of upregulated genes in cluster A were enriched in GO:

0043312 (neutrophil degranulation), GO:0002283 (neutrophil

activation involved in immune response), GO:0002446

(neutrophil mediated immunity), and GO:0042119 (neutrophil

activation), whereas the majority of upregulated genes in cluster

B were enriched in GO:0050851 (antigen receptor-mediated

signaling pathway), GO:0050853 (B cell receptor signaling

pathway), GO:0002429 (immune response-activating cell

surface receptor signaling pathway), and GO:0002757

(immune response-activating signal transduction). All of these

categories were associated with inflammation.

FIGURE 1
Flow chart of the research process.
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The abundance of immune cells in CAD samples was then

calculated using ssGSEA (Supplementary Table S5), and the

associations between the 25 significant ferroptosis- and

necroptosis-related DEGs and immune cells were investigated

by correlation test with spearman method. We found that NCF2,

CBS, FTL, MAP3K5, MAPK14, STAT3, PGD, TLR4, FADD,

ITPK1, and TNFSF10 all exhibited positive relationships with

various types of immune cells, particularly neutrophils

(Figure 7B). We then investigated the differences in immune

cell infiltration between patients with high and low expression of

NCF2, CBS, FTL, MAP3K5, MAPK14, STAT3, PGD, TLR4,

FADD, ITPK1, and TNFSF10. The findings indicate that

patients with elevated levels of NCF2, CBS, FTL, MAP3K5,

MAPK14, STAT3, PGD, TLR4, FADD, ITPK1, and TNFSF10

showed greater infiltration of immune cells than those with low

levels (Supplementary Figure S1A–K). Finally, we analyzed the

differential infiltration of immune cells between the two

subgroups (Figure 7A). Cluster A was found to be closely

connected with several types of inflammatory cells, suggesting

that the infiltration of various immune cells plays a very

important role in cluster A.

Comparison of the clinical characteristics
of the two subgroups

Next, sex, age, and CAD index were gained in patients with

CAD from the GSE12288 dataset and only sex were gained in

patients with CAD from the GSE20681 dataset to identify the

clinical features of the two subgroups. There are no useful

clinical features in GSE20680 dataset. Specifically, there were

no significant variations in the proportion of men or in age

between clusters A and B (Figures 8A,B). Additionally, cluster

A showed a higher CAD index than cluster B, indicating that

individuals in cluster A may have greater disease severity

(Figure 8C). We then conducted analysis of variance

(ANOVA) to compare ages in the two subgroups and

found that subgroup served as an age-independent

predictor of the extent of CAD (Table 2, p < 0.05). These

findings suggested that the subgroups based on 25 ferroptosis-

and necroptosis-related DEGs may reflect not only the phases

of CAD development but also the basic biological aspects

of CAD.

Identification of two subgroup-specific
gene patterns and generation of the
subgroup-specific gene signature

To further confirm the four specific genes (Figure 9A) that

determine typing, we performed consensus clustering to divide

all CAD samples (n = 352) into gene cluster A and B based on the

expression of the four subgroup-specific genes. We observed that

the two subgroup-specific gene patterns (gene cluster A and gene

cluster B; Supplementary Table S6) were consistent with

clustering of ferroptosis- and necroptosis-related gene clusters

(cluster A and B) (Figures 9B,C). According to our analysis,

differences in subgroup-specific gene expression, immune cell

infiltration (Figure 10C), and clinical features (Figures 11A–C)

between gene cluster A and gene cluster B were likewise similar to

above results in the cluster A and B. Additionally, individuals in

gene cluster A were older and had higher CAD indices than

individuals in gene cluster B (p < 0.001), indicating that disease

may bemore severe in individuals in gene cluster A. Additionally,

we conducted ANOVA to compare ages and subgroups and

FIGURE 2
The gene expression datasets were processed using principal
component analysis (PCA). The top two principal components
(PC1 and PC2) of gene expression profiles were visualized as points
on a scatter plot. Samples were based on data visualized
without (A) and with (B) the batch effect removed. The colors
indicate samples from three different datasets, which are
represented by the dots.
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found that subgroup was also an age-independent predictor (p <
0.05) (Table 2). This further confirmed the accuracy of our typing

using the consensus clustering approach. We used PCA

algorithms to calculate the subgroup-specific gene score for

each sample in order to quantify the subgroup-specific gene

clusters (Supplementary Table S7). The subgroup-specific gene

score was then compared between the two separate ferroptosis-

and necroptosis-related gene clusters or subgroup-specific gene

clusters. The findings indicated that the subgroup-specific gene

score was higher in cluster A or gene cluster A than in cluster B or

gene cluster B (p < 0.05) (Figures 12A,B). Surprisingly, the

subgroup-specific gene scores and CAD indices were greater

in cluster A than in cluster B, indicating that these four genes may

be critical in the progression of CAD. Additionally, all four of

these genes were ferroptosis-related genes, indicating that

ferroptosis played critical roles in controlling CAD

progression. Interestingly, CBS and TLR4 were overexpressed

in individuals with CAD and were therefore considered risk

genes, whereasHSPB1 and LONP1were overexpressed in normal

individuals and were thus considered protective genes.

According to the findings of the second typing, CBS and

TLR4 were overexpressed in cluster A (p < 0.001), whereas

HSPB1 and LONP1 were overexpressed in cluster B (p <
0.001). Thus, CBS and TLR4 may accelerate CAD

advancement, whereas HSPB1 and LONP1 may suppress CAD

progression, underscoring the importance of categorization in

determining the degree of CAD. A Sankey diagram was used to

depict the association between ferroptosis- and necroptosis-

related gene patterns, subgroup-specific gene patterns, and

subgroup-specific gene scores (Figure 12C).

FIGURE 3
Differences in the expression of 25 ferroptosis- and necroptosis-related genes in control (con) and CAD (treat) groups. (A) Differential
expression histogram of the nine necroptosis-related genes identified between controls and patients with CAD. (B) Expression heat map of the nine
necroptosis-related genes in controls and patients with CAD. (C) Differential expression histogram of the 18 ferroptosis-related genes identified
between controls and patients with CAD. (D) Expression heatmap of the 18 ferroptosis-related genes in controls and patients with CAD. *p <
0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 4
Consensus clustering of the 25 ferroptosis- and necroptosis-related genes in patients with CAD. (A–D) Consensus matrices of the
25 ferroptosis- and necroptosis-related genes for k = 2–5. (E) CDF curve for k = 2–9. (F) Delta area scores of the CDF curve for k = 2–9.
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Validation of 4 subgroup-specific genes in
the merged dataset and
GSE180083 dataset

We used the dataset to validate differences in the 4 subgroup-

specific genes HSPB1, LONP1, CBS and TLR4 in the normal and

CAD samples in the merged dataset and GSE180083 dataset. We

found that CBS and TLR4 were significantly upregulated and

HSPB1 and LONP1 were significantly downregulated in patients

with CAD in merged dataset and GSE180083 dataset (Figures

13A–H). To determine the diagnostic accuracy of this model, the

area under the receiver operating characteristic curve (ROC) was

determined using the “’ROC’” package. The area under the curve

(AUC) value of HSPB1, LONP1, CBS and TLR4 in

GSE180083 dataset were 0.647, 0.624, 0.812, 0.825, respectively.

The distinction was considered good when the area under the

curve (AUC) value was between 0.8 and 0.9 and exceptional when

the AUC value was greater than 0.9 (Rice and Harris, 2005).

Discussion

Globally, CAD is a leading cause of death, with mortality

predicted to reach 23.6 million by 2030 (Zhang L. et al., 2021).

CAD is caused by various genetic and environmental factors,

and the cumulative influence of these variables is critical. In

this study, we investigated gene expression profiles from three

GEO datasets of patients with CAD and normal controls.

Additionally, we effectively divided the 352 patients with CAD

into two clusters (clusters A and B) for the first time based on

the expression of ferroptosis- and necroptosis-related DEGs.

Further research identified functional modules or pathways

unique to subgroups as a result of the categorization.

Subsequently, we correctly categorized the 352 patients

with CAD into gene clusters A and B for the second time

based on the expression of four subgroup-specific genes.

There was a significant correlation between clinical features

and categorization. Moreover, when compared with the two

FIGURE 5
Differences in the expression of 25 ferroptosis- and necroptosis-related genes in cluster A and cluster B. (A)Differential expression histogram of
the 25 ferroptosis- and necroptosis-related genes in cluster A and cluster B. Red: cluster B; blue: cluster A. (B) Expression heat map of the
25 ferroptosis- and necroptosis-related genes in cluster A and cluster B. Red: cluster B; blue: cluster A; red: high expression; blue: low expression. (C)
Principal component analysis of the expression profiles of the 25 ferroptosis- and necroptosis-related genes, demonstrating marked
differences in transcriptomes between cluster A and cluster B. Red: cluster B; blue: cluster A. Each dot represents a sample.
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gene clusters, patients in gene cluster A had a higher CAD

index and were older, suggesting that gene cluster A was

associated with more severe CAD. The typing results

suggested that ferroptosis and necroptosis may play critical

roles in CAD. Taken together, our results showed that

categorization of patients with CAD was highly correlated

with clinical features and certain functional modules or

pathways.

FIGURE 6
Differentially expressed genes (DEGs) and enrichment analysis between cluster A and cluster B. (A) Venn diagram representing the intersection
of DEGs between cluster A and cluster B. (B) Gene ontology analysis of upregulated DEGs in cluster A. (C) Gene ontology analysis of upregulated
DEGs in cluster B. (D) Kyoto Encyclopedia of Genes and Genomes analysis of the upregulated DEGs in cluster A. (E) Kyoto Encyclopedia of Genes and
Genomes analysis of upregulated DEGs in cluster B.
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Earlier studies have only explored the heterogeneity between

subtypes (Peng et al., 2019; Zhang B. et al., 2021) and have not

evaluated the molecular mechanisms responsible for this

TABLE 1 Differential genes between cluster A and cluster B.

Genes logFC P.Value adj.P.Val

Up-regulated in cluster B

LCK 0.504546053 1.51E-30 1.56E-27

RPL36 0.521792929 3.14E-30 2.96E-27

LONP1 0.803850527 6.69E-29 3.60E-26

FAIM3 0.509238851 7.80E-27 1.96E-24

KRI1 0.741118014 2.72E-26 5.81E-24

TCF7 0.510489225 2.33E-25 4.18E-23

CD3D 0.507503667 7.36E-25 1.17E-22

CD79B 0.580450466 7.14E-22 6.16E-20

CD52 0.547967917 8.20E-20 4.59E-18

CD3G 0.770664616 2.36E-19 1.26E-17

LIG1 0.503740429 4.83E-17 1.86E-15

PRMT1 0.519897888 5.16E-17 1.95E-15

COQ4 0.554835126 1.74E-16 6.03E-15

ICOS 0.614182382 2.87E-15 7.79E-14

LTBP3 0.569074238 3.58E-15 9.57E-14

NME3 0.577144816 4.22E-15 1.12E-13

BIRC3 0.589328467 4.24E-15 1.12E-13

RPL34 0.564808402 1.17E-14 2.92E-13

HSPB1 0.633625542 1.83E-14 4.41E-13

FBXL15 0.540083039 4.24E-14 9.49E-13

IGHM 0.606806869 4.59E-14 1.02E-12

LSR 0.555946486 6.37E-14 1.38E-12

MS4A1 0.503015635 6.56E-14 1.41E-12

IGHD 0.508656664 9.66E-14 2.04E-12

MRPS33 0.527669416 3.39E-13 6.48E-12

C12orf29 0.573221133 1.48E-12 2.54E-11

EPHX2 0.540691194 2.38E-12 3.89E-11

WDR18 0.503291017 4.48E-12 6.92E-11

LRIG1 0.521258506 1.08E-11 1.56E-10

TCL1A 0.595110216 5.42E-10 5.79E-09

XIST 0.815900198 0.002715629 0.008356416

Up-regulated in cluster A

NFIL3 −0.579779291 7.80E-37 7.27E-33

FAM129A −0.581504267 3.59E-32 5.07E-29

REPS2 −0.55999927 5.16E-32 6.48E-29

TNFRSF10C −0.557569777 1.11E-30 1.26E-27

QPCT −0.602786665 9.52E-30 7.69E-27

MGAM −0.753175116 2.11E-29 1.32E-26

DUSP1 −0.640946149 7.76E-29 3.99E-26

TLR4 −0.550786326 1.59E-28 6.41E-26

IL1R2 −0.66514049 1.85E-28 7.21E-26

KCNJ15 −0.624123879 2.26E-28 8.25E-26

MEGF9 −0.506620185 7.62E-28 2.33E-25

RALB −0.52961537 8.23E-28 2.45E-25

PYGL −0.516041358 1.25E-27 3.63E-25

ABHD5 −0.510208938 1.30E-26 3.14E-24

ACSL1 −0.644907146 4.05E-26 8.18E-24

(Continued in next column)

TABLE 1 (Continued) Differential genes between cluster A and cluster B.

Genes logFC P.Value adj.P.Val

AQP9 −0.524605253 8.22E-26 1.58E-23
CLEC4E −0.749241373 3.08E-24 4.65E-22

FCGR3B −0.591635756 6.11E-24 8.38E-22

IGF2R −0.588144324 6.14E-24 8.38E-22

NAMPT −0.532538173 2.58E-23 3.09E-21

CYP4F3 −0.621164391 6.31E-23 6.61E-21

BCL6 −0.512419287 1.07E-22 1.06E-20

MANSC1 −0.534944844 1.49E-22 1.42E-20

ADM −0.604059281 1.17E-21 9.63E-20

CBS −0.718822658 1.47E-21 1.16E-19

KCNJ2 −0.563929088 2.34E-21 1.81E-19

BASP1 −0.502355608 1.10E-20 7.20E-19

FPR2 −0.515456987 3.25E-20 1.93E-18

MMP9 −0.850613784 3.77E-20 2.21E-18

MMP25 −0.510194692 4.06E-20 2.36E-18

BMX −0.833485855 1.21E-19 6.70E-18

MME −0.566122322 1.49E-19 8.13E-18

DYSF −0.508463926 3.42E-19 1.75E-17

ARG1 −0.83609682 3.88E-18 1.78E-16

ANXA3 −0.586668109 3.97E-18 1.81E-16

CXCL1 −0.509163147 4.25E-18 1.92E-16

RNASEL −0.538518792 6.37E-17 2.37E-15

NSUN7 −0.61003545 8.54E-17 3.12E-15

LIN7A −0.513847273 9.56E-17 3.45E-15

KRT23 −0.588993838 3.86E-16 1.24E-14

FOS −0.572751329 1.75E-15 4.93E-14

G0S2 −0.595760463 3.65E-15 9.74E-14

ECHDC3 −0.510962133 3.72E-15 9.89E-14

HIST1H3G −0.544657894 3.55E-14 8.07E-13

SP1 −0.509464563 5.08E-14 1.12E-12

UPF1 −0.562794433 5.25E-14 1.16E-12

GALNT14 −0.619462095 9.88E-14 2.08E-12

AOC3 −0.501629311 2.05E-13 4.07E-12

TREML2 −0.586877867 2.08E-13 4.11E-12

TNFAIP6 −0.56038306 3.66E-13 6.92E-12

TPST1 −0.617561054 5.07E-13 9.34E-12

OSM −0.546563912 7.08E-13 1.28E-11

ZNF230 −0.539427697 1.95E-12 3.27E-11

MAK −0.520492313 2.69E-12 4.34E-11

INHBB −0.504318482 8.86E-12 1.29E-10

PGLYRP1 −0.602924119 1.37E-11 1.91E-10

HIST3H3 −0.502135761 2.55E-10 2.90E-09

HIST1H2BO −0.508497062 1.89E-09 1.86E-08

APOBEC3B −0.600843308 2.14E-09 2.07E-08

ORM1 −0.624701222 2.09E-08 1.69E-07
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heterogeneity. The current study is the first to identify differences

between subtypes based on ferroptosis- and necroptosis-related

genes and to explore the associations between specific pathways

and clinical characteristics in individuals with CAD within

specific subgroups. We further performed functional

enrichment analysis of the two clusters and found that the

upregulated genes in cluster A were mainly enriched in

neutrophil-related biological processes. According to current

research, neutrophils are short-lived phagocytic cells

expressing a wide range of physiologically active enzymes,

including myeloperoxidases and proteinases. Leukocytosis and

neutrophilia are independent risk factors for CAD. Additionally,

C-X-C chemokine motif receptor 4 (CXCR4) and its ligand

C-X-C chemokine ligand 12 play roles in neutrophil egress

FIGURE 7
Single-sample gene set enrichment analysis. (A) Differential immune cell infiltration between cluster A and cluster B. (B) Correlation between
infiltrating immune cells and the 25 ferroptosis- and necroptosis-related genes. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8
Pairwise comparisons of clinical characteristics between cluster A and cluster B. (A) The proportion of men in each subgroup is represented by
the bar plot. Boxplots (B,C) display ages and CAD indices for subgroups. CAD: coronary artery disease. *p < 0.05, **p < 0.01, and ***p < 0.001.

TABLE 2 The analysis of variance for the transcriptome classification, age, and their interaction.

Df Sum square Mean square F-value Pr (>F)

Cluster A and cluster B Transcriptome classification 1 1852 1851.9 4.618 0.0339 *

Age 1 1318 1317.6 3.286 0.0727

Transcriptome classification and age interaction 1 392 391.9 0.977 0.3251

Residuals 106 42510 401

GeneCluster A and geneCluster B Transcriptome classification 1 4782 4782 12.493 0.000607 ***

Age 1 701 701 1.83 0.179005

Transcriptome classification and age interaction 1 11 11 0.028 0.868188

Residuals 106 40578 383

Note. Df: degree of freedom.

Significant codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 ‘’ 1.
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from the bone marrow and control neutrophil recruitment to

atherosclerotic lesions (Zernecke et al., 2008). Chronic

CXCR4 inhibition induces neutrophilia and increases the

number of neutrophils in plaques, both of which are linked to

apoptosis and a pro-inflammatory phenotype, suggesting that

neutrophils may have pro-inflammatory roles in atherosclerosis

(Zernecke et al., 2008). Furthermore, we found that cluster A was

mainly related to neutrophils by contributing to the

inflammatory response in atherosclerosis, suggesting that

neutrophil-related pathways, which lead to further

inflammatory infiltration, could explain the differences in

CAD indices between the clusters. Neutrophil activation is

involved in the immunological response, neutrophil-mediated

immunity, and atherosclerosis development. In this study, we

observed associations among older age, neutrophil pathway

activation, and disease severity in cluster A, indicating that an

FIGURE 9
Identification of subgroup-specific genes in the two clusters and consensus clustering of the four subgroup-specific genes in patients with
CAD. (A) The four subgroup-specific genes were identified by intersection of 22 ferroptosis- and necroptosis-related DEGs and DEGs between the
two clusters. (B–E) Consensus matrices of the four subgroup-specific genes for k = 2–5. (F) CDF curve for k = 2–9. (G) Delta area score of the CDF
curve for k = 2–9.
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aberrant neutrophil pathway in older patients with CAD may

result in severe disease. In addition, upregulated genes in cluster

B were mainly enriched in the B-cell receptor signaling pathway

and antigen receptor-mediated signaling pathway. B cells were

initially detected inside the adventitia in atherosclerotic lesions,

and immunoglobulin-positive cells were identified within

atherosclerotic plaques (Galkina and Ley, 2007a). The

functions of B cells in mediating the immune response in

atherosclerosis have recently been investigated. Splenectomy

was shown to exacerbate atherosclerosis in ApoE−/− mice,

accompanied by a decrease in anti-ox-LDL antibody levels.

Adoptive transfer of splenic B cells from atherosclerosis-prone

ApoE−/− animals into young ApoE−/− recipients was also shown

to prevent atherosclerosis (Caligiuri et al., 2002). These findings

suggest that atheroprotective immunity may expand during the

development of atherosclerosis and that B cells or their

immunoglobulin products may play protective roles. From

these results, we inferred that the severity of CAD was lower

in individuals in cluster B than in those in cluster A, mainly

because of the protective effects of B cells. In addition, the typing

FIGURE 10
Differential analysis of four subgroup-specific genes and infiltrating immune cells between gene cluster A and gene cluster B. (A) Expression
heat map of the four subgroup-specific genes in gene cluster A and gene cluster B. Red: gene cluster B; blue: gene cluster A; red: high expression;
blue: low expression. (B) Differential expression histogram of the four subgroup-specific genes in gene cluster A and gene cluster B. Red: gene
cluster B; blue: gene cluster A. (C) Differential immune cell infiltration between gene cluster A and gene cluster B. Red: gene cluster B; blue:
gene cluster A.

Frontiers in Genetics frontiersin.org15

Liu et al. 10.3389/fgene.2022.870222

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.870222


results showed that the main genes highly expressed in cluster A

were ferroptosis-related genes (e.g., NCF2, CBS, FTL, MAP3K5,

MAPK14, STAT3, PGD, and TLR4); thus, ferroptosis was closely

associated with the progression of CAD. Current research

indicates that ferroptosis and necroptosis differ in

morphological characteristics, developmental steps, and key

regulators, inducers, and inhibitors. Nonetheless, accumulating

evidence suggests that significant cross-talk exists between

ferroptosis and necroptosis (Fearns et al., 2006; Xu et al.,

2017; Maher et al., 2018; Wang et al., 2018; Proneth and

Conrad, 2019; Zhou et al., 2020; Chen C. et al., 2021). In this

research, although the last significant genes identified in the

analysis were all related to ferroptosis, it cannot be ruled out that

necroptosis plays a similar role. The mechanism of the

interaction between necroptosis and ferroptosis in CAD

should be further investigated. Elucidating this mechanism

could provide new perspectives to support advances in CAD

treatment.

In addition, with additional exploration of the mechanisms

of CAD, monocytes (Lessner et al., 2002), macrophages

(Stoneman et al., 2007), mast cells (Bot et al., 2007),

neutrophils (Zernecke et al., 2008), T cells (Galkina and Ley,

2007b), natural killer cells (Schiller et al., 2002), and dendritic

cells (Bobryshev and Lord, 1995) have been found to be closely

associated with the development and progression of CAD.

According to the results of our analysis by ssGSEA, the

proportion of most immune cells in cluster A was

significantly increased, which further explained the severity of

FIGURE 11
Pairwise comparisons of clinical characteristics between gene cluster A and gene cluster B. (A) The proportion of men in each subgroup is
represented by the bar plot. Boxplots (B,C) display ages and CAD indices for the subgroups. CAD: coronary artery disease. *p < 0.05, **p < 0.01, and
***p < 0.001.
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the CAD disease in cluster A and also further confirming that the

severity of CAD may be associated with degree of immune cell

infiltration. Furthermore, by studying the correlations of

ferroptosis- and necroptosis-related DEGs with immune cells,

we were surprised to find high expression in cluster A and that all

DEGs were positively correlated with the aforementioned

immune cells and functioned to promote the infiltration of

various immune cells. Therefore, we further confirmed the

important roles of ferroptosis and necroptosis in CAD

progression as reported in Dominic (Del Re et al., 2019).

In this study, we next evaluated DEGs among different

subgroups and found that all four significant genes were

ferroptosis-related genes. To further validate the roles of these

four genes in CAD progression, we typed the four genes and

found that the results of typing, clinical features, and immune cell

differences between typing were highly similar to the previous

FIGURE 12
Differential analysis of four subgroup-specific gene scores between the two clusters. (A) Differences in four subgroup-specific gene scores
between cluster A and cluster B. (B) Differences in four subgroup-specific gene scores between gene cluster A and gene cluster. p < 0.05 indicates
significance. (C) Sankey diagram showing the relationships among clusters A and B, gene clusters A and B, and subgroup-specific scores.
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FIGURE 13
Verification of 4 subgroup-specific genes. (A) HSPB1 expression in patients with CAD samples compared with normal samples in the merged
dataset. (B) LONP1 expression in patients with CAD samples compared with normal samples in the merged dataset. (C) CBS expression in patients
with CAD samples compared with normal samples in the merged dataset. (D) TLR4 expression in patients with CAD samples compared with normal
samples in the merged dataset. (E) HSPB1 expression in patients with CAD samples compared with normal samples in the GSE180083 dataset.
(F) LONP1 expression in patients with CAD samples compared with normal samples in the GSE180083 dataset. (G) CBS expression in patients with
CAD samples compared with normal samples in the GSE180083 dataset. (H) TLR4 expression in patients with CAD samples compared with normal
samples in theGSE180083 dataset. (I) Performance ofHSPB1 expression in CAD diagnosis in the test dataset. (J) Performance of LONP1 expression in
CAD diagnosis in the GSE180083 dataset. (K) Performance of CBS expression in CAD diagnosis in the GSE180083 dataset. (L) Performance of TLR4
expression in CAD diagnosis in the GSE180083 dataset. The distinction was considered good when the AUC value was between 0.8 and 0.9 and
exceptional when the AUC value was greater than 0.9. ROC: receiver operating characteristic; AUC, area under the ROC curve.
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typing results, demonstrating the significant roles of these four

genes in CAD progression. LONP1 is an important

mitochondrial target that is regulated by lipid-induced protein

kinase R-like endoplasmic reticulum kinase/eukaryotic initiation

factor 2α signaling in macrophages and in lesions (Tian et al.,

2011; Crewe et al., 2017). Acute cell stresses, such as hypoxia,

oxidative stress, food restriction, and the unfolded protein

response at the endoplasmic reticulum, have been found to

upregulate LonP1 (Hori et al., 2002; Sepuri et al., 2017).

Venkatesh et al. (Venkatesh et al., 2019) showed that

LonP1 is an endogenous cardioprotective mediator.

Furthermore, overexpression of LonP1 protects the heart from

injury by limiting oxidative damage to proteins and lipids,

maintaining mitochondrial redox equilibrium, and

reprogramming bioenergetics by decreasing complex I content

and activity. Mechanisms that enhance LonP1 expression may

protect the myocardium from cardiac stress and ischemia/

reperfusion damage. Thus, the abovementioned results

demonstrate that upregulation of LONP1 may inhibit the

progression of CAD. HSPB1 is a well-known small heat shock

protein that works as an oligomer and phosphorylated dimer

(Mohammad et al., 2018). In rat cardiomyocytes,

HSPB1 improves the reductive activity of endogenous

glutathione (GSH) reductase/GSH/GSH peroxidase and

thioredoxin/peroxiredoxin antioxidant systems, confirming its

role in protein oxidation resistance (Liu et al., 2019). Kraemer

et al. showed that HSPB1 is upregulated and phosphorylated in

ST-elevation myocardial infarction platelets. Additionally,

expression of HSPB1 in cardiomyocytes is necessary for

wound healing after myocardial infarction, suggesting that this

protein may be a target for enhancement of repair after

myocardial infarction (Wang et al., 2019). Notably,

HSPB1 generates homologous oxidized HSPB1 as a result of

its own unique cysteine and subsequently acts as an antioxidant

in vitro (Rajagopal et al., 2015). Thus, the abovementioned results

also demonstrate that upregulation of HSPB1 may inhibit the

progression of CAD. The results of our study showed that

LONP1 and HSPB1 were significantly upregulated in cluster B

and that the severity of CADwas lower in cluster B than in cluster

A, further demonstrating the protective roles of LONP1 and

HSPB1 in the progression of CAD. However, this requires our

follow-up further experiments to confirm the specific protective

mechanism of these two genes in CAD progression.

Interestingly, our analysis also found two genes that were

significantly elevated in CAD samples, CBS and TLR4. CBS is a

critical enzyme involved in the trans-sulfuration pathway via

catabolism of homocysteine (Hcy). Mutations in CBS have been

found in homocystinuric individuals and are related to thrombosis

and increased plasma Hcy levels (Gaustadnes et al., 2000).

Furthermore, Hcy increases atherogenesis by promoting vascular

smooth muscle cell proliferation (Tsai et al., 1996), limiting

endothelial cell growth and re-endothelialization after damage,

decreasing endothelial relaxation, accelerating neointimal

formation (Wang et al., 1997; Wang et al., 2002), and reducing

high-density lipoprotein production (Liao et al., 2006). The

immunological response elicited by Hcy is intricately associated

with cardiovascular disease. Thus, upregulation of CBS promotes

the onset and progression of CAD. TLR4 is amember of the Toll-like

receptor (TLR) family and is involved in the progression of

atherosclerosis, including monocyte activation, endothelial cell

injury, vascular smooth muscle cell fibrosis, and macrophage and

foam cell production (Xu et al., 2001). TLR4 expression is higher in

CAD plaques than in controls (Edfeldt et al., 2002). In

hypercholesterolemic ApoE−/− mice, TLR4 knockout reduces

lesion size, lipid content, and macrophage infiltration (Michelsen

et al., 2004; Choi et al., 2009). Additionally, in diabetic ApoE−/−mice,

administration of TLR4 antagonist reduces atherosclerotic lesions,

blocks inflammatory molecule production, and decreases monocyte

and macrophage content (Lu et al., 2013). Under lipid-rich

conditions, endogenous TLR4 ligands activate monocytes and

macrophages, causing widespread membrane ruffling,

macropinocytosis, lipoprotein uptake, and foam cell production

(Howell et al., 2011; Liu et al., 2012). The TLR4 signaling

pathway is a potential anti-inflammatory and anti-atherosclerosis

target. Importantly, TLR4 expression has been reported to be strongly

correlated with the severity of CAD, as reflected by the number of

coronary stenoses, andmay be a clinically useful biomarker of the risk

of cardiovascular disease (Shao et al., 2014). Thus, upregulation of

TLR4 is involved in promoting the onset and progression of CAD.

Taken together, these findings suggested that TLR4 andCBS play key

roles in the development of atherosclerosis. Therefore, blocking

TLR4 and CBS signaling may be beneficial in the treatment of

CAD. In addition, PCA demonstrated that the subgroup-specific

gene scores in cluster A or gene cluster A was higher than that in

cluster B or gene cluster B. Finally, we found that the subgroup-

specific upregulated genes CBS and TLR4 were significantly

upregulated in the disease group in the GSE180083 dataset and

had very high diagnostic efficacy. Therefore, regarding the role of

CBS and TLR4 in the progression of CAD, combinedwith the above-

mentioned related research reports and the results of this study, it is

confirmed that the two play an important role in the progression of

CAD. And further study of their mechanism of action will provide

favorable therapeutic targets for alleviating CAD progression.

Although our findings identified potential subgroups of patients

with CAD based on molecular analyses of ferroptosis- and

necroptosis-related genes and revealed the characteristics of each

subtype, gene expression changes are not necessarily genetically

driven or could be partially genetic and partially environmental.

Additional, several limitations should be acknowledged. First, some

clinical follow-up information was not available for the samples;

therefore, we did not consider several important factors, such as the

presence of patient comorbidities, when distinguishing among

subgroups. Second, the consistency of the CAD subgroups

should be confirmed using further analyses. Finally, the results

were acquired only through bioinformatics analysis, and the

results should be confirmed in further experiments.
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Conclusion

High expression of CBS and TLR4 in CAD was associated with

increased disease severity and may be promising diagnostic markers

of CAD. By contrast, LONP1 and HSPB1 may delay CAD

progression. The identification of genetic subgroups of patients

with CAD has improved our understanding of the pathogenesis

of CAD and has facilitated the development of potentialmethods for

disease diagnosis, classification, and prognosis evaluation.
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Glossary

CAD Coronary artery disease

DEGs differentially expressed genes

CBS cystathionine beta-synthase

TLR4 toll-like receptor 4

LONP1 lon peptidase 1, mitochondrial

HSPB1 heat shock protein family B (small) member 1

Fer-1 Ferrostatin-1

NCF2 neutrophil cytosolic factor 2

BNIP3 BCL2 interacting protein 3

FTL ferritin light chain

RPL8 ribosomal protein L8

MAP3K5 mitogen-activated protein kinase kinase 5

MAPK14 mitogen-activated protein kinase 14

ELAVL1 ELAV-like RNA-binding protein 1

HIC1 HIC ZBTB transcriptional repressor 1

STAT3 signal transducer and activator of transcription 3

PGD phosphogluconate dehydrogenase

SCP2 sterol carrier protein 2

SLC38A1 solute carrier family 38 member 1

MYB MYB proto-oncogene, transcription factor

MTDH metadherin

FADD Fas associated via death domain

ITPK1 inositol-tetrakisphosphate 1-kinase

MYC MYC proto-oncogene, bHLH transcription factor

TNFSF10 TNF superfamily member 10

DNMT1 DNA methyltransferase 1

BACH2 BTB domain and CNC homolog 2

LEF1 lymphoid enhancer binding factor 1

GO gene ontology

ssGSEA single-sample gene set enrichment analysis

PCA principal component analysis

ANOVA analysis of variance

ROC receiver operating characteristic

AUC area under the curve

CXCR4 C-X-C motif chemokine receptor 4

CXCL12 C-X-C motif chemokine ligand 12

oxLDL oxidized low-density lipoprotein

Hcy homocysteine

HHcy high homocysteine.

Frontiers in Genetics frontiersin.org23

Liu et al. 10.3389/fgene.2022.870222

https://www.ncbi.nlm.nih.gov/gene/875
https://www.ncbi.nlm.nih.gov/gene/6342
https://www.ncbi.nlm.nih.gov/gene/4602
https://www.ncbi.nlm.nih.gov/gene/51176
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.870222

	Identification of molecular subtypes of coronary artery disease based on ferroptosis- and necroptosis-related genes
	Introduction
	Materials and methods
	Data collection and processing
	Identification of ferroptosis- and necroptosis-related differentially expressed genes between normal and CAD samples
	Construction of subgroups based on consensus clustering
	Comparing the clinical characteristics of the two subgroups
	Identification of DEGs between the two subgroups and gene ontology functional enrichment analysis
	Estimation of immune cell infiltration
	Screening of subgroup‐specific genes and consensus clustering between subtypes
	Estimation of the subgroup‐specific gene signature
	Validation of 4 subgroup‐specific genes in GSE180083

	Results
	Elimination of batch effects
	Expression of 25 significant ferroptosis- and necroptosis-related DEGs in normal and CAD samples
	Two subtypes were identified based on the expression of ferroptosis- and necroptosis-related DEGs
	Comparison of the clinical characteristics of the two subgroups
	Identification of two subgroup‐specific gene patterns and generation of the subgroup‐specific gene signature
	Validation of 4 subgroup‐specific genes in the merged dataset and GSE180083 dataset

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References
	Glossary


