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a b s t r a c t

Introduction: Age-related macular degeneration (AMD) is the main cause of visual impairment and the
most important cause of blindness in older people. However, there is currently no effective treatment for
this disease, so it is necessary to establish a risk model to predict AMD development.
Methods: This study included a total of 202 subjects, comprising 82 AMD patients and 120 control
subjects. Sixty-six single-nucleotide polymorphisms (SNPs) were identified using the MassArray assay.
Considering 14 independent clinical variables as well as SNPs, four predictive models were established in
the training set and evaluated by the confusion matrix, area under the receiver operating characteristic
(ROC) curve (AUROC). The difference distributions of the 14 independent clinical features between the
AMD and control groups were tested using the chi-squared test. Age and diabetes were adjusted using
logistic regression analysis and the “genomic-control” method was used for multiple testing correction.
Results: Three SNPs (rs10490924, OR ¼ 1.686, genomic-control corrected p-value (GC) ¼ 0.030;
rs2338104, OR ¼ 1.794, GC ¼ 0.025 and rs1864163, OR ¼ 2.125, GC ¼ 0.038) were significant risk factors
for AMD development. In the training set, four models obtained AUROC values above 0.72.
Conclusions: We believe machine learning tools will be useful for the early prediction of AMD and for the
development of relevant intervention strategies.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Age-related macular degeneration (AMD) is a progressive and
degenerative eye disease that is a major cause of blindness in
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elderly individuals [1]. Early AMD is characterized by the presence
of medium-size drusen or retinal pigment abnormalities without
overt functional loss in the clinic. Late-stage AMD can be divided
into two forms: geographic atrophy (dry AMD) or neovascular AMD
(wet AMD or nAMD) [2,3]. The prevalence of dry AMD is higher
than that of wet AMD, accounting for 80e85% of all cases; however,
90% of all clinical cases with loss of sight are wet AMD, and rapid
visual acuity lossmay occur within severalmonths [4]. According to
the diagnosis by indocyanine green angiography, wet AMD is
further divided into the typical choroidal neovascular (CNV) sub-
type and the polypoidal choroidal vasculopathy (PCV) subtype [5].

AMD accounts for 8.7% of all blindness worldwide, particularly
in people older than 60 years [6]. Its prevalence is likely to increase
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as a consequence of exponential population aging. In China, the
incidences of early AMD and advanced AMD in the elderly popu-
lation are 4.7%e9.2% and 0.2%e1.9%, respectively [7,8]. The results
of a meta-analysis show that the global incidences of early, late and
any AMD are 8.01%, 0.37%, and 8.69%, respectively. There was a
higher prevalence of early and any AMD in Europeans than in
Asians (early: 11.2% vs 6.8%; any: 12.3% vs 7.4%); early, late, and any
AMD were more prevalent in Europeans than in Africans (early:
11.2% vs 7.1%; late: 0.5% vs 0.3%; any: 12.3% vs 7.5%), while there was
no difference in prevalence between Asians and Africans [6]. It is
predicted that by 2020 and 2040, the number of global AMD pa-
tients will reach 196 million and 288 million, respectively [6]. Due
to its socioeconomic impact together with the growing incidence
and severity of the disease, AMD has become a major challenge in
ophthalmology in recent years. Therefore, it is necessary to develop
a reliable early warning method for AMD that could lead to the
early intervention and treatment of AMD.

AMD is a clinically heterogeneous and genetically complex
disease, with multiple environmental and genetic risk factors
involved [9,10]. Epidemiological research suggests that AMD is a
complex disease caused by the actions and interactions of multiple
genes and environmental factors, such as age, light exposure, body
mass index (BMI), and cigarette smoking [11,12]. Older age is a
major risk factor for AMD, with more than 10% of people older than
80 years being affected by late AMD, while female sex has been
inconsistently reported as a risk factor as well [13]. Cigarette
smoking has been reported as a significant environmental risk
factor and shown to modify the effect of ARMS2 A69S [14,15] but
not all [16,17]. Other epidemiological studies have linked not only
cigarette smoking and light exposure but also alcohol consumption,
diet, drugs, lipids and hypertension to the risk of AMD [18e23].
Previous cataract surgery was reported as a risk factor in this dis-
ease [24]. Lim et al. also reported that major risk factors include
cigarette smoking, nutritional factors, cardiovascular diseases, and
genetic markers, including genes regulating complement, lipid,
angiogenesis, and extracellular matrix pathways in AMD develop-
ment [25]. Familial aggregation [26,27] and twin studies [28] have
suggested that genetic variation may also play an important role in
the disease, in which genetic factors account for a high proportion
of the risk of the disease, up to 45e70% [29]. Several genetic loci
have been associated with AMD, including two major loci in the
complement factor H (CFH) gene on 1q32 and the ARMS2/HTRA1
locus on the 10q26 gene cluster [30,31]. On the basis of large
genome-wide association studies, high-density lipoprotein
cholesterol (HDL-C) pathway genes have been implicated, including
LIPC and CETP, and possibly ABCA1 and LPL [32,33].

In this study, the Chinese population was used as the research
object. Based on the published SNPs of AMD-related genes, 66 SNPs
of 44 genes and 10 intergenic regions related to AMDwere selected
[6,34e49], and 14 clinical features were collected in caseecontrol
studies. This study aimed to analyze the relationship between
SNPs and AMD, to identify SNPs related to AMD in the Chinese
population and to construct a genetic structure network of SNPs
susceptible to AMD disease in the Chinese population. The results
regarding SNPs in AMD-related genes will help elucidate the mo-
lecular genetic mechanisms of AMD in the Chinese population.
More importantly, machine learning tools combining SNPs and
clinical features were used to predict the early diagnosis of clinical
AMD, which is of great significance in reducing the incidence of
AMD and improving the treatment rate of AMD.
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2. Methods and materials

2.1. Patients and data collection

Our study recruited 82 patients with AMD and 120 healthy
controls from the following 4 subcenters from January to December
2018: Heji Hospital Affiliated to Changzhi Medical College (68
control samples and 36 AMD patients), General Hospital of Tisco
(50 control samples and 37 AMD patients), The Aviation Hanzhong
3201 Hospital (6 AMD patients) and The First Hospital of Quanzhou
(2 control samples and 3 AMD patients). AMD was diagnosed ac-
cording to the standard of the Clinical Age-Related Maculopathy
Staging (CARMS) system [50]. Controls had no family relationship
with the AMD patients, and they all underwent ocular examina-
tions. Ethics approval and written informed consent were obtained
from all participants in the study.

2.2. Obtaining relevant clinical data

According to the questionnaire, a total of 14 clinical risk factors
were assessed and are listed in Table 1, including age, sex, BMI,
hypertension, hyperlipidemia, diabetes, renal dysfunction, athero-
sclerosis, history of ophthalmic surgery, family history of AMD,
long-term outdoor work, vegetarian status, smoking status and
drinking status. Smoking or drinking status was defined as follows:
no means never smoking/drinking; yes means including ex-
smokers/drinkers and current smokers/drinkers. BMI was
measured in kg/m2 (underweight < 18.5, normal ¼ 18.5e23.9,
overweight ¼ 24e27.9, obese � 28).

2.3. DNA extraction and genotyping

Sixty-six SNPs were selected from 44genes and 10 intergenic
regions that were previously reported to be associated with AMD
[6,34e49] and some related studies on the susceptible loci of AMD
in recent years were listed in Supplementary Table S1. A 4-ml pe-
ripheral blood sample was obtained from each participant for DNA
analysis. Genomic DNA was extracted from whole blood using the
Gold Mag-Mini Whole Blood Genomic DNA Purification Kit (Gold-
Mag Co., Ltd., Xi'an City, China). The DNA concentration was
measured using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Fitchburg, WI, USA). We used the website https://
agenacx.com to design multiplex primers for each SNP: forward
PCR primer, reverse PCR primer, and UEP primer. The primers of the
66 SNPs are shown in Supplementary Table S2. The SNPs were
genotyped with an Agena BioscienceTMMassArray®Analyzer with
a 384-well configuration (Agena, California, USA) using the stan-
dard protocol recommended by the manufacturer. Data manage-
ment and analysis were performed using Typer Analyzer 4.0
software (Agena).

2.4. Model construction

A total of 120 AMD patients and 82 control subjects were
included in the training set, and the odd ratio (OR) values of all
SNPs were calculated using the software package PLINK (PLINK
version 1.07) [51]. Three SNPs were identified to be significantly
associated with AMD risk (Supplementary Table S3). Then, 4
models were established to predict AMD development, including
logistic regression (LR), AdaBoost, random forest (RF) and XGBoost

https://agenacx.com
https://agenacx.com


Table 1
Demographics of AMD patients and control subjects.

Variables AMD (82) Control (120) p value

Age (years) <0.0001***
40e60 14 61
61e80 55 53
>80 13 6
Sex 0.886
Male 40 61
Female 42 59
BMI (kg/m2) 0.525
<18.5 5 3
18.5e23.9 38 56
24.0e27.9 33 48
�28 6 13
AMD family history 0.880
Yes 2 2
No 80 118
Hypertension 0.978
Yes 42 60
No 40 60
Diabetes <0.001**
Yes 25 66
No 57 54
Hyperlipidemia 0.927
Yes 27 40
No 55 80
Renal dysfunction 0.517
Yes 13 14
No 69 106
Long-term outdoor work 0.825
Yes 19 25
No 63 95
Vegetarian 0.953
Yes 19 27
No 63 93
Smoking 0.984
Yes 32 47
No 50 73
Drinking 0.304
Yes 25 45
No 57 75
Atherosclerosis 0.674
Yes 34 45
No 48 75
History of ophthalmic surgery 0.545
Yes 18 21
No 64 99

BMI, body mass index; **p < 0.001, ***p < 0.0001, chi square test.
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models, considering clinical features and SNPs. Cross validation is a
common solution when the available datasets are limited and k-
fold is a common cross validation approach [52]. Therefore, k-fold
(k ¼ 4) cross validation was used in the construction of the four
predictive models, which were compared with the use of the
confusion matrix, area under the receiver operating characteristic
(ROC) curve (AUROC). The AUROC is one of the most used metrics
for evaluating binary classifiers and plots sensitivity against 1-
specificity.

In the present study, four models were selected based on several
currently and frequently adopted predictivemodel types. LR is most
frequently used to predict the occurrence of an event in clinical
research, such as the prediction of heart failure in patients [53]. The
AdaBoost model is considered a generalized additive model and
had good predictive performance in diabetes classification [54].
XGBoost has demonstrated excellent performance in clinical
research due to its high efficiency and impressive accuracy [55,56].
The RF algorithm gradually converges with an increase in the
number of trees and is more accurate because of the injected
randomness. This algorithm has been used for predicting overall
survival in breast cancer [57].
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2.5. Statistical analysis

For all SNPs, the ORs and 95% confidence intervals (CIs) of the
minor alleles of AMD patients and healthy controls were assessed
adjusting for age and diabetes by logistic regression analysis
assuming an additive genetic model using the PLINK package. Four
models (LR, AdaBoost, RF and XGBoost) for prediction of AMD risk
were constructed combining 3 SNPs with age and diabetes and
were evaluated by the Python (version 3.7.0). The diagnostic values
of 4 models were assessed by ROC analysis. The chi-squared test
was used to assess the differences between groups and statistical
calculations were performed using SPSS version 19.0. The
“genomic-control”method was used for multiple testing correction
at a level of p < 0.05.

3. Results

3.1. Characteristics of the subjects

Fourteen clinical characteristics of the patients with AMD and
control patients are shown in Table 1. There were no statistically
significant differences between the AMD and control subjects in
terms of sex, BMI, hypertension, hyperlipidemia, renal dysfunction,
atherosclerosis, history of ophthalmic surgery, AMD family history,
long-term outdoor work, vegetarian status, smoking status or
drinking status. Only age (p < 0.001) and diabetes (p < 0.001) were
significantly different between the AMD and control groups.

3.2. Associations between the SNPs and AMD

We used the minor allele (A1) of each SNP in the additive ge-
netic model in logistic regression analysis adjusting for age and
diabetes and used the multiple-testing method “genomic-control”
for multiple testing correction by PLINK software, which was esti-
mated as previously described [58]. Multiple-testing was per-
formed in PLINK to make the statistics more rigorous and accurate.
Genomic-control is now regarded as the gold standard to eliminate
the potential effect of population stratification [59]. In this study,
we used the “genomic-control” method to correct for possible
AMD-control differences in the genetic structure of our study
population. The OR values and p values (unadjusted p-value
(UNADJ) and genomic-control corrected p-value (GC)) were ob-
tained by PLINK software (Supplementary Table S3). The results
showed that 3 SNPs tended to be significantly associated with
AMD: rs10490924, rs2338104 and rs1864163. These SNPs were risk
factors in AMD development and are shown in the forest plots in
Fig. 1.

3.3. Three risk SNPs in AMD

Among the 3 risk SNPs, the nonsynonymous mutation (A69S)
SNP rs10490924 was located on chromosome 10q26 in exon 1 of
the age-related maculopathy susceptibility 2 (LOC387715/ARMS2)
gene, which was reported as a strong genetic risk factor for AMD
[60]. Tong et al. performed a Human Genome Epidemiology (HuGE)
systematic review and meta-analysis and reported that the
LOC387715/ARMS2 rs10490924 G/T polymorphism plays an
important role in AMD diseases [61]. In the present study, we found
that the T allele of rs10490924 (OR ¼ 1.686, 95%CI ¼ 1.079e2.635,
GC ¼ 0.030) was also a risk factor for AMD development.
Rs2338104 is near the KCTD10/MVK gene, which is located on
chromosome 12 and encodes enzymes involved in cholesterol
synthesis and degradation, and has been reported to be associated
with HDL-C and the risk of developing coronary artery disease
[62,63]. Restrepo et al. used the Population Architecture using



Fig. 1. Forest plots. Three SNPs associated with AMD (odds ratios (ORs) and 95% confidence intervals (CIs)). ORs are denoted by black boxes, and 95% CIs are denoted by the
corresponding gray lines.
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Genomics and Epidemiology (PAGE) study and reported that the G
allele of rs2338104 was associated with AMD in African Americans
and Mexican Americans [49]. In our current study, we found that
the G allele of rs2338104 (OR ¼ 1.794, 95% CI ¼ 1.106e2.910,
GC ¼ 0.025) was also a risk factor for AMD development in the
Chinese population. Rs1864163 near cholesteryl ester transfer
protein (CETP) is a hydrophobic glycoprotein that has an estab-
lished role in transporting cholesterol fromperipheral tissues to the
liver for elimination by exchanging the triglycerides of very low-
density lipoprotein (LDL) and LDL against the cholesteryl esters of
HDL [64]. Naseri et al. reported that the CETP of rs1864163 was
associated with HDL-C [65]. A previous study reported lipid levels
as a major risk factor for AMD and found that higher levels of HDL
increased the risk of incident AMD [66]. In the present study, we
found that the A allele of rs1864163 (OR ¼ 2.125, 95%
CI ¼ 1.084e4.166, GC ¼ 0.038) was a risk factor for AMD
development.
Fig. 2. Evaluation of the predictive models. The figure shows the average ROC curves of
the 4 models in the training set. The mean AUC values with standard deviations of the
different prediction models are shown in the box.

183
3.4. Comparison of the four prediction models in the training set

For each model, the optimal parameter values were chosenwith
a grid search approach. The model with the optimal parameters
was chosen as the final model to be compared with the others. The
predictive abilities of the prediction models were assessed using
the AUROC. The average AUROC is shown in Fig. 2. All models had
AUROC values above 0.72. As a useful tool, the ROC curve has been
widely used to validate the performance of landslide susceptibility
models. It is generally considered that if the AUC of the model is
greater than 0.70, the model has high accuracy [67]. K-fold cross
validation (k ¼ 4) was used in the four models in Fig. 3.
4. Discussion

AMD is the most common cause of irreversible blindness
worldwide [25], and there is currently no effective treatment for
this disease [41]. A systematic review and meta-analysis indicated
that AMD causes a substantial global burden [6]. Therefore, it is
urgent to diagnose AMD in the early stage.

This study included a total of 202 subjects, which comprised 82
AMD patients and 120 controls. To identify the risk of AMD in order
to achieve earlier diagnosis in suspected AMD patients, 14 inde-
pendent clinical variables related to AMD were included in the
study. Only two clinical features, namely, age and diabetes, were
significantly different between the AMD and control groups, while
other risk factors, such as smoking, AMD family history or
ophthalmic surgery, were not significant between the two groups,
probably due to the unbalanced small sample size. Smokers aged
>40 years are two to four times more likely to develop AMD than
nonsmokers of the same age [68]. A systematic review including 18
prospective and cross-sectional studies and six caseecontrol
studies involving 113,780 individuals identified age, smoking,
previous cataract surgery, and a family history of AMD as strong
risk factors for AMD [69]. AMD is most frequently found in Cau-
casians, followed by Hispanics and Asians with the lowest rate re-
ported in African Americans [70]. Siblings of an affected individual
have a threefold to six fold higher risk than those of the general
population [71]. A total of 66 SNPs were identified, and 3 SNPs were
significantly associated with AMD development, as determined
using PLINK software. Our results showed that 3 SNPs (rs10490924,
rs2338104 and rs1864163) were risk factors in AMD development,
consistent with the findings of previous studies.

The present study aims to compare the performance of four
machine learning techniques (MLTs) in the prediction of patients
with AMD using data from the four subcenters. MLT applications
have been reported in cardiology, especially for developing pre-
diction models using both supervised and unsupervised methods



Fig. 3. K-fold (k ¼ 4) cross validation was used in the XGBoost, RF, LR and AdaBoost models. a-d, k ¼ 4 was used in the XGBoost, RF, LR and AdaBoost models.
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[72]. In recent years, MLTs have also been increasingly used in the
field of heart failure research [53] and chronic kidney disease
progression [56]. The prediction abilities of the four machine
learning models of LR, AdaBoost, XGBoost and RF were assessed.
Two clinical features, namely, age and diabetes, and 3 SNPs were
used as inputs for prediction modeling in the training set. To make
full use of the data, the four models were constructed using the
aforementioned dataset with 4-fold cross validation. All models
obtained AUROCs above 0.72.

There were some limitations in this study. First, the sample size
used was relatively small, and the total sample of patients with
AMD and healthy controls was unbalanced. Second, the samples
from four centers were seriously unbalanced; only six AMD sam-
ples were collected from The Aviation Hanzhong 3201 Hospital, and
two control samples and three AMD samples were collected from
the Quanzhou First Hospital. Third, we only selected 2 clinical
features with significant differences between the two groups for
inclusion in the prediction models, while other risk factors, such as
smoking status, AMD family history, BMI, drinking status, hyper-
tension, and hyperlipidemia, were not considered. Fourth, we only
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used four models in the training set but not in the validation set. It
is urgent for us to collect samples for validation in the near future.
5. Conclusions

In summary, we constructed and evaluated AMD prediction
models integrating 3 SNPs and 2 clinical factors. The four models
showed AUROCs above 0.72 in the training set. Machine learning
tools have the potential to aid in the early diagnosis and treatment
of patients with AMD. There is still a way to go before the models
can be applied in the clinic for AMD prediction, and they should be
validated in a larger cohort.
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.



S. Hao, J. Bai, H. Liu et al. Regenerative Therapy 15 (2020) 180e186
Acknowledgments

This work was supported by the Major Projects of Special
Development Funds in Zhangjiang National Independent Innova-
tion Demonstration Zone, Shanghai (ZJ2017-ZD-012).

Abbreviations

AMD age-related macular degeneration
SNPs single-nucleotide polymorphisms
OR odd ratio
CI confidence interval
CNV choroidal neovascular
PCV polypoidal choroidal vasculopathy
BMI body mass index
CFH complement factor H
LR logistic regression
RF random forest
AUROC area under the receiver operating characteristic curve
MLTs machine learning techniques
HDL-C high-density lipoprotein cholesterol
LDL low-density lipoprotein
CARMS clinical age-related maculopathy staging
GC genomic-control corrected p-value
UNADJ unadjusted p-value
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