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ABSTRACT: Cost-optimization models are powerful tools for evaluating
emerging water treatment processes. However, to date, optimization models do
not incorporate detailed chemical reaction phenomena, limiting the assessment
of pretreatment and mineral scaling. Moreover, novel approaches for high-
salinity and high-recovery desalination are typically proposed without direct
quantification of pretreatment needs or mineral scaling. This work addresses a
critical gap in the literature by presenting a modeling framework that includes
complex water chemistry predictions with process-scale optimization. We use
this approach to conduct a technoeconomic assessment on a conceptual high-
recovery treatment train that includes chemical pretreatment (i.e., soda ash
softening and recarbonation) and membrane-based desalination (i.e., standard
and high-pressure reverse osmosis). We demonstrate how to develop and integrate accurate multidimensional surrogate models for
predicting precipitation, pH, and mineral scaling tendencies. Our findings show that cost-optimal results balance the costs of
pretreatment with reverse osmosis system design. Optimizing across a range of water recoveries (i.e., 50−90%) reveals multiple cost-
optimal schemas that vary the chemical dosing in pretreatment and the design and operation of reverse osmosis. Our results reveal
that pretreatment costs can be more than double the cost of the primary desalination process at high recoveries due to the extensive
pretreatment required to control scaling. This work emphasizes the importance of and provides a framework for including chemistry
and mineral scaling predictions in the evaluation of emerging technologies in high-recovery desalination.
KEYWORDS: pretreatment, mineral scaling, desalination, technoeconomic, optimization

1. INTRODUCTION
Mineral scaling presents a critical challenge for high-recovery
desalination because the deposition of mineral solids on
surfaces degrades membrane performance, increases thermal
resistance in heat exchangers, and damages other equip-
ment.1−5 Mineral scaling is inherently linked to high-recovery
desalination because minerals eventually precipitate when the
concentrations of solutes reach solubility as water is extracted
and brine is concentrated. This phenomenon typically limits
the overall water recovery of desalination processes,6 resulting
in a large generation of waste brine and limiting treatment of
saline waters to areas near the coast where brine disposal is
cost-effective.7−9 Thus, broadening the application of desali-
nation will require the design of treatment trains that can
operate at higher water recoveries.
Enabling high recovery in desalination processes is

challenging since the severity and type of mineral scale depend
on the feedwater source and treatment process, requiring a
holistic approach to treatment train design. This approach
needs to balance cost-trade-offs between the primary
desalination processes that yield product water and the
pretreatment processes that reduce the scaling potential of
the feed. Typically, pretreatment includes chemical precip-
itation to remove undesirable ions and the addition of

antiscalants that retard the onset of nucleation and crystal
growth.10 These pretreatment processes can significantly
increase capital (e.g., precipitation reactors) and operating
costs (e.g., chemical addition) depending on the feedwater
composition. Some of the pretreatment requirements can be
reduced through changes to the design of the desalination
process. For example, increasing cross-flow velocity and
reducing water flux in reverse osmosis (RO) can minimize
scaling potential near the membrane surface by reducing
concentration polarization but at a higher capital (e.g., larger
membrane areas) and operating cost (e.g., increased pumping
and pressure drop). While there has been an extensive effort in
conceptualizing and modeling emerging technologies for high-
recovery desalination,11 there is a need to develop frameworks
to optimize high-recovery treatment trains across many
decision variables while accounting for mineral scaling.
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Significant progress has been made over the last two decades
in improving the fundamental understanding of mineral scaling
phenomena through the development of detailed models and
experimental observations. The models focus on estimating
thermodynamic solution equilibrium, which can estimate the
scaling tendencies of a solution (i.e., estimating whether
precipitation will occur). Scaling tendency (ST) is a
quantitative measure of the degree of saturation of a solution,
and a scaling tendency above one suggests that the solution is
supersaturated with respect to a given mineral and solids will
form.1 Modeling approaches for the prediction of scaling
tendency range from theoretical to semiempirical models,12

such as activity coefficient models proposed by Pitzer et
al.,13−17 the electrolyte nonrandom two-liquid model
(eNRTL),18 and the mixed-solvent-electrolyte (MSE)
model.19−22 Additionally, a significant number of experimental
studies have been performed on measuring and characterizing
mineral scaling under various conditions. Nucleation induction
times can be experimentally determined as a function of
supersaturation based on classical nucleation theory.23−26

Experimental investigation of the scaling propensity, specifi-
cally in RO applications, has also been widely documented. In
one example, a laboratory procedure was proposed for
measuring flux decline while recycling concentrate to increase
supersaturation over time.27 Results of this procedure were
verified against field data to relate the supersaturation of
calcium carbonate to water recovery limits and the
effectiveness of antiscalants. In other work, gypsum scaling in
RO was characterized through various techniques, such as
quantifying the coverage area of crystals on the membrane
surface via ex-situ high-contrast imaging,28,29 assessing axial
variation of membrane-surface crystallization via scanning
electron microscope (SEM) imaging,30 and using a quartz
crystal microbalance in tandem with SEM imaging to
investigate effects of polymeric surface characteristics on
crystal formation.31 Real-time imaging has also been applied
to approximate induction time and monitor scale formation on
RO membranes as a function of scaling tendency over
time.32−36 Other works have focused on the effects of recovery
rate, hydrodynamics, and addition of antiscalants on induction
time and scaling of RO membranes.37−41 Most of these works
have focused on developing methods to characterize and
predict mineral scaling phenomena for conventional RO
applications. However, process-scale models that incorporate
mineral-scale predictions and aqueous chemistry calculations
can aid in the exploration and early prioritization of new
experimental designs for evaluating conceptual and emerging
high-recovery systems.
Although there have been great advances in predictive

models relevant to mineral scaling in membrane desalination,
their application in technoeconomic and process-scale
optimization models has been limited, especially with regard
to emerging technologies for high-recovery desalination. Many
efforts have been focused on incorporating mineral scaling
models in bench-scale modules ranging from simple one-
dimensional process-scale models to full computational fluid
dynamic models relying on either complex mineral scaling
models or simple regressions.42−48 Some models have
considered scaling limitations on RO systems, but they do
not perform full treatment train optimization.49 Models of
mineral scaling have been rarely used for the cost optimization
of treatment trains at the full system scale, with some studies
estimating pretreatment costs from pilot scale data,50−52

estimating costs from operational data,53,54 and estimating
basic pretreatment design from single dimensional regres-
sion.55 Critically, to our knowledge, the direct incorporation of
mineral scaling predictions with rigorous mathematical cost
optimization of chemical dosing and RO design in conceptual,
high-recovery treatment trains that surpass conventional
limitations has never been demonstrated.
Equation-oriented (EO) programming is a powerful tool for

the mathematical optimization of complex process systems
such as emerging desalination technologies like osmotically
assisted RO, membrane distillation, and low-salt-rejection
RO.56−60 However, none of these cost-optimization studies
consider chemical phenomena for aqueous solutions, such as
precipitation and mineral scaling. Software such as OLI
Systems61 and PHREEQC62 enable accurate estimation of
solution chemistry across a broad range of feed compositions.
Such capabilities are especially critical for modeling high-
recovery desalination systems, which require predicting
mineral scaling tendencies of multicomponent solutions at
high ionic strengths and ensuring the process operates below a
scaling tendency of one where no solids form thermodynami-
cally. However, EO solvers require access to the modeling
equations and their derivatives, and direct calls to external
software such as OLI Systems and PHREEQC cannot provide
that information. While EO modeling could directly
incorporate semiempirical water chemistry models (e.g., Pitzer,
eNRTL, MSE, etc.), the complexity, stability, and data
requirements of these models have thus far impeded their
use in EO analyses.
This work presents the first modeling framework that

enables EO-based process-scale cost optimization with detailed
water chemistry predictions (i.e., precipitation, pH, and
mineral scaling). In this framework, we develop accurate
water chemistry surrogate models from simulation data from
OLI Systems and integrate them with the Water treatment
Technoeconomic Assessment Platform (WaterTAP),63 an
open-source EO software tool for process simulation and
optimization of desalination and water treatment systems.
While the framework is generalizable and can be applied to
numerous water treatment systems, we demonstrate our
approach for hypothetical high-recovery treatment trains for
brackish and seawater that includes chemical softening, pH
control, standard RO, and high-pressure reverse osmosis
(HPRO). We apply our framework to analyze an HPRO
system since recent studies have shown it to be promising as an
emerging desalination technology,64 but there are no detailed
technoeconomic assessments that predict the occurrence of
mineral scaling and the necessary pretreatment to prevent it,
which is especially critical for high-recovery systems. Through
our analysis, we aim to provide quantitative insight that helps
guide research and development for this full treatment train by
comprehensively exploring the cost-optimal design across a
range of water recoveries, extracting generalizable design
guidelines, and performing sensitivity analyses on key perform-
ance and financial parameters. Moreover, the modeling
framework presented here can be applied to evaluate and
optimize other conventional and emerging applications in
desalination while considering complex aqueous chemistry.

2. METHODS
We develop an EO modeling framework for process-scale cost
optimization of desalination and water treatment systems with
detailed water chemistry predictions. Figure 1 provides an
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overview of the general workflow and its relation to
descriptions provided in the Methods section. Section 2.1
provides details on the feedwater composition considered and
the specification of the process flowsheet. Section 2.2 describes
the data-generation step to represent chemical processes,
where simulations are carried out in chemistry simulation
software based on specified input ranges and resolution of
decision variables. Section 2.3 explains how the simulation data
for chemical processes are used to develop detailed surrogate
models for chemical processes. Section 2.4 focuses on process
optimization and describes the integration of EO surrogate
models in the process flowsheet, solving the optimization
model and validating the model results against those of the
chemistry simulation software. If the model results are
acceptable, the workflow is complete; otherwise, depending
on the diagnosis, refinement and reiteration will be required,
starting again from either the data-generation or surrogate-
development step (i.e., Sections 2.2 and 2.3, respectively).
Section 2.5 specifies the case studies as well as the process and
financial parameters that we considered in our baseline
analyses.

2.1. Process Flowsheet. 2.1.1. Feedwater and Treatment
Train. We developed an optimization model to evaluate high-
recovery treatment trains for brackish and seawater sources.
The composition of these water sources is shown in Table 1.65

Notably, we limit our analysis to a common subset of primary
ions for the feeds. We apply our model to analyze the
performance and cost of the treatment train across a wide
range of recoveries (50−90% for brackish water and 50−87%

for seawater). This range exceeds the conventional range for
existing systems (particularly for seawater) as we seek to
investigate high-recovery systems that extend beyond typical
operation and have a greater need for mineral scaling control.
To achieve such high recoveries, we consider HPRO, an

emerging desalination technology that is potentially more
energy-efficient than traditional evaporation-based technolo-
gies.64,66 Conventional seawater reverse osmosis (SWRO)
modules that operate at around 85 bar and commercial HPRO
modules that can handle up to 120 bar are available today, but
increasing maximum operating pressures would enable further
increases in recovery. There is a considerable body of research
focused on developing HPRO, with some recent works
demonstrating that new membranes can operate at pressures
in excess of 200 bar and suggesting that future advances may
enable operation at even higher pressures.64,67,68 Our analysis
explores what would be achievable with the HPRO technology
at such high pressures (as opposed to only what is achievable
today).
Our proposed high-recovery treatment train includes

chemical pretreatment and RO desalination, as shown in
Figure 2. In the chemical pretreatment step, soda ash is added
to soften the water by precipitating calcium carbonate and
thereby reducing the calcium ion concentration.69 Carbon
dioxide is then added to lower the pH (which was increased by
the addition of soda ash) and reduce the scaling tendency of
carbonates.70 Both steps allow the subsequent desalination step
to recover more water before mineral scaling would occur,
which we define to occur at a scaling tendency above one. In
the desalination step, the water is concentrated using a single-
stage process if pressure is below 85 bar and a two-stage RO
process when hydraulic pressure of >85 bar is required. For our
system, the second RO stage is the HPRO, with an assumed
maximum operating pressure of 300 bar. The RO process
includes an energy recovery device (ERD) at the end to
recover any remaining energy in the retentate.
While our pretreatment processes are not typical for

standard RO desalination systems, they are based on standard
chemical softening for water treatment.70−72 Typical chemical
softening uses lime and/or soda ash followed by pH control via
acidification. We opted to use soda ash because it can achieve
high (>90%) calcium removal for both selected feedwater
cases. We note that lime can be more efficient at removing
calcium in the brackish water case, but for simplicity, we
choose to model one chemical softening agent that is effective
for both sources (Figure S1).
For acidification, we opted for carbon dioxide over other

alternatives, such as hydrochloric acid and sulfuric acid,
because it is self-buffering, noncorrosive, and does not require
acid storage onsite.73,74 Notably, a published industry case
study cited lower costs using carbon dioxide over sulfuric
acid.74 However, we recognize that our chosen pretreatment

Figure 1. Overview of the generalized modeling framework.

Table 1. Feed Composition for Brackish and Seawater Case
Studies65

concentrations (mg/L)

brackish water seawater

Cations
Na+ 739 10,556
K+ 9 380
Ca2+ 258 400
Mg2+ 90 1262

Anions
Cl− 870 18,980
SO4

2− 1011 2649
HCO3

− 385 140

TDS 3394 34,483

pHa 7.07 7.56

temperature (°C) 25 25

aThe pH for each source of water is calculated using default OLI
settings.
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design is one of many options and that it is possible that other
options could be better suited or more cost-effective.
We acknowledge that our pretreatment train does not use

antiscalants, which is a common approach for controlling
mineral scaling, and our feed compositions do not include
silica, which is a primary scalant for brackish water.75 While
both are important considerations, they are out of the scope of
this study. In order to incorporate antiscalants into an
optimization, the model must relate the dose to its primary
effect of extending the induction time, which would require
considering kinetics and is fundamentally different from our
proposed thermodynamic equilibrium approach (described in
subsequent sections). Additionally, industry guidelines on how
antiscalants can enable higher levels of supersaturation without
mineral scaling are based on experimental observations and
may not be applicable to the high-recovery conditions we
consider.
We also exclude silica scaling and removal for two reasons.

First, predicting silica scaling is challenging due to the lack of
data and high-fidelity models. As opposed to other scalants
considered in this work that have well-defined thermodynamic
equilibrium data and models for precipitation, silica does not
because it forms amorphous scales and has significant
interactions with other metals. Second, silica removal is a
surface complexation process via adsorption and ion exchange
with magnesium hydroxide,76,77 which fundamentally differs
from the pure homogeneous precipitation mechanism
demonstrated by the other scalants examined in this work.
Therefore, we constrain our investigation to the ions listed in
Table 1 and their precipitation-based scalants.

2.1.2. Modeling in WaterTAP. We represent the treatment
train as a nonlinear programming problem with the objective
of minimizing the levelized cost of water (LCOW) of the
system for specified feed conditions and process and financial
parameters. The LCOW is a financial metric representing the
total annualized capital and operating cost normalized by water
production, with units of $/m3. The model optimizes the
design and operation of the system, including the soda ash and
carbon dioxide doses for pretreatment and membrane area,
cross-flow velocity, and operating pressure for each RO stage.
We used the WaterTAP software package to build our

optimization model. WaterTAP is an open-source Python
package that supports the simulation and optimization of water
treatment trains;63,78 it is based on the IDAES Integrated
Platform79−81 and Pyomo82,83 software packages that use EO
solution strategies to provide a powerful computational
capability for optimization.

We create our model by assembling the treatment train
using WaterTAP’s modular model library, which includes unit,
property, and costing models for chemical precipitation,
pumping, and RO. While additional modeling details are
included in SI Section S2, a brief description of these models is
as follows:

• Chemical precipitation: This unit model includes the
reactions and mass balances representing (1) chemical
reagent dissolution in water, (2) precipitant formation,
and (3) separation of the precipitant as a sludge waste
with assumed water content. In this work, we include
relationships for the amount of precipitant formed and
the effect of chemical pretreatment on pH by developing
surrogate models from OLI simulations, as described in
Sections 2.2 and 2.3.

• Pump: This unit model is a standard pump model,
where the power consumption is a function of
volumetric flow rate, pressure difference, and an
assumed pump efficiency.

• RO: This unit model represents a one-dimensional RO
stage that follows the formulation detailed in our
previous work.56,59,60 This RO model uses a continuum
approach where a single stage with continuous length
and width variables represents a system of discrete spiral
wound RO modules. The model incorporates solution-
diffusion theory to estimate water and salt flux based on
the local hydraulic and osmotic pressure. The model also
includes relationships for concentration polarization and
pressure drop that are based on fluid flow and spacer
geometry. Relevant solution properties such as density,
viscosity, and osmotic pressure are determined as a
function of temperature and total dissolved solids from a
seawater property model based on refs 84 and 85.

• Energy recovery device (ERD): This unit is a standard
turbine model used to recover remaining energy from
the RO retentate stream, where the power produced is a
function of volumetric flow rate, pressure difference, and
an assumed turbine efficiency.

• Costs: this cost model determines the costs of the
system based on the design and operating variables. It
includes estimates for the direct capital and operating
costs for the main equipment, as well as factors for
annualizing capital costs and estimating indirect costs
like auxiliary equipment, installation, and siting. The
direct capital costs are based on equipment size or
throughput (e.g., RO capital cost is based on the
membrane area, softening capital cost is based on the kg
of soda ash per day, pump capital cost is based on

Figure 2. Schematic of the high-recovery treatment train, including chemical pretreatment via soda ash addition and recarbonation followed by RO
desalination. The system enables the addition of a second high-pressure RO stage when single-stage operation exceeds 85 bar for a given water
recovery. A maximum allowable pressure of 300 bar was considered for the second stage. An extended version of the figure showing how the
surrogates interact with this flowsheet is shown in Supporting Information (SI) Section S4.
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power), and the direct operating costs are based on the
amount of annual consumption (e.g., kWh of electricity
and kg of soda ash consumed per year).

The key process and financial parameters that populate these
models are shown in Table 2, which can provide additional
high-level insight into the structure of the models.

2.2. Chemistry Data Generation. Detailed water
chemistry and thermodynamic information are necessary to
accurately predict the impact of chemical pretreatment on
mineral scaling in membrane systems. In this work, we acquire
detailed property information using OLI Systems.20,86 OLI
provides first-principles-based equilibrium calculations and
chemistry models for electrolyte/nonelectrolyte streams and
includes an extensive water chemistry database. OLI allows the
computation of properties such as pH, scaling tendencies,
chemical speciation, and solubility for any fully defined water
stream. In this work, we used OLI Studio for exploratory and
verification purposes and the OLI Engine Cloud API for
programmatic calculations in our modeling workflow.
Water chemistry data for the chemical processes of interest

are obtained using three steps: (1) generating relevant water
compositions by sweeping across the decision variables, (2)
generating the water properties through parallelized runs of
isothermal flash calculations using the OLI Engine Cloud API,
and (3) postprocessing the OLI output to extract the water
chemistry information on interest (i.e., solid formation, pH,
scaling tendency). To generate data, we used OLI’s MSE
thermodynamic framework, which accounts for speciation in
multiphase and multicomponent systems.19−22 The rest of this
section details how we do this for pretreatment and mineral
scaling.

2.2.1. Soda Ash Softening. Soda ash softening reduces
calcium hardness in the feedwater by adding soda ash (i.e.,
sodium carbonate) and precipitating calcium carbonate. We
create a soda ash softening surrogate model for each feedwater,
thereby allowing the data for the surrogate to be generated by
varying only the soda ash dose and keeping the feedwater
composition fixed. The range and number of steps for
generating the soda ash dose are shown in Table 3 for the
brackish and seawater cases. For each soda ash dose, we use
OLI isothermal flash calculations to determine the concen-
tration of calcium carbonate precipitate and the resulting pH.
We set the maximum value for the soda ash dose based on
when the marginal addition of soda ash had a negligible impact
on additional calcium carbonate formation based on OLI
simulations; this occurred at around 750 and 1200 mg/L for
the brackish and seawater cases, respectively (Figure S1).
Solids are removed from this effluent stream with an assumed
water content of 80%, with the resulting liquid stream passed
to a recarbonation step.

2.2.2. Recarbonation. Recarbonation is necessary to treat
the effluent from soda ash softening because the stream is
saturated with calcium carbonate (i.e., scaling tendency of at
least 1), and any water recovery in the desalination step will
increase the scaling tendency and result in mineral scale. By
adding carbon dioxide for recarbonation, the pH and calcium
carbonate scaling tendency are reduced and allow subsequent
water recovery. The data for the recarbonation process are
generated by varying the soda ash and carbon dioxide doses for
the fixed feedwater compositions. The soda ash dose is
included as an input for the data generation and the surrogate
model of the recarbonation process because it impacts the
influent composition of the recarbonation process. This
approach allows the two variables to comprehensively capture
the possible water composition scenarios, as opposed to
independently varying the concentrations of all of the ions,
which would include more dimensions and unrealizable
scenarios. The ranges and number of steps for recarbonation
are shown in Table 3. The maximum carbon dioxide dose was

Table 2. Baseline Process and Financial Parameters Used in
Analyses

value unit ref

Process Parameters
soda ash softening

solid mass fraction in
sludge

20 % 98

recarbonation
hydraulic residence time 20 minutes 70
specific energy
consumption

0.11 kWh/kg-CO2 99

pump
efficiency 80 % 8
energy recovery device

efficiency 80 % 60
reverse osmosis

water permeability 1.51 LMH/bar 56
salt permeability 0.126 LMH 56
feed channel height 1 mm 60
feed spacer porosity 85 % 100,101
minimum observed
rejection

98 % assumed

maximum inlet velocity 0.25 m/s assumed
standard RO maximum
pressure

85 bar 56

high-pressure RO
maximum pressure

300 bar 64

Financial Parameters
soda ash softening

equipment cost 2000 $/(kg-Na2CO3/day) 71
soda ash cost 0.19 $/kg-Na2CO3 102

recarbonation
recarbonation basin cost 700 $/m3 of basin 99
liquid carbon dioxide
equipment cost

350 $/(kg-CO2/day) 99

carbon dioxide cost 0.24 $/kg-CO2 103,104
energy recovery device

equipment cost 535 $/(m3/h) 60
pump

equipment cost 700 $/kW SI Section
S3

reverse osmosis
standard RO equipment
cost

30 $/m2 56

high-pressure RO
equipment cost

75 $/m2 assumed

membrane replacement
rate

20 %/year assumed

system
electricity cost 0.07 $/kWh 60
investment factor 2 investment

cost/equipment cost
60

maintenance, labor, and
chemical factor

3 % of investment cost 60

capital annualization
factor

0.1 fraction of investment
cost/year

60

load factor 90 % 60
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Table 3. Summary Model Statistics for Soda Ash and Recarbonation Surrogate Modelsa

soda ash softening recarbonation stage

Brackish Water
OLI Simulation

soda ash dose (min−max, no. steps) 0−750 mg/L, 76 0−750 mg/L, 76
carbon dioxide dose (min−max, no. steps) 0−300 mg/L, 60
total number of scenarios 76 4560

Surrogate Model
CaCO3(s) pH pH

model size (no. terms) 13 13 101
model training time (s) 0.07 0.08 445.74
R2 0.9999 0.9998 0.9999
mean absolute error 0.5104 mg/L 0.0031 0.0011
maximum absolute error 7.5949 mg/L 0.0315 0.0086

Seawater
OLI Simulation

soda ash dose (min−max, no. steps) 0−1200 mg/L, 100 0−1200 mg/L, 100
carbon dioxide dose (min−max, no. steps) NA 0−300 mg/L, 60
total number of scenarios 100 6000

Surrogate Model
CaCO3(s) pH pH

model size (no. terms) 13 13 101
model training time (s) 0.1 0.1 688.90
R2 0.9999 0.9998 0.9997
mean absolute error 0.6626 mg/L 0.0033 0.0061
maximum absolute error 5.07 mg/L 0.0148 0.0526

aWhile the RBF models are trained on subsets of the data, all model metrics (R2, MAE) are evaluated on the full datasets generated from OLI. Note
that the number of terms for an RBF model is the number of samples plus one.

Table 4. Summary Model Statistics for Mineral Scaling Surrogate Modelsa

CaCO3 gypsum CaSO4

Brackish Water
OLI Simulation

soda ash dose (min−max, no. steps) 0−750 mg/L, 16 0−750 mg/L, 16 NA
carbon dioxide dose (min−max, no. steps) 0−300 mg/L, 16 0−300 mg/L, 16
water recovery (min−max, no. steps) 48−94%, 24 48−94%, 24
hydraulic pressure (min−max, no. steps) 10−110 bar, 6 10−110 bar, 6
total number of scenarios 36,864 36,864

Surrogate Model
no. training points 150 150 NA
training time (s) 8370.2 10280.6
R2 (0.75 < ST < 1.25) 0.96 0.99
mean absolute error (0.75 < ST < 1.25) 0.0233 0.0082
classification accuracy�all scenarios (%) 99.49 99.85

Seawater
OLI Simulation

soda ash dose (min, max, no. steps) 0−1200 mg/L, 25 0−1200 mg/L, 25 0−1200 mg/L, 25
carbon dioxide dose (min, max, no. steps) 0−50 mg/L, 11 0−50 mg/L, 11 0−50 mg/L, 11
water recovery (min, max, no. steps) 48−92%, 23 48−92%, 23 48−92%, 23
hydraulic pressure (min, max, no. steps) 50−300 bar, 11 50−300 bar, 11 50−300 bar, 11
total number of scenarios 69,575 69,575 69,575

Surrogate Model
no. training points 150 150 150
training time (s) 12861.1 15924.5 16782.3
R2 (0.75 < ST < 1.25) 0.97 0.93 0.88
mean absolute error (0.75 < ST < 1.25) 0.0185 0.0327 0.0425
classification accuracy�all scenarios (%) 99.52 99.47 99.43

aFor the surrogate model training, the pH exiting the recarbonation stage was used as an input in place of the carbon dioxide dose. ST stands for
the scaling tendency.
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selected at 300 mg/L. For each generated scenario of soda ash
and carbon dioxide dose, we used isothermal flash calculations
in OLI to determine the outlet pH. No solid formation was
observed across the simulated ranges considered in this work;
therefore, the solid formation was not included in the
recarbonation surrogate models.

2.2.3. Mineral Scaling. We consider mineral scaling in the
desalination step by predicting the prescaling tendency of
relevant solids. The scaling tendency (ST) is the thermody-
namic driving force for precipitation1 and is defined as the ratio
of the ion activity product (IAP) to the solubility product (Ksp)
with respect to a given scalant in eq 1 (alternatively referred to
as or related to supersaturation ratio, scaling index, or
saturation index):

=
K

ST
IAP

sp (1)

A scaling tendency below one indicates a subsaturated solution
without mineral scale formation, a value equal to one indicates
a saturated solution and a value above one indicates a
supersaturated solution that will lead to mineral scale
formation. The scaling tendency may be computed before or
after precipitation; in this work, we consider prescaling
tendencies, which represent the scaling tendencies before any
solids have formed.87 Since scaling tendency can vary with
temperature, as noted in Table 1, we consider a feedwater
temperature of 25 °C and assume isothermal conditions
throughout the full treatment train.
Within the desalination step, the maximum scaling tendency

will occur where the concentrations of the scaling ions are the
highest, which is at the membrane interface at the end of the
last RO stage. These concentrations are dependent on two
factors: (a) the extent of chemical pretreatment and (b) the
operation and design of the RO stages. For our system, these
two factors can be represented across four variables: (1) soda
ash dose, (2) carbon dioxide dose, (3) operating pressure, and
(4) water recovery rate. The ranges and the number of steps
for generating the mineral scaling data are shown in Table 4.
The range for the RO variables was selected to cover 50−90%
water recovery (with a 2−4% buffer) and up to 100 and 300
bar for the brackish and seawater cases, respectively. For each
generated scenario, we use OLI flash calculations to calculate
the mineral prescaling tendencies. We also identify a list of
priority mineral scalants by determining the first scalant that
reached a scaling tendency of 1 as the water recovery increased
from 50 to 90%.

2.3. Surrogate Models for Water Chemistry. Our
modeling approach incorporates water chemistry through
surrogate models, which are widely used in process systems
engineering and chemical engineering.88 This approach allows
us to create an EO model that can have accurate
approximations of water chemistry based on other software
(i.e., OLI) and integrate it within our system model without
having to implement complex semiempirical water chemistry
models that are heavily dependent on hard-to-obtain data. The
IDAES computational platform80 provides a mature suite of
surrogate modeling tools such as PySMO89 and ALAMO,90 all
of which provide the algebraic representations necessary for
equation-oriented optimization.88,91,92

A unique feature of our surrogate generation process is that
the surrogates are trained directly on the decision variables
rather than the ion compositions. This approach ensures that

the surrogates affect the process objective directly and allows
us to reduce the dimensionality of the surrogate training
problem. Further details are provided in SI Section S4.
While there are many types of surrogate models (e.g.,

regression, kriging, artificial neural networks), we use radial
basis function (RBF) surrogate models in this work.91 RBFs
are capable of expressing highly nonlinear responses and are
suitable for representing different types of complex underlying
phenomena.92 They also provide good global models for both
low- and high-order nonlinear responses.92,93

A key decision when creating an RBF surrogate model is
selecting the training points. The complexity of RBF models
grows with the number of training samples, so subsampling of
the training data is required to keep the model expressions at a
reasonable number of terms.92 This subsampling can be done
using simple techniques like uniform grid sampling or may
involve more complicated space-filling designs (e.g., Latin
hypercube,94 Hammersley sampling,95 Centroidal Voronoi
Tesselation96) or adaptive sampling that intermittently
evaluates the surrogate against the data and selects the next
point(s) based on some criteria.97 Adaptive sampling allows us
to achieve higher model accuracies than space-filling designs of
the same size by strategically placing training samples where
they are most needed to improve the model. Each adaptive
sample is selected solely on its value added to the model’s
accuracy. For our RBF surrogate models, we use a simple one-
shot sampling technique for soda ash softening and adaptive
sampling for recarbonation and mineral scaling as follows:

• Soda ash softening: A 12-point uniform sample across its
single-dimensional space (soda ash dose).

• Recarbonation: We start with an initial set of 50
Hammersley points chosen from across the two-
dimensional space (soda ash and carbon dioxide dose).
An adaptive sampling scheme is then employed to
improve the model quality by iteratively adding the
worst-predicted sample from the entire data set (i.e., the
sample point with the highest deviation from the true
value) to the training subset. The model is thus
continuously improved by increasing training samples
in the region most in need of refinement, ensuring that
the model error reduces with each new training point
added. Fifty points are selected with the adaptive
sampling scheme.

• Mineral scaling: Given that the mineral scaling models
will need to discriminate between scaling and nonscaling
scenarios, in addition to regression metrics such as root-
mean-square error (RMSE) and the maximum absolute
error (MAE), we also consider the classification accuracy
(i.e., how well the model does in predicting the
occurrence of mineral scaling). We start with an initial
50 Hammersley samples across the four-dimensional
space (soda ash dose, carbon dioxide dose, RO water
recovery, operating pressure). Additional samples are
selected adaptively in two phases. In the first phase, the
new samples are selected to improve the classification
accuracy. Here, adaptive sampling is conducted for 50
samples by iteratively selecting the misclassified point
with the highest absolute error (i.e., when the model
predicts that the scaling tendency is less than 1 when it is
greater than 1 or vice versa). This improves the model’s
ability to classify correctly into scaling and nonscaling
scenarios. In the second phase, the adaptive sampling
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algorithm focuses on improving the absolute values of
the model predictions around the scaling/no-scaling
threshold of one. This is achieved by adaptive sampling
for the points with the highest absolute error within a
scaling tendency range of 0.75 and 1.25 (25% of the
critical value), thus ensuring that the model is accurate
within this region of interest. An additional 50 sample
points are selected in the second stage. With the two-
stage adaptive sampling approach, the mineral scaling
surrogates achieve high classification accuracies and
accurately estimate the absolute scaling tendencies
between the constrained range (0.75−1.25).

Additional details on the surrogate model methodology are
included in SI (S3) Section S4.

2.4. Process Optimization. For the analyses presented in
this work, we solved the cost-optimization model for different
conditions (e.g., different water recoveries and process and
financial parameters). Each solution minimizes the LCOW by
determining the optimal design and operating variables for the
system (i.e., soda ash dose, carbon dioxide dose, membrane
area, cross-flow velocity, and operating pressure for each RO
stage) subject to the process model relationships and system
constraints. One key system constraint is that the scaling
tendencies of all minerals must be below one, which ensures
that no mineral scaling will occur thermodynamically.

2.4.1. Surrogate Integration in Process Flowsheet. The
surrogate modeling tools in IDAES allow us to easily
incorporate them into the WaterTAP flowsheet. Specifically,
the tools create surrogate models using Pyomo variables and
constraints, which are connected to the relevant variables in
the process and costing models representing the high-recovery
system within WaterTAP. Figure S6 in SI Section S4 shows a
schematic representation of how the generated surrogates
interact with the WaterTAP HPRO flowsheet. For our system,
the relevant input and output variables for each surrogate
model are as follows:

1. Soda ash softening: the input is the soda ash dose; the
outputs are the concentration of calcium carbonate
solids and the pH of the effluent.

2. Recarbonation: the inputs are soda ash and carbon
dioxide dose; the outputs are the pH in the effluent.

3. Mineral scaling: the inputs are soda ash dose, pH after
recarbonation (a proxy for carbon dioxide dose),
operating pressure, and water recovery; the outputs are
the scaling tendencies of calcium carbonate, gypsum,
and calcium sulfate.

For the mineral scaling surrogates, we add variables and
constraints to the WaterTAP model to account for
concentration polarization and enforce a maximum scaling
tendency of 1 for all minerals. In order to incorporate
concentration polarization, where the concentrations of solutes
are greater at the membrane interface than in the bulk solution,
we implement an equivalent water recovery that explicitly
accounts for this higher concentration. This equivalent water
recovery is calculated based on the predicted salt mass fraction
at the membrane interface and the salt and water mass, as
shown in eq 2. We determine this equivalent water recovery for
every node in the membrane model, and the maximum
equivalent water recovery is used as the input to the mineral
scaling surrogate model, thereby ensuring the predicted scaling
tendency is where the solutes are at the highest concentration.
Thus, the equivalent water recovery is given by

=
+

X
M

M M R(1 )i
i

i i
TDS,

TDS,

TDS, H O,in eq,2 (2)

where Req,i is the equivalent water recovery, XTDS,i is the TDS
mass fraction at the membrane interface on the feed-side,
MTDS,i is the TDS bulk mass flow rate on the feed-side at node
i, and MHd2O,in is the mass flow rate of water into the
desalination system.

2.4.2. Solving the Model. We use the default open-source
IPOPT with the MA27 linear solver in WaterTAP. While it is a
local solver, we find that the solutions exhibit smooth trends in
the variables and are not dependent on the initial guess,
thereby suggesting that the local solver is performing well. The
LCOW minimization problem contains 1901 and 3498
variables and 1896 and 3490 constraints for single- and two-
stage RO systems, respectively. These systems can be distilled
to 5 and 8 decision variables (i.e., the operating pressure,
membrane area, and cross-flow velocity for each stage, in
addition to the soda ash and carbon dioxide doses) for the
single- and two-stage RO problems, respectively.

2.4.3. Validation of Results. Once we obtain an optimal
solution, we perform a set of validation checks to ensure the
accuracy and reliability of our solutions. First, we verify that
the optimal solutions are not constrained by our surrogates by
checking that the optimal values of the decision variables do
not fall at the bounds of the variable ranges. If a decision
variable is at the bounds, it indicates that the decision space
was constrained too tightly, and we need to return to the data-
generation step and expand the variable range. We also employ
a multistart approach, ensuring that different initial guesses for
the decision variables do not result in different solutions.
Finally, to ensure the validity and accuracy of the results, we
compare the predictions of the surrogate models with the true
OLI values for the optimal values of the decision variables,
ensuring that the surrogate prediction error is within an
acceptable limit. Large differences between the OLI and
surrogate predictions indicate that the surrogate does not
capture the underlying phenomena to a fine enough resolution,
requiring us to revisit the data-generation and surrogate-
development steps.

2.5. Case Study Parameters. For the purpose of
discussion, we highlight three water recovery rates for each
source that result in similar design and operation based on the
degree of softening (i.e., no, low, and high softening
requirements). For brackish water, water recoveries of 50,
70, and 90% correspond to cases 1, 2, and 3, respectively. For
seawater, water recoveries of 50, 75, and 85% correspond to
cases 4, 5, and 6, respectively.
Table 2 presents the base process and financial parameters

for our analysis. These parameters populate the unit and
costing models that are described briefly in Section 2.1.2.
Notably, we constrain the minimum observed rejection of TDS
at 98%, preventing the occurrence of an impractical operating
regime where rejection would be decreased to counteract the
effects of concentration polarization. For the same reason, we
also set the maximum inlet cross-flow velocity of RO to 25 cm/
s. Since our work is focused on optimizing the treatment train,
we did not consider the costs of sourcing the feedwater,
disposing the residual solids and brine, or distributing the
product water. While including these additional activities
would add to the overall LCOW, it is expected that their
inclusion would not impact our optimized treatment train
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design and operation because the amounts of feedwater, waste
solids, waste brine, and product water are closely tied to the
specified recovery and are essentially fixed costs (i.e., the
modeled decision variables do not impact them). Additionally,
membrane water and salt permeability coefficients for brackish
and seawater cases were conservatively assumed to be the same
to facilitate direct comparison; however, sensitivity analyses
shown later in Section 3.3.3 show the effects of varying these
parameters on LCOW. More details on the selected process
and financial parameters are provided in SI Section S3.

3. RESULTS AND DISCUSSION
We use OLI water chemistry predictions and our optimization
model to explore the cost-optimal design of the high-recovery
treatment trains for brackish and seawater treatment. Section
3.1 presents mineral scaling tendencies calculated via OLI for
the brackish and seawater source compositions shown in Table
1. Section 3.2 describes the surrogate models developed for
soda ash dose, carbon dioxide dose, mineral scaling tendency,
and assessment of the fits to the underlying data. Section 3.3
presents cost-optimization results for the case studies, cost-
optimal design results over a range of recovery rates, and
sensitivity analyses with respect to key process and financial

parameters. Additionally, supporting data for the figures are
provided in the SI.

3.1. Mineral Scaling for Selected Water Sources. Using
OLI, we determine calcium carbonate (CaCO3) and gypsum
(CaSO4.2H2O) as the primary scalants for both brackish and
seawater, as well as calcium sulfate anhydrite (CaSO4) for
seawater. This list of scalants is in agreement with sparingly
soluble salts reported in the literature.2,3,105,106 In general, the
scaling tendencies for these minerals increase with increasing
water recovery, decrease with decreasing pH, and decrease
with increasing hydraulic pressure (Figure 3). The scaling
tendency of calcium carbonate is strongly affected by pH, while
hydraulic pressure has a noticeable effect only at high pressures
(e.g., 100 bar). The scaling tendencies of calcium sulfate
anhydrite and gypsum are minorly affected by both the
hydraulic pressure and pH.
We observe that the brackish and seawater feeds are

supersaturated with calcium carbonate (i.e., scaling tendency
above 1) at the pH values calculated by OLI and would
thermodynamically precipitate out in the softening step and
before desalination (Figure S1). After the initial precipitation
to saturation (i.e., scaling tendency equals 1), we find that
scaling tendencies increase with water recovery (Figure 3A,B).

Figure 3. Primary mineral prescaling tendencies as a function of equivalent water recovery for each water source and two pH scenarios and
hydraulic pressures. The brackish and seawater sources are shown on the left (A, C) and right (B, D), respectively. Plots (A) and (B) are at the
unadjusted pH values estimated by OLI, which are 7.07 and 7.56 for the brackish and seawater cases, respectively. Plots (C) and (D) are at an
adjusted pH of 6.5. For both cases, the pH was dropped to 6.5 through the addition of carbon dioxide (C and D). Within each plot, markers are
used to note two hydraulic pressures, including atmospheric and higher pressures (10 bar for brackish water and 100 bar for seawater).
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This finding emphasizes that, at a minimum, some pH
adjustment is necessary for these water sources to operate
the desalination process below a scaling tendency of 1. Our
analysis also reveals that once the pH has been sufficiently
lowered to prevent calcium carbonate scaling (maximum
scaling tendency equal to 1), the next likely scalant of concern
is gypsum. The scaling tendencies of calcium sulfate anhydrite
and gypsum cannot be significantly reduced with pH and
hydraulic pressure, thereby requiring more extensive pretreat-
ment (i.e., calcium removal through soda ash softening) to
achieve increased recovery rates.

3.2. Surrogate Models for Pretreatment and Mineral
Scaling Prediction. As described in Sections 2.2 and 2.3, we
create surrogate models based on OLI simulated data for (1)
soda ash softening, (2) recarbonation, and (3) mineral scaling
within the RO process. Figure 4 and Table 3 present the OLI
simulation data and surrogate model details and statistics for
soda ash softening and recarbonation, while Table 4 presents
the surrogate model details and statistics for mineral scaling.
The soda ash softening surrogate model predicts the calcium

carbonate precipitation (milligrams per liter) and outlet pH as
a function of soda ash dose. The 13-term RBF surrogate model
accurately represents the OLI simulation data and captures the
curvilinear relationship between the input and outputs, with R2

> 0.99 and mean absolute errors below 1 mg/L for calcium
carbonate precipitation and 0.004 for pH in both water
sources.
The recarbonation surrogate models predict the effluent pH

as a function of the carbon dioxide dose and upstream soda ash
dose. The 101-term RBF surrogate models with adaptive

sampling accurately capture the underlying phenomena with R2

> 0.999 and mean absolute errors of 0.001 and 0.006 for the
pH of brackish and seawater, respectively. The adaptive
sampling models outperform surrogates with the same number
of terms generated using space-filling (one-shot) sampling
methods, albeit at the expense of computational time (i.e.,
hundreds of seconds compared to seconds). Additional details
are included in SI Section S4.
The mineral scaling surrogate models predict the scaling

tendency of the relevant minerals as a function of four
variables: soda ash dose, recarbonation effluent pH (directly
related to the carbon dioxide dose), water recovery, and
hydraulic pressure. These 151-term RBF surrogate models with
adaptive sampling have classification accuracies greater than
99.4% (classifying whether the scaling tendency is correctly
predicted to be greater than or less than 1) across all three
mineral scalants and the two water sources. Between scaling
tendencies of 0.75 and 1.25, which we considered as the region
of interest for sensitivity analyses (see Section 3.3.4), the
surrogate models have an R2 > 0.88 and a mean absolute error
of less than 0.05. While our resulting models are sufficiently
accurate, we found that it was challenging to develop
surrogates for this large and highly nonlinear data set. Our
adaptive sampling approach that first prioritizes classification
errors and then errors within the region of interest performed
significantly better than one-shot sampling and regression
models, with additional details shown in SI Section S4.
During the development of this work, we evaluated several

sampling and surrogate modeling approaches. We found that
adaptive sampling performs better than one-shot sampling for

Figure 4. Calcium carbonate concentration and pH as functions of soda ash dosing are shown for brackish (A) and seawater (B) sources. Effluent
pH values at the outlet of the recarbonation stage as a function of carbon dioxide addition are shown for a range of soda ash doses in the brackish
(C) and seawater (D) sources. Training data and surrogate model predictions are represented by points and lines, respectively.
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this problem, and cubic RBF models generally outperform
other surrogate modeling techniques (such as regression
models). Besides resulting in better statistical metrics (i.e.,
R2, mean absolute error, maximum absolute error, and
classification accuracy), the RBF surrogates with adaptive
sampling have significantly better behavior when used in the
optimization model than those with one-shot sampling.
Specifically, one-shot sampling RBFs and nonlinear regression
models frequently result in poor, local solutions, meaning that
their relationships are not smooth for key dimensions
throughout the space. We have verified that our presented
surrogates do not produce local minima by solving with high
granularity across a range of water recoveries and ensuring that
initial guesses for the decision variables do not result in
different solutions.

3.3. Cost Optimization with Mineral Scaling Pre-
diction. 3.3.1. Cost-Optimal Design for Brackish and
Seawater Cases. We use our WaterTAP model with detailed
water chemistry surrogate models to minimize the LCOW for
the brackish and seawater treatment trains. For any specified
water recovery, the model determines the cost-optimal values
for the primary decision variables, including the soda ash dose
and carbon dioxide dose for pretreatment, as well as the
operating pressure, membrane area, and inlet cross-flow
velocity for each RO stage. We explore cost-optimal designs

for each water source at three water recovery rates (low,
medium, and high recovery) for a total of six cases, as
presented in Table 5. As described in Section 2.5, the six cases
also represent three levels of pretreatment: (1) cases 1 and 4
with low recovery have no softening and only require
recarbonation as pretreatment, (2) cases 2 and 5 with medium
recovery require recarbonation and low softening, and (3)
cases 3 and 6 with high recovery require recarbonation and
significant softening.
Table 5 presents the cost-optimal results for the six cases.

The LCOW ranges between $0.31− $1.32 and $ 0.43−$2.10/
m3 for the brackish and seawater sources, respectively. While
costs increase with increased water recovery, most of the
increase for high-recovery cases is attributed to soda ash
softening. For the highest recovery cases (i.e., cases 3 and 6),
soda ash softening comprises 70−75% of the LCOW. For the
lowest recovery cases, the soda ash softening cost is zero
because softening is unnecessary at these low recoveries to
prevent mineral scaling. Recarbonation costs also increase with
water recovery, albeit at a lower rate than soda ash softening.
The recarbonation costs increase with water recovery because
additional carbon dioxide dosing is necessary to further reduce
the pH and prevent the scaling tendency of calcium carbonate
from exceeding 1. For the seawater source, the pump costs
increase with water recovery because higher operating

Table 5. Summary of Cost-Optimal Results for Brackish and Seawater Case Studies at Three Different Recovery Rates (Low,
Medium, and High)

brackish water seawater

case 1 case 2 case 3 case 4 case 5 case 6

Case Conditions
water recovery (%) 50 70 90 50 75 85

System Metrics
final brine concentration (g/L) 6.79 11.6 37.2 69.8 141 240
final permeate concentration (g/L) 0.04 0.07 0.08 0.40 0.65 0.70
pretreatment calcium removal (%) 9.64 19.70 75.6 0.26 4.13 68.0
solids generation (mg/L of feed) 62.1 127 487 2.61 41.2 679
pH after soda ash addition 7.07 7.12 7.58 7.56 7.58 8.04
pH after recarbonation 6.57 6.35 6.20 7.13 6.67 6.70
SEC (kWh/m3) 0.88 0.72 1.28 2.85 3.40 4.45

Decision Variable
soda ash dose (mg/L) 0.00 63.2 492.3 0.00 41.3 729
carbon dioxide dose (mg/L) 71.2 145 275 7.70 22.6 30.0
stage 1 membrane area (m2) 92.3 185 106 91.7 90.7 100.5
stage 1 inlet hydraulic pressure (bar) 18.7 17.6 35.4 60.9 77.6 85.0
stage 1 inlet cross-flow velocity (m/s) 0.20 0.25 0.25 0.19 0.20 0.21
stage 2 membrane area (m2) 53.3 39.7
stage 2 inlet hydraulic pressure (bar) 113.1 219.8
stage 2 inlet cross-flow velocity (m/s) 0.25 0.25

Financial Metrics
levelized cost of water ($/m3) 0.31 0.49 1.32 0.43 0.61 2.10
capital ($/m3) 0.12 0.24 0.79 0.14 0.22 1.21
operating ($/m3) 0.20 0.25 0.53 0.28 0.39 0.90
soda ash softening ($/m3) 0.00 0.16 0.97 0.00 0.10 1.52
recarbonation ($/m3) 0.09 0.12 0.17 0.02 0.03 0.03
pumps ($/m3) 0.11 0.08 0.12 0.30 0.33 0.43
membrane ($/m3) 0.09 0.13 0.06 0.09 0.15 0.11
energy recovery devices ($/m3) 0.02 0.01 0.00 0.02 0.01 0.00

Mineral Scaling Tendency
calcium carbonate 1.00 1.00 1.00 1.00 1.00 1.00
gypsum 0.73 1.00 1.00 0.41 1.00 1.00
calcium sulfate anhydrite 0.34 0.84 0.94
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pressures are required to overcome the higher osmotic
pressures of the brine. However, for the brackish water source,
there is not a consistent trend in pump costs due to complex
trade-offs associated with marginal operating and capital costs
for the pumps, membranes, and pretreatment. Similarly, there
is no consistent trend in membrane costs for both water
sources. In short, there are trade-offs between pretreatment
and the RO system (pumps and membranes) attributed to
balancing the extent of concentration polarization, which
dictates scaling tendency at the membrane interface. These
trade-offs are explained in more detail in Section 3.3.2.
There are three notable differences between the optimal

treatment train design and operation for the brackish and
seawater sources. First, none of the brackish water cases
require a second high-pressure RO stage; all of their
desalination targets can be achieved with a standard RO
stage requiring less than 36 bar of hydraulic pressure across all
recoveries. On the other hand, only the low-recovery seawater
case can be achieved with standard RO (less than 85 bar),
while the medium- and high-recovery seawater cases require a
high-pressure RO stage to overcome the brine osmotic
pressure. For these two-stage designs, we find that the cost-
optimal membrane area for the second stage is lower than that
for the first stage. This result is expected because the high-
pressure RO stage treats a smaller volume of water and is
modeled with a higher cost than the standard RO stage (i.e.,
$75/m2 vs $30/m2). Second, since the seawater cases are
operated at significantly higher pressures than the brackish
water cases, there is a substantial difference in the components
that make up the RO system costs (including pump and
membrane costs). For the seawater cases, the pump costs
(including capital and operating costs) make up 70−80% of
the RO system costs, while for the brackish water cases, they
only make up 40−60%. Third, the brackish water cases have
significantly higher recarbonation costs than the seawater cases
($0.09−0.17/m3 compared to $0.02−0.03/m3). This occurs
because the brackish water source considered in this work has
a higher buffer capacity, attributed to the higher concentration

of bicarbonate,107 when compared with the composition of the
seawater source (see Table 1); bicarbonate concentration in
brackish water exceeds that of seawater by a factor of 2.75.
Thus, the brackish source has a higher resistance to a change in
pH as carbon dioxide is added to the solution. Consequently,
the cost-optimal carbon dioxide dose required for brackish
water cases can be more than 9 times greater than that for
seawater cases.
Table 5 also presents the maximum scaling tendency for

each mineral in the treatment train. These scaling tendencies
provide insight into which minerals are influencing pretreat-
ment. If the scaling tendency is 1, then the maximum allowable
scaling tendency constraint is active, and some pretreatment
action is necessary to ensure that it does not exceed 1. For the
low-recovery cases, only calcium carbonate has a scaling
tendency of 1 and influences the carbon dioxide dose. For the
medium- and high-recovery cases, both calcium carbonate and
gypsum have scaling tendencies of 1 and influence the soda ash
and carbon dioxide dose. For all of the cases, calcium sulfate
anhydrite does not reach a scaling tendency of 1 and does not
directly influence pretreatment. This is in agreement with the
literature, which indicates that while calcium sulfate anhydrite
forms more readily at elevated temperatures (e.g., ≥40 °C),
gypsum is the dominant form of calcium sulfate at 25 °C,12 the
temperature considered in this work. In addition to the model
statistics summarized in Table 4, for each of the six cases, we
assessed the accuracy of our mineral scaling surrogate
predictions by comparing the scaling tendencies obtained
from the surrogates for our optimal solutions with those of
OLI simulations with the same soda ash dose, carbon dioxide
dose, equivalent water recovery, and hydraulic pressure. We
found that our error in the region of interest (between 0.75
and 1.25) was satisfactorily low at less than 5% (Table S3). As
expected, the largest errors occurred for low scaling tendencies
outside the region of interest, where we explicitly did not
prioritize accuracy, because low scaling tendencies do not
influence the pretreatment decision variables and do not
impact the optimal solution in our model.

Figure 5. Breakdown of optimal LCOW categorized by components for the brackish (A) and seawater (B) cases. For seawater, the cost profile ends
at 88% recovery because pressures higher than 300 bar, the maximum pressure considered in this work, are required. Regimes 1, 2, and 3 denote
ranges of recovery rates where scaling is controlled by a particular mechanism. Regime 1: calcium carbonate scaling control governed by
recarbonation; Regime 2: calcium carbonate and gypsum scaling control governed by adjustment in RO design and operation; Regime 3: calcium
carbonate and gypsum scaling are controlled by all decision variables, including soda ash addition.
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3.3.2. Cost-Optimal Design across Water Recoveries. To
further investigate the effect of recovery rate on cost-optimal
design, we apply our cost-optimization model from 50 to 90%
recovery for brackish and seawater sources. We find that there
are three regimes that describe the cost-optimal design and
operation. These three regimes can be characterized by which
decision variables primarily control mineral scaling. In the first

regime, which occurs at lower water recoveries, carbon dioxide
dosing primarily controls calcium carbonate mineral scaling. In
the second regime, which occurs for a narrow recovery
window, both calcium carbonate and gypsum mineral scaling
occur, and these are controlled via changes to the RO design
and operation. In the third regime, which occurs for higher
water recoveries, all decision variables, including soda ash dose,

Figure 6. Cost-optimal decision variables are shown for recovery rates from 50−90% and 50−88% for brackish (left column) and seawater (right
column), respectively. Decision variables include soda ash (Na2CO3) dose (A, B), carbon dioxide (CO2) dose (C, D), RO inlet pressure (E, F), RO
membrane area (G, H), RO inlet velocity (I, J), and scaling tendency (K, L). Regimes 1, 2, and 3 denote ranges of recovery rates where scaling is
controlled by a particular mechanism. Regime 1: calcium carbonate scaling control governed by recarbonation; Regime 2: calcium carbonate and
gypsum scaling control governed by adjustment in RO design and operation; Regime 3: calcium carbonate and gypsum scaling control are
influenced by all decision variables, including soda ash addition.
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control calcium carbonate and gypsum mineral scaling. These
regimes are noted in Figures 5 and 6, which show the optimal
LCOW breakdown and decision variables across the full range
of recovery rates, respectively. For brackish water, regimes 1, 2,
and 3 correspond to 50−64, 64−67, and 67−90% recovery,
respectively. For seawater, regimes 1, 2, and 3 correspond to
50−73, 73−74, and 74−88% recovery, respectively.
In the first regime, we find that the cost-optimal LCOW

increases by a relatively small amount with increasing water
recovery, even though the optimal process design and
operation change continuously. The LCOW increases by
only 0.2% for the brackish water source from 50 to 63% water
recovery and by 10.4% for the seawater source from 50 to 72%
water recovery (Figure 5). Throughout this regime, the cost-
optimal carbon dioxide dose, operating pressure, membrane
area, and inlet cross-flow velocity increase with water recovery
(Figure 6). While these changes increase the overall capital and
operating costs, they do not significantly change the LCOW
because of the increased water production. We find that these
optimal solutions balance trade-offs between the pretreatment
and the RO system by balancing water flux and the extent of
concentration polarization. While higher water flux reduces the
necessary membrane area and its associated costs, it requires
higher operating pressures and higher carbon dioxide dosing
because the increased concentration polarization requires
greater control of mineral scaling. SI Section S5 provides
additional variables (e.g., water flux and specific energy
consumption) that can provide insight into the optimal design.
Across the second regime, the LCOW modestly increases by

6.6 and 2.2% in the narrow water recovery range for the
brackish and seawater cases, respectively. This second regime is
different from the first regime in three ways: (1) the gypsum
scaling tendency is predicted to be one and must be controlled,
(2) the optimal carbon dioxide dose stops increasing with
water recovery, and (3) the optimal RO system design and
operation dramatically change. All three differences are directly
related to how the system design and operation change to
control gypsum scaling. Since the scaling tendency of gypsum
is minorly impacted by pH, there is no increase in carbon
dioxide dose; instead, the RO system design and operation
shift to reduce maximum ion concentrations. The RO system is
operated with lower pressures, higher membrane areas, and
higher inlet cross-flow velocity to reduce water flux and
concentration polarization (Figure 6). We find that concen-
tration polarization is minimized at the end of this regime, and
the solutions are constrained by the maximum allowable inlet
cross-flow velocity (25 cm/s) and minimum allowable salt
rejection (98%), as shown in Table 2. This result suggests that
the cost increase associated with minimizing concentration
polarization in RO through more membrane area and higher
pressure drop is cheaper than soda ash softening, which is the
alternative approach to control gypsum scaling. However, there
are limitations to shifting RO system operation, with this
approach only feasible over a relatively narrow range of
recoveries (4 and 2% range for brackish and seawater,
respectively). Eventually, soda ash softening becomes the
only avenue for increased recovery.
In the third regime, soda ash softening is used to precipitate

calcium and control gypsum scaling. The LCOW increases
dramatically by factors as high as 3.4 and 3.8 for brackish and
seawater sources, respectively. As described previously, most of
this cost increase is due to soda ash softening, constituting over
70% of the LCOW in both water cases at high recovery, with

the capital cost being the primary component. Note that the
softening capital cost increases with soda ash dose because
larger equipment is necessary for the higher throughput. Thus,
our assumed capital cost parameter for softening, $2000/kg of
soda ash per day, plays a significant role in the predicted
LCOW of the treatment train. A brief literature review shows
that there is high uncertainty in this capital cost parameter
value.71,108,109 Later, in Section 3.3.3, we conduct a sensitivity
analysis to account for this uncertainty in the LCOW.
Furthermore, while only soda ash softening was considered
in this analysis, lime addition can offer higher efficiency in
removing calcium, reduce acid addition under certain
conditions, and potentially result in reduced costs when lime
or a mixture of lime and soda ash is used (Figure S1).
The regime has expected trends in optimal decision

variables, with the soda ash dose, carbon dioxide dose, and
RO operating pressure all increasing with water recovery. We
find that the optimal inlet cross-flow velocity for the final RO
stage is at the maximum allowable value, demonstrating that
concentration polarization is being minimized. A counter-
intuitive finding is that the membrane area generally decreases
with water recovery in this regime. However, this trend is
expected when considering our modeling constraints. By the
end of the second regime, the RO system design and operation
is already minimizing concentration polarization to the largest
extent possible by having low water flux at the end node,
subject to a constraint on minimum allowable rejection (SI
Section S5). In the third regime, there is no remaining
flexibility for rejection to decrease. Therefore, as water
recovery increases, hydraulic pressure must increase to
overcome the increasing brine osmotic pressure and to ensure
that the constraint for minimum allowable rejection is satisfied;
higher concentrations require higher average water flux to
offset the increased salt flux. Another complicating factor is
that we only consider one- and two-stage systems, which, for
the seawater case, results in designs with significant declines in
permeate flux from the inlet and outlet of the stage.
The results obtained here clearly show the benefits of both

pretreatment and the HPRO technology. Traditional SWRO
systems typically operate at recovery rates of up to ≈50%.110

By incorporating pretreatment into these systems and using
HPRO modules available today (up to 120 bar),64 the
treatment train can be operated at recovery rates of up to
about 76%. The results suggest that through pH adjustment
and minor operational modifications, existing RO systems
could realize an increase in recovery of more than 45% (50−
74%) with only a 14% increase in costs. The recent
developments in membrane design that allow for operation
at pressures up to 200 bar68 enable recovery rates up to 83%.
Our analysis further suggests that water recovery rates of up to
87% are possible for seawater below our limit of 300 bar.
However, such systems will have significant costs due to the
extensive pretreatment required to operate at such high
recoveries.
Overall, our cost-optimization approach enables us to

conduct a detailed technoeconomic assessment for high-
recovery treatment trains while accounting for pretreatment
and mineral scaling. In practice, water treatment engineers can
complete analyses like these but often with manual adjustment
of the decision variables and using disjointed modeling
platforms (e.g., one for mineral scale prediction, one for RO
modeling, and one for costing). Each case study would take
time-consuming iterations and make it impractical to create
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analyses that have a high number of cases, as shown in Figures
5 and 6. However, these obstacles can be overcome once an
optimization model is developed in a centralized modeling
platform such as WaterTAP. Additionally, the optimization
model can be readily extended for further analyses, such as the
sensitivity analyses presented in the next section.

3.3.3. LCOW Sensitivity to Changes in Process and
Financial Parameters. For the six case studies, we perform
sensitivity analyses on the select process and financial
parameters from Table 2 by independently varying them by
±25% and quantifying their impact on the LCOW (Figure 7).
In addition to parameters from Table 2, we also group some
parameters into multipliers as follows: (1) membrane capital
cost multiplier for both the standard and high-pressure stages,
(2) recarbonation capital cost multiplier for both the
recarbonation basin and liquid carbon dioxide equipment,
and (3) mass transport multiplier, which modifies the
relationship calculating the mass transfer coefficient. These
sensitivity analyses are intended to capture the impact of
uncertainty in our parameters, as well as project potential
changes in LCOW due to advancement in process perform-
ance or changes in component costs. Additionally, for all
sensitivity results, all decision variables are reoptimized for
each solution, thereby capturing the shift in cost-optimal
design and operation as the process and financial parameters
change.
In both water sources, pretreatment capital costs have a

larger effect on LCOW than on raw chemical costs. The
LCOW varies by up to ±16.5% for the high-recovery cases
(i.e., cases 3 and 6) when we vary the capital cost of the soda
ash dosing system but only varies by ±1.9% when we vary the
cost of soda ash. Overall, the capital cost of the soda ash dosing
system has the most significant effect on LCOW at high
recovery (cases 3 and 6), indicating that substantially reducing
this capital cost or identifying less costly pretreatment
alternatives would be key for enabling cost-effective, high-
recovery systems. Similarly, the LCOW varies by up to ±4.8%
for changes in the recarbonation capital cost multiplier and
only ±3.0% for changes in carbon dioxide cost for the brackish
water cases. Seawater cases have significantly less sensitivity to
recarbonation costs than brackish water cases because the
carbon dioxide dosage is an order of magnitude lower for
seawater. Overall, while the LCOW may be sensitive to

changes in capital cost for pretreatment, changes in chemical
costs do not weigh as significantly on the overall LCOW. Thus,
while the market (and by extension, price) for carbon dioxide
can be unstable,103,104 our sensitivity analysis of the LCOW
indicates that those instabilities will have minimal influence on
the overall LCOW of the water treatment train.
The LCOW is most sensitive to changes in the RO

parameters when the soda ash dosing is minimal. The
membrane capital cost multiplier has one of the largest effects
on the LCOW, with a reduction of up to 8.4% for the low and
medium recovery cases (cases 1, 2, 4, and 5). The mass
transport multiplier has the highest effect on the LCOW for
the medium recovery cases (cases 2 and 5). These cases are
particularly sensitive to changes in the mass transfer coefficient
because they are closest to regime 2, where the soda ash dose
can be reduced significantly by minimizing concentration
polarization. The membrane transport properties (water and
salt permeability coefficients) have a low or moderate effect on
the LCOW, with the water permeability generally having a
greater effect. We also find that degradation in membrane
properties increases LCOW more than the respective improve-
ments decrease LCOW. For example, an increase in water
permeability by 25% reduces LCOW by 4.7 and 2.6% for
brackish case 2 and seawater case 4, but a decrease in water
permeability by the same amount increases LCOW by 7.0 and
4.0%, respectively.
The LCOW sensitivity to electricity and pump costs shows

clear trends. For both water sources, the electricity and pump
costs have the greatest effect on LCOW for the lowest recovery
cases. As the water recovery increases, the fraction of costs
from the RO system, including electricity use and the pumps,
decreases and has less impact. As expected, we find that the
seawater cases are more sensitive to electricity and pump costs
because they operate at higher pressures and specific energy
consumption.

3.3.4. LCOW Sensitivity to Changes in Maximum Scaling
Tendency. In this work, we consistently assumed that the
scaling tendency could not exceed 1. While this is the point
where mineral scaling would occur at equilibrium, in practice,
heterogeneous nucleation can affect whether scale will form at
a given scaling tendency. Furthermore, nucleation can be
regarded as a stochastic process.35,36,111,112 Thus, we present a

Figure 7. Tornado plot showing LCOW sensitivity to a range of financial and process variables presented in Table 2 for brackish (A) and seawater
(B) cases. The results were obtained by varying the base value of each parameter by ±25%. Cases 1, 2, and 3 correspond to brackish water cases
with recovery rates of 50, 70, and 90%, respectively. Cases 4, 5, and 6 correspond to seawater cases with recovery rates of 50, 75, and 85%,
respectively.
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sensitivity to the maximum allowable scaling tendency and its
impact on the LCOW in Figure 8.
We find that varying the maximum scaling tendency has a

wide range of impacts on the LCOW across the cases. For
some cases (cases 2 and 5), the LCOW can vary dramatically,
whereas for other cases (case 4), there is little to no effect on
LCOW. Cases 2 and 5 are impacted greatly because changing
the maximum scaling tendency shifts in which regime they
operate in. When the maximum scaling tendency is increased
above ∼1.1, both cases 2 and 5 no longer use soda ash to
control gypsum scaling, thereby reducing costs by 41 and 22%
for the brackish and seawater cases, respectively. Further
increases in the maximum scaling tendency for these cases
produce minimal cost reductions. When the maximum scaling
tendency is decreased to 0.75, cases 2 and 5 require
significantly more soda ash dosing, increasing costs by more
than 85% for both cases. We do not observe these large
changes for the low- and high-recovery cases because they do
not result in a significant change in the soda ash dose. For
example, we observe nearly no change in LCOW for case 4,
corresponding to the low-recovery seawater case, because only
recarbonation is required to control calcium carbonate scaling,
which comprises a small fraction of the LCOW.
This analysis indicates that there could be substantial

benefits in process changes and innovations that allow higher
maximum allowable scaling tendencies because they can
replace or reduce expensive chemical precipitation pretreat-
ment needs such as soda ash softening. These process changes
could include the addition of antiscalants,40,113,114 membrane
material advancements for improved scaling resistance,3,115

electrified membranes for scaling control,116,117 and alternative
operational strategies that could potentially avoid induction
time, such as semibatch/batch RO42 or reverse flow
RO.118−120

4. CONCLUSIONS
Numerous emerging technologies for high-recovery desalina-
tion have been proposed in the literature. However, due to the
difficulty of estimating pretreatment needs and predicting
mineral scaling in multicomponent feed sources, studies often
overlook pretreatment and mineral scaling and simplify
analyses to high recovery for sodium chloride feeds. We
present a modeling framework for integrating accurate water

chemistry surrogate models with process-scale optimization of
full treatment trains with mineral scaling control. Our
framework enables the estimation of the pretreatment, cost,
and operational requirements required to push conventional
desalination treatment trains to high recoveries while
maintaining a feasible operation. To the best of our knowledge,
this study is the first to perform a cost optimization that
directly accounts for both pretreatment requirements and
mineral scale prediction for high-recovery desalination of
multicomponent feed sources.
At high recovery rates, pretreatment costs for scaling control

can significantly increase the costs of brackish and seawater
desalination. Our results show that adding soda ash to prevent
gypsum scaling in brackish and seawater at high recoveries
above 67 and 74% in the third regime, respectively, can nearly
double the overall cost of treatment, suggesting that future
work should explore alternative precipitation agents. Addition-
ally, using recarbonation to control calcium carbonate scaling
in brackish water accounts for over 25% of the cost, suggesting
that future work should also explore alternative pH and scaling
control methods. Critically, cost optimization of the full
treatment train revealed that beyond chemical addition for
scaling control strategies that change the design of the RO
system to minimize scaling can substantially reduce overall
pretreatment requirements and process costs.
The presented results highlight the importance of a holistic

approach to process optimization, where pretreatment and
primary treatment processes are designed synergistically to
achieve a cost-optimal operation. Although the analysis in this
work was performed using steady-state models and depended
on equilibrium-based scaling tendencies, the presented
optimization framework can be extended to dynamic process
design and kinetics, where scaling control targets such as the
induction time could be considered. Critically, this framework
provides a rapid, accurate, and detailed approach to process
design that has significant improvements over existing methods
that typically rely on manually selecting process design
specifications, testing if scaling would occur, and readjusting
pretreatment based on the results. Our framework can be
applied to more comprehensively evaluate and support
research and development for other emerging high-recovery
desalination technologies and treatment trains.

Figure 8. Effect of maximum scaling tendency on percent change in LCOW, with respect to a baseline maximum scaling tendency of 1, for brackish
(A) and seawater (B) cases.
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