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Abstract

Background: Multi-item adverse drug event (ADE) associations are associations relating multiple drugs to possibly
multiple adverse events. The current standard in pharmacovigilance is bivariate association analysis, where each
single drug-adverse effect combination is studied separately. The importance and difficulty in the detection of
multi-item ADE associations was noted in several prominent pharmacovigilance studies. In this paper we examine
the application of a well established data mining method known as association rule mining, which we tailored to
the above problem, and demonstrate its value. The method was applied to the FDAs spontaneous adverse event
reporting system (AERS) with minimal restrictions and expectations on its output, an experiment that has not been
previously done on the scale and generality proposed in this work.

Results: Based on a set of 162,744 reports of suspected ADEs reported to AERS and published in the year 2008,
our method identified 1167 multi-item ADE associations. A taxonomy that characterizes the associations was
developed based on a representative sample. A significant number (67% of the total) of potential multi-item ADE
associations identified were characterized and clinically validated by a domain expert as previously recognized ADE
associations. Several potentially novel ADEs were also identified. A smaller proportion (4%) of associations were
characterized and validated as known drug-drug interactions.

Conclusions: Our findings demonstrate that multi-item ADEs are present and can be extracted from the FDA’s
adverse effect reporting system using our methodology, suggesting that our method is a valid approach for the
initial identification of multi-item ADEs. The study also revealed several limitations and challenges that can be
attributed to both the method and quality of data.

Background
The main objective of pharmacovigilance is the early
detection of novel adverse drug events (ADEs) with
minimal patient exposure. The impact of ADEs results
in significant social costs estimated in several billion
dollars annually, and inflicts unnecessary, often fatal,
harm to patients [1,2]. Hence, their identification is
paramount to health care.
Spontaneous reporting systems (SRS) are database

resources encompassing reports of suspected post-mar-
keted ADEs, and are currently the mainstay in

pharmacovigilance. Among the major SRSs are: the Uni-
ted States Food and Drug Administration’s (FDA)
Adverse Event Reporting System (AERS) [3], and the
World Health Organization (WHO) Programme for
International Drug Monitoring [4].
The FDA receives voluntary reports of suspected

adverse drug events directly from health care profes-
sionals and consumers, as well as mandatory reports
from manufacturers, which after a manual review are
entered into the AERS Database. Each report contains
patient demographic information, drug information for
as many medications as were reported for the event,
including suspected drugs and concomitant drugs,
coded adverse events using the MedDRA terminology
[5] (a terminology developed for ADE applications),
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patient outcomes, drug therapy dates, MedDRA coded
indications for the reported drugs, and report sources.
The AERS Database, which is available online, contains
over four million reports of adverse events and reflects
data from 1969 to the present.
Traditional methods of ADE detection in SRS data-

bases relied on manual case reviews by clinical/pharma-
cological experts. However, due to the increasing size
and complexity of SRS databases, and limitations in
human resources, recently, more efficient methods have
been proposed consisting of automated, and quantitative
approaches that are commonly referred to as data
mining algorithms (DMAs) or signal detection algo-
rithms. DMAs are generally designed to identify statisti-
cally strong associations between drugs and adverse
effects (AEs). These associations, also referred to as sig-
nals, are not necessarily true ADEs but rather hypoth-
eses that warrant further investigation to qualify them
as credible ADEs. They allow evaluators to peruse the
large volume of reports and focus their attention on
potentially important safety issues.
In recent years a wide range of DMAs have been

developed to screen potential ADEs [6-8]. To estimate
incidence rates, DMAs use the population of reports in
the SRS as a proxy for the true population. The majority
of DMAs rely on the use of disproportionality measures,
such as the relative reporting ratio (RR), which attempt
to quantify the degree of “unexpectedness” of a drug-AE
association [9]. Typically, a pre-defined disproportional-
ity threshold will be used to screen potential ADEs for
further review. Both the FDA and WHO use an adjusted
version of RR as a basis for monitoring safety signals in
their SRS [10,11].
Typical SRS databases contain tens of thousands of

drugs and adverse effects (AEs). Enumerating all possi-
ble combinations of ADEs for statistical analysis,
although feasible, is a daunting task and rarely done. As
a result, most published work focuses on subsets of the
data, e.g., specific drugs or demographic groups, avoid-
ing data base wide studies. Additionally, most current
DMAs are designed to identify only binary (bivariate)
associations, i.e., pairs including only one drug and one
AE, such as
Vioxx ® heart attack,
excluding from analysis the possibility of multi-item

associations, e.g. an association between two drugs and
one or two AEs, such as
Aspirin + Warfarin ® Bleeding.
Multi-item ADE associations are rarely reported but

are important because they could indicate possible drug-
drug interactions. The limitations of bivariate analysis,
as well as the importance of and difficulty of multi-item
ADE detection, also referred to as higher-order ADE
associations, was emphasized in [6,12] noting that SRS

databases provide an opportunity to uncover them as
they contain populations that are not well represented
in clinical trials. Studies that did consider multi-item
ADE associations, such as drug-drug interactions, did so
only after a careful selection of a small subset of drugs
[13,14].
Association rule mining is a well established method

for discovering interesting relationships between vari-
ables hidden in large databases. An association rule is
an implication expression of the form A®B, where A
and B are disjoint itemsets. In the case of ADE detec-
tion, A denotes a set of drugs and B a set of AEs, e.g.
A= Aspirin, Warfarin, B= Bleeding. The strength of an
association rule is determined by its support and confi-
dence. The support of an itemset S(A) is the number of
records containing A. The support of an association rule
S(A®B) is equal to S(A∪B), i.e., support determines how
often a rule, which in this case is the combination of
drugs and AEs, is observed in the data. Low support
may indicate that a rule has simply occurred by chance,
and thus support is often one of the parameters used to
screen uninteresting rules. The confidence of a rule C
(A®B) is equal to S(A∪B)/S(A), that is, confidence deter-
mines how often items in B appear in records that con-
tain A. Confidence provides an estimate of Pr(B|A) the
conditional probability of B given A, and therefore is
used to measure the reliability or interestingness of the
rule. It should be emphasized that the inference made
by an association rule does not imply causality.
Nevertheless, association rule mining provides a natural
setting for ADE detection and analysis, and in recent
years, has been adopted to various problems in the area
of biomedical surveillance. Brossette et al. and Ma et al.
[15,16] applied association rule mining to hospital infec-
tion control. Chen et al. [17] applied association rules
mining to a linked dataset comprised of a pharmaceuti-
cal prescribing dataset and a hospital admissions dataset
in order to identify groups of patients who are more
likely to have an adverse effect to ACE inhibitors.
Rouane et al. applied [18] association rules mining to
identify ADEs related to anti-HIV drugs.
Two key issues need to be addressed when applying

association rule mining. First, the search space of inter-
esting multi-item associations is extremely large, and
discovering these associations in large databases is com-
putationally expensive, often intractable. For example,
assuming 10,000 unique drugs and AEs are under con-
sideration (a common scenario), then the number of
possible multi-item associations made of 2 drugs and 3
AEs that need to be examined is approximately 10,0005

=1020, and for each, incidence rates and other associa-
tion statistics need to be computed. Second, some of the
associations discovered may be spurious (happening by
chance), or due to confounding factors. Both of these
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issues have been addressed to a certain extent in this
work.
The objective of this paper is twofold. First, to

demonstrate the feasibility and value of association
rule mining to identify interesting multi-item ADEs.
Second, to demonstrate that multi-item ADEs exist in
the AERS database and can be discovered by our
method. Mining the AERS database for multi-item
associations is to the best of our knowledge a study
that has not yet been done for the scale and generality
proposed in this paper. Unlike other studies, our
approach is general and is not restricted to a particular
group of drugs or set of specific conditions, while
examining tens of thousands of reports submitted over
several years. The exploration of such a large space of
possible multi-item associations was made possible
partly due to an optimized and tailored implementa-
tion of the Apriori [19] algorithm. We propose the use
of association rule mining as an important and promis-
ing first step in a multi-step process where subsequent
steps include rigorous statistical analysis and clinical/
pharmacological expert judgment.

Methods
Data sources
For the purpose of this study we selected a large sample
of reports published in the year 2008, representing a
sample from the latest complete set of yearly AERS
reports available. Selecting from the latest available set
of reports offers the opportunity to study novel multi-
item ADEs. In addition we selected reports which were
categorized as having a “serious” patient outcome
(death, life-threatening, hospitalization, disability, etc),
and reports which contained more than one drug. The
reason for the latter being that we wanted to explore
multi-item associations corresponding to possible drug-
drug interactions.

Mining process
The overall mining process consisted of three steps
depicted in Figure 1. (1) drug names were mapped to
their corresponding generic names to reduce drug nam-
ing redundancy and strengthen the signals, as well as
reduce algorithmic complexity, (2) a set of candidate
multi-item ADE associations were generated using an
optimized and tailored implementation of the Apriori
algorithm, (3) the set of candidate multi-item ADE asso-
ciations generated in the second step were filtered to
remove spurious associations, whereupon the final set of
potential multi-item ADEs were obtained.
Our method was implemented in Python and required

approximately 4 hours to complete a full run on a stan-
dard desktop with an Intel Core 2 Duo processor run-
ning at 3.0GHz.

Drug name mapping
One of the main challenges presented to DMAs is the
granularity and large variation in the terminology used
to describe drugs and adverse effects in AERS, which in
turn may dilute ADE signals across multiple similar
drugs or events. Unlike the suspected ADEs and the
indications which are coded using MedDRA, the drugs
are entered as free text and include a variety of different
formats as well as typographical errors, which must first
be mapped into a standardized form. For example, in
AERS 2008, there were several dozen different variations
for the drug Avandia, some of which were: AVANDIA,
AVANDIA (ROSIGLITAZONE MELEATE), AVAN-
DIA/SCH/ (PIOGLITAZONE HYDROCHLORIDE),
AVANDIA /UNK/ (ROSIGLITAZONE MALEATE),
AVANDIA (CON.), AVANDIA /01445801/, AVANDIA/
SCH/ (PIOGLITAZONE HYDROCHLORIDE), AVAN-
DIA /SCH/ (ROSIGLITAZONE MALEATE), AVANDIA
(2 MILLIGRAM TABLETS), and ROSIGLITAZONE
MALEATE (AVANDIA).
Each drug obtained from a report was first assigned a

UMLS drug code using MedLEE[20], an existing NLP
system. If the drug name included a dose or route, e.g.
“Avandia (2 milligram) tablets”, the more general UMLS
code consisting of only the drug name was chosen over
the more specific code, e.g., C0875967, corresponding to
“Avandia”. If the drug name could not be mapped, it
was left as is. Finally, UMLS codes were mapped to gen-
erics using RXNORM[21]. Hence, C0875967 corre-
sponding to the brand name Avandia, would be mapped
to C0289313 corresponding to the generic name for
Rosiglitazone.

Associations rules mining
The space of possible multi-item associations in a large
database, such as the AERS database, is generally so
large that the number of possible rules to search over is
computationally intractable. Therefore, it was necessary
to use an efficient algorithm, and also to employ addi-
tional criteria specific to the application, in order to
reduce the search space. These additional criteria
restrict the search space to rules that not only have high
support and confidence but that are of high priority to
the application, such as rules containing a certain num-
ber or set of items. In this work we used the general
Apriori algorithm, which was optimized and tailored to
this specific application.
The Apriori algorithm is a method designed to effi-

ciently identify association rules in large databases. The
Apriori algorithm prunes the search space of associa-
tions based on the basic downward closure property of
frequency. In our context this means that if a certain
combination of drugs and AEs is infrequent, then any
larger combination that builds upon the smaller
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infrequent one, will also be infrequent, and thus need
not be considered. For example, if the combination of
drugs aspirin and metformin is in frequent, then any
association rule that builds upon it, such as aspirin +
metformin®headache, will also be infrequent and there-
fore does not need to be considered.
The general Apriori algorithm works in two steps. The

first step searches for item sets that have more than a
given minimum support, while in the second step, rules
are generated by selecting “confident” item sets (based
on a threshold) from those found in the first step. It is
the first step that presents the bottleneck and greater
challenge, as it is in this step that all possible rules are
enumerated. In order to deal with the very large set of
reports from AERS and make the problem tractable we
made the following two changes and enhancements to
the basic Apriori configuration.
1. Imposing the constraint that only item sets that had

a set of drugs in the antecedent and a set of AEs in the
consequent were considered as potential association
rules in the first step. Otherwise, many of the associa-
tions generated by the algorithm would contain either
only drugs or only AEs, which is not aligned with the
definition of an ADE association. By imposing this con-
straint the search space for possible multi-item ADE

associations and candidate rules that needed to be con-
sidered was significantly reduced.
2. Instead of scanning the entire database in order to

compute the support of each candidate association rule,
hashing (indexing) based on drugs/AEs was implemen-
ted to reduce the number or reports that need to be
examined for each rule.
The scale of computational gain achieved by these

optimizations was several thousand folds, and without
them the method was intractable.

Filtering
Similar to other studies [15,16,18], we have found that
the standard criterion of confidence is not indicative of
the set of interesting rules. The inappropriateness of
confidence for this case stems from the fact that fre-
quent AEs, such as nausea, are likely to generate large
confidence values regardless of the drugs associated
with it, and infrequent AEs are likely to produce small
confidence despite being strongly associated with certain
drugs. Moreover, unlike typical applications of associa-
tion rule mining the type of associations sought in ADE
mining are by definition rare, especially multi-item asso-
ciations, which would manifest themselves as rules hav-
ing relatively low support and confidence. On the other

Figure 1 Overall mining process
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hand, an ADE association with high confidence would
most likely already be known, e.g., discovered during the
clinical trial process. We therefore chose to use the rela-
tive reporting ratio (RR) as a proxy for rule interesting-
ness and association strength instead of confidence.
RR is defined as the ratio between a rule’s observed

frequency to a baseline expected frequency under the
assumption of independence, the latter servings as a
control. In terms of our existing definitions of support
and confidence, RR can formally be defined as,

RR
N S A B

S A S B
= × ∪

×
( )

( ) ( )

where N is the total number of reports in the data. In
this setting S(A∪B) (support) is viewed as the observed
frequency of a rule, and S(A)S(B)/N as its expected fre-
quency under the assumption of independence. It is also
easy to see that in this setting RR can be viewed as con-
fidence normalized by the support of a rule’s consequent
(B), correcting the shortcoming of confidence discussed
above. In the context of ADE detection, high values of
RR indicate that the occurrence of a set of adverse
effects in conjunction with a certain set of drugs is lar-
ger than occurrence of the adverse effects in the general
population of drugs. Under a probabilistic interpretation,
RR is an estimate of
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Therefore, RR can also be viewed as the amount of
deviation of the joint probability of the drugs and AEs
from statistical independence. Large values indicate that
the occurrence of the drugs-AEs combination has unlikely
occurred by chance and that a plausible reason is behind
the association. Roughly, RR=1 indicates that the drugs
and AEs are statistically independent, RR>1 that the drugs
and AEs are positively correlated, and RR<1 that the
drugs and AEs are negatively correlated. Although having
its limitations, as do other measures, we found RR to be a
more informative criterion than confidence for screening
interesting ADEs. Additionally, we found that an adjust-
ment that accounts for low variance, such as the Gamma
Poission Shrinker [22] used by the FDA, would not be
necessary in this case due to a high enough support that
we selected. For large enough support the adjusted and
unadjusted RR are almost equal [22,23].
The support and RR thresholds used in this work to

screen ADE association rules were set to 50 and 2
respectively. In the absence of a gold standard (the set
of all true multi-item associations is unknown) which
would have enabled us to calibrate or determine the
most appropriate thresholds in a quantitative manner,

we resorted to a data driven and heuristic approach
guided by domain expert knowledge. The support
threshold was set to a high enough value to highlight
the more frequent patterns and at the same time to
accommodate for the size of the database. The threshold
(50) was found to be a balancing point between the
number of associations generated, their size, and varia-
tion in content (drugs and AEs appearing in an associa-
tion). Setting the threshold to a lower value resulted in
a much larger set of associations at a more granular
level (smaller), with a higher risk of containing spurious
ones. A larger value resulted in less variation in content.
Although there is no consensus as to the most appro-

priate RR threshold [8], the RR threshold used in this
work was set to the value of 2 based suggestions noted
in similar studies [6,10,24]

Evaluation
Following common practice in pharmacovigilance[6,8]
the clinical validity of the multi-item ADE associations
identified by the proposed method were reviewed by a
clinical subject matter expert. The findings and conclu-
sions were based on a random evaluation sample of 100
multi-item ADE associations. Known ADEs were vali-
dated by the expert using Micromedex [25], which is
considered a reliable reference for medications and their
associated ADEs.

Results
Data statistics
The full set of AERS reports published in 2008 contains
441,009 reports. Our overall data collection process
resulted in a sample of 162,744 individual reports used
for analysis, containing 24,641 unique drug names, and
8,025 MedDRA coded unique AEs. The step which
mapped drug mentions to generics reduced the set of
drug names from 24,641 to 7,094 unique UMLS coded
drugs. Each report contained on average 3.3 different
drugs associated with the report and an average of 3.4
different AEs, yielding an average number of 6.7 items
per item set. The median number of different drugs and
different AEs per report was 2 for each. It was found
that 60% of the reports contained more than one drug,
70% of the reports contained more than one AE, and
84% of the reports contained at least 3 items (drugs or
AEs) providing one of the main motivations for this
study. Additionally, we found that 27% of the drugs
were reported as the primary suspect for the AE, 15% as
secondary suspect, 58% as concomitant, and that all
reports in our sample were classified as having a “ser-
ious” patient outcome.
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Multi-item ADE Associations
Using the proposed thresholds our method produced a set
of 2603 association rules. Of those, 1167 were multi-item
associations containing item sets of size 3 or more, i.e., at
least 2 drugs or 2 AEs.
Based on the evaluation sample of 100 associations,

we developed a taxonomy that characterizes the set of
multi-item ADE associations (association rules) that
were identified. The taxonomy along with estimated
proportions of each category in the taxonomy is pre-
sented in Table 1, whereas Table 2 provides representa-
tive examples of potential multi-item ADEs classified
according to the taxonomy, together with the support
and RR value for each.

Discussion
The taxonomy and examples provided in Table 2 illus-
trate several interesting patterns of drugs and adverse
effect combinations that can be found in AERS.
The associations in examples A, B and C describe

drug-drug interactions that are known, drugs that are
frequently prescribed together, or associations that seem
to be due to confounding respectively. For example, in
association A, Metformin and Metoprolol are known
drug-drug interactions, and because each is associated
with nausea, it can be predicted that nausea is more
common in patients taking both drugs. The three drugs
identified in association B are used together to treat cer-
tain types of cancer and the ADE, febrile neutropenia, is
a known complication of the treatment. Prednisone is
given with the other drugs in association C to treat var-
ious medical conditions, such as to induce immunosup-
pression, but does not cause the reported outcome.
Based on historical documentation, this suggests our
method has the potential to uncover important ADEs
that have not yet been recognized. Associations D and E
describe drugs known to be given together or drug-drug
interactions that are known (category 1a) with events
that are clinically unknown (category 2b). Both drugs in
association D are commonly prescribed together in
patients with various medical conditions (such as

diabetes), but the reported event dyspnoea is not
expected. If dyspnoea was a typical manifestation of a
disease (congestive heart failure due to diabetes), then it
is likely that the report would not have been submitted
to AERS. Association E reports the same ADE but with
a different antecedent. There are preliminary reports
that drugs of the first class (omeprazole) interact with
metabolism and thus augment the action of drugs of the
second class (simvastatin). The observed outcome, dys-
pnea, is not known to be due to either of these two
drugs. If dyspnea were due to congestive heart failure,
for which Simvastatin might be prescribed, it would be
expected and not submitted to the AERS database as an
adverse drug event.
After sorting the associations by their RR we came

across a case that is reflective of data quality issues
associated with the AERS database. Association F
received the highest RR value among all associations
found. The extremely high value (2669) assigned to it
raised our suspicion, and its corresponding 52 reports
(instances) were pulled from the AERS database for
further inspection. Each of the patients was on 18 or
more drugs. Yet, despite the very many combinations
that would result from a random combination of these
drugs, the varenicline-darvocet combination was much
more commonly associated than any of the other com-
binations. Out of 62 reports containing both drugs, 52
also contained the AEs listed. Furthermore, only a small
subset of 12 AEs were associated with these drugs. Six
of them are related to mental functioning. This suggests
that the method may have identified a potential drug-
drug interaction which augments the effect of either on
the brain. This has face validity: both of these drugs
influence the central nervous system so that it is feasi-
ble that some of the AEs are related to the combination.
The only caveat is that it appears that all patients are
nearly identical; all have same diseases, all were taking
nearly all of same drugs and reported nearly all of same
AEs. This suggests duplicity in reporting of the event/s,
a well known issue with AERS [9,26]. A plausible expla-
nation for this duplicity is that different reporters
(health care professionals, consumers, and manufac-
turers) reported the same patient, possibly from differ-
ent arms of a clinical trail, or (and) that follow-up
reports for the patient were not properly linked to the
patient’s earlier reports. In any case, such duplicity may
severely bias the statistics and lead to erroneous
conclusions.
Our findings show that the majority of associations

(78%) were composed of drugs that are usually given
together, such as antibiotics, or drugs that treat the
same disease, e.g. cancer (taxonomy 1b). The findings
also show that the majority of associations (67%) were
recognized (known) multi-item ADE associations, where

Table 1 Taxonomy of multi-item ADE associations

Drugs

1a Drug-drug interactions found that are known 4%

1b Drug-drug combinations known to be given together or treat
same indication

78%

1c Drug-drug combinations that seem to be due to
confounding

9%

1d Drug-drug interactions that are unknown 9%

Associations

2a Associations (drug[s]-event) that are known 67%

2b Associations (drug[s]-event) that are unknown 33%
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each of the drugs is known to cause each of the
reported adverse effect (taxonomy 2a). This finding
demonstrates that multi-item ADE associations exist in
AERS, and that our method was able to reveal them, in
turn suggesting that our method is a valid approach for
the initial identification of multi-item ADEs. We note
that a substantial proportion of associations included
ADEs that have not yet been recognized (taxonomy 2b).
However, this does not necessarily indicate that these
associations are incorrect, but that currently support for
them is scarce and that further investigation is required.
A much smaller proportion of associations (4%)

included drugs that are known to interact (taxonomy
1a). This may or may not be indicative of the true num-
ber of drug-drug interactions contained in AERS. The
exact number is unknown, but there are studies[27] that
suggest a larger number (6%-30%). Regardless, drug-
drug interactions are a special case of multi-item ADEs,
and our methodology was not designed for this specific
case but for the more general case. Nonetheless, we
believe that this methodology can be used as a basis for
a method designed to identify drug-drug interactions,
and we plan to investigate its potential in future work.
The experiment also revealed several limitations and

challenges that can be attributed to both the method
and quality of data. Based on statistical criteria, the
method was able to expose multi-item potential ADEs
that would otherwise go unforeseen by conventional
methods, achieving its preliminary goal. However, with-
out a rather tedious manual review of an expert none of
the associations found could be validated or interpreted
in the right context. Ideally, a DMA should be able
reduce the amount of manual expert intervention by

perhaps being able to classify the associations detected
based on some taxonomy, such the one developed in
this study. This however is still an open problem and
beyond the scope of this study. In future research we
intend to develop a DMA based on association rule
mining supplemented by additional statistical methods
that would reduce the amount of intervention and pro-
duce associations of higher quality. One aspect of this
problem we are currently exploring is the detection of
confounded associations.
There is no gold standard regarding which statistical

measures are to be used in order to facilitate accurate
ADE screening, especially multi-item ADEs, where little
research has been reported. This problem is exacerbated
in SRS databases due to unknown incidence rates in the
general population. We believe it is likely that interest-
ing associations went undetected by our method due the
specific statistical measures we used. In future research
we plan to explore the applicability, strengths and lim-
itations of various measures to the application of multi-
item ADE screening.
There are several algorithmic improvements that

would enable our method to cope with a larger volume
of associations. For example, lowering the support
threshold would have produced a larger and more gran-
ular amount of associations, some of which would have
likely been classified as interesting potential ADEs. At
its current state this action would be prohibitive.
Due to the mostly voluntary nature of reporting in

SRS databases DMAs are susceptible to biases inherent
in the data [6,12]. Common phenomena include under
reporting, and over reporting of AEs, and reporting
duplicity as illustrated by association F in Table 1.
There were other reports where over 50 AEs or drugs
were included in one report. All these may generate
spurious ADE association, and without taking into
account data quality issues the results are questionable.

Conclusions
In a comparative study of DMAs applied to pharmacov-
igilance [6] the authors state: “If DMAs have value, it is
because they achieve one or more of the following …
detection of AEs that would otherwise have gone unde-
tected (this is especially pertinent to higher order asso-
ciations because they are difficult to be captured …)”.
The current standard in pharmacovigilance is bivariate
association analysis, where each drug-AE combination is
studied separately. In this paper we propose a funda-
mentally different approach taking into account multi-
variate associations. We examined the feasibility of a
well known data mining method that we adopted and
tailored to the problem of multi-item ADE detection in
SRS. We demonstrated its incremental value as part of a
larger scheme of operation, which would include

Table 2 Classified Sample of multi-item ADE associations
found in AERS

Taxonomy Multi-item
ADE

Association

Support RR

A 1a-2a Metformin, Metoprolol ->
NAUSEA

50 7.4

B 1b-2a Cyclophosphamide, Prednisone,
Vincristine -> FEBRILE

NEUTROPENIA

78 45

C 1c-2a Cyclophosphamide,
Doxorubicin, Prednisone,
rituximab -> FEBRILE

NEUTROPENIA

63 59

D 1b-2b Atorvastatin, Lisinopril ->
DYSPNOEA

55 3.5

E 1a-2b Omeprazole, Simvastatin ->
DYSPNOEA

58 12

F 1d-2b Varenicline, Darvocet ->
ABNORMAL DREAMS, FATIGUE,

INSOMNIA, MEMORY
IMPAIRMENT,NAUSEA

52 2668
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additional statistical methods supplemented with
domain expert knowledge. The method was applied in a
database-wide-manner to FDAs AERS with minimal
restrictions and no prior expectations on its output, an
experiment which to the best of our knowledge has not
been done previously. The findings demonstrate that
multi-item ADEs are present and could be extracted
from AERS using our methodology. There are several
challenges concerning our approach that should be
addressed. In future research we plan to address some
of these issues such as: the statistical measures that
should be used to qualify ADEs, algorithmic improve-
ments, a more automated and streamlined detection
process, and incorporating data quality into analysis.
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