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Abstract: Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited
source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications
of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs
in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver
maturation takes place. Here we assessed the influence of thyroid hormone on hepatic progenitor
differentiation to HLCs. We analyzed gene and protein expression of early and late hepatic markers
and demonstrated the selective activity of thyroid hormone on different genes. Particularly, we
demonstrated thyroid hormone-dependent inhibition of the fetal hepatic marker AFP. Our study
sheds light on the role of thyroid hormone during liver differentiation and maturation.

Keywords: thyroid hormone; hepatic development; human induced pluripotent stem cells; hepatocyte-
like cells; liver maturation

1. Introduction

Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells (HLCs) represent
a promising cell model for drug research [1,2] and various biomedical applications [3,4].
Induction of HLCs in vitro includes the use of soluble factor-based differentiation cocktail
and the culture condition which are aiming to mimic the natural liver development in the
embryogenesis. It is a multistage process which, first, requires the formation of definitive
endoderm (DE), hepatic progenitors, fetal hepatocytes, and finally, HLCs. Every subsequent
stage is regulated by the carefully adjusted combinations of growth factors specific for this
particular stage of the development [5]. In vivo DE development is initiated by the Nodal
signaling [6], which is mimicked in vitro by administration of activin A alone [7], or in
combination with the glycoprotein Wnt-3A or bone morphogenetic proteins (BMP) [8,9], or
by small molecule sodium butyrate [10], or by the administration of the GSK3 inhibitor
CHIR99021 [11].

Furthermore, DE cells undergo hepatic specification using different combinations of
BMPs and fibroblast growth factor 4 (FGF4) [5,12–14]. The obtained hepatic progenitors
are further differentiated using hepatocyte growth factor (HGF) [12]. Additionally, hepatic
maturation requires the presence of interleukin-6 family growth factor OSM and synthetic
glucocorticoid dexamethasone (DEX) [15]. BMP7 promotes the key liver protein albumin
expression [16]. Undesired formation of cholangiocytes can be prevented by inhibiting the
NOTCH and Wnt signaling [17].

Differentiation of hPSCs into HLCs in two-dimensional culture includes switching of
the culture matrix after the formation of DE cells (usually Matrigel [18,19]) to the matrix
which better mimics the extracellular matrix (ECM) of hepatic progenitors [5,13,20]. The
existing protocols for in vitro hepatic differentiation of hPSCs often result in an immature
cell population, although this research area is actively developing, and many research

Pharmaceuticals 2021, 14, 544. https://doi.org/10.3390/ph14060544 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-7717-6010
https://doi.org/10.3390/ph14060544
https://doi.org/10.3390/ph14060544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14060544
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph14060544?type=check_update&version=2


Pharmaceuticals 2021, 14, 544 2 of 15

groups have come up with various improvements [12,21,22] and have assessed different
components for the differentiation medium [11].

At birth and shortly after birth, most hepatic functions rapidly elevate due to dra-
matic changes from intrauterine to extrauterine [20]. Fetus–newborn transition involves
endocrine, metabolic, cardiovascular, and lung adaptions [21]. Cortisol, catecholamines,
and thyroid hormones (THs) are the main modulators in endocrine adaption [21]. It is
well known that THs participate in organ development [22]. The role of THs, including
3,5,3′-triiodothyronine (T3) and 3,5,3′,5′-tetraiodothyronine (T4), in tissue development and
maturation has been demonstrated in detail in bone, brain, intestine, heart, and pancreas.
T3 was found to induce the maturation of mouse embryonic stem cell (mESC) and hu-
man induced PSC (hiPSC)-derived cardiomyocytes [23,24] and promote pancreatic β-cell
maturation in rats [25]. It was used to improve the in vitro maturation of hPSC-derived
pancreatic β-cells and fetal islet cells [26–28]. T3 has been shown to induce the differentia-
tion of rat liver progenitor oval cells into hepatocytes [29]. THs are known to be actively
involved in the process of liver regeneration [30]. They activate and suppress in summary
55 hepatic genes through the interaction with the nuclear TH receptors (TRs) TRα and
TRβ [30]. Thus, THs regulate the metabolism of carbohydrates and fatty acids, insulin
action, cell proliferation, immune functions, synthesis of glycoproteins, et al. [31]. In mice,
it was shown that T3 stimulates the mitotic activity of the transplanted hepatocytes [32]
through the TRβ [33].

In early embryo development, the fetus receives THs from the maternal placenta
and synthesizes them by itself in the late stages [34,35]. The human placenta is rich in
TH transporters, which explains its permeability for THs. THs, in their turn, are actively
involved in the processes of tissue differentiation and maturation [36].

The conversion of the inactive T4 form of TH into an active one T3 is mediated by
the tissue-specific deiodinases DIO1, DIO2, and DIO3. DIO3 is a fetal liver enzyme that
plays an important role in the protection of the embryo from the excessive concentrations
of maternal THs supplied through the placenta [36]. DIO3 activity decreases from fetal to
mature liver, being high in preterm infants and absent in full-term infants [35].

We hypothesized that the TH administration to the hPSCs at certain stages of hepatic
differentiation can improve the maturity of resulted HLCs. In this study, we conducted the
differentiation of hiPSC into HLCs and demonstrated how T3 affected the expression of
certain markers during the differentiation.

2. Results and Discussion

We conducted the hepatic differentiation of hiPSC line GM23720B to study the in-
fluence of T3 hormone on hepatocyte differentiation in vitro (Figure S1A). Before starting
the differentiation, we ensured that GM23720B cells displayed the characteristic stem cell
colony organization (Figure S1B) and positive protein expression of the stemness markers
OCT4 and NANOG (Figure 1). We implemented the differentiation of the hiPSC into HLCs
with and without the treatment with T3 hormone at the defined stages of differentiation.
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Figure 1. Expression of OCT4 and NANOG proteins in undifferentiated GM23720B cells. Nuclei of cells were stained with 
DAPI (blue). Proteins of interest were stained either with Alexa Fluor 488 (OCT4), shown in green, or with Alexa Fluor 
594 (NANOG), shown in red. Scale bars = 100 μm. 

2.1. DE Induction 
The first step of hepatic differentiation is the formation of DE cells. Earlier, we have 

developed a protocol for the hPSC differentiation into DE cells [19]. It involved treatment 
with AA during six days. This protocol enables obtaining highly viable cells with high 
expression of DE cell-specific markers and potency to be differentiated into HLCs, and, 
therefore, has been implemented in the current study. At day 6 of the differentiation, GM-
23720B-derived cells acquired characteristic DE morphology and, based on confluency, 
possessed high viability, allowing further differentiation procedure (Figure S1B, day 6). 
At day 6 of the differentiation, GM23720B cells became positive with DE cell markers 
SOX17, HNF3B, and CXCR4 proteins (Figure 2), indicating the efficient DE cell formation. 

Figure 1. Expression of OCT4 and NANOG proteins in undifferentiated GM23720B cells. Nuclei of
cells were stained with DAPI (blue). Proteins of interest were stained either with Alexa Fluor 488
(OCT4), shown in green, or with Alexa Fluor 594 (NANOG), shown in red. Scale bars = 100 µm.

2.1. DE Induction

The first step of hepatic differentiation is the formation of DE cells. Earlier, we have
developed a protocol for the hPSC differentiation into DE cells [19]. It involved treatment
with AA during six days. This protocol enables obtaining highly viable cells with high
expression of DE cell-specific markers and potency to be differentiated into HLCs, and,
therefore, has been implemented in the current study. At day 6 of the differentiation,
GM-23720B-derived cells acquired characteristic DE morphology and, based on confluency,
possessed high viability, allowing further differentiation procedure (Figure S1B, day 6). At
day 6 of the differentiation, GM23720B cells became positive with DE cell markers SOX17,
HNF3B, and CXCR4 proteins (Figure 2), indicating the efficient DE cell formation.
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Figure 2. Expression of SOX17, HNF3B, and CXCR4 proteins in GM23720B-derived cells at day 6 (DE stage) of the differ-
entiation. Nuclei of cells were stained with DAPI (blue). Proteins of interest were stained with Alexa Fluor 594 (red). Scale 
bars = 100 μm. 

2.2. Hepatic Specification (Generation of Hepatic Progenitors) 
The ECM is a dynamic structure and, during embryo development, it remodels itself 

according to current tissue requirements. Therefore, it is essential to adjust the culture’s 
physical conditions to mimic the natural development process. It is shown that the hepatic 
progenitor-like environment is beneficial for the differentiation of DE cells to hepatic lin-
eage [5]. Therefore, at the second step of the differentiation, we transferred DE cells from 
Matrigel to the LN521 matrix, which was shown to be a suitable matrix for the hepatic 
specification in a previous study, and followed the previously described procedure for the 
formation of hepatic progenitors [5]. BMP2, BMP4, and FGF proteins act in a concerted 
manner, regulating the hepatic specification of DE cells [37]. It has been shown to be ef-
fective in in vitro experiments for hepatic induction [5,38]. We modified the culture me-
dium with the growth factor combination of BMP2, BMP4, and FGF4 to mimic the hepa-
togenesis process. By day 10, we observed the change of morphology: the cells became 
heterogeneous, and cell types were grouped in clusters, some cells started to acquire po-
lygonal shape (Figure S1B, day 10). 

Figure 2. Expression of SOX17, HNF3B, and CXCR4 proteins in GM23720B-derived cells at day 6
(DE stage) of the differentiation. Nuclei of cells were stained with DAPI (blue). Proteins of interest
were stained with Alexa Fluor 594 (red). Scale bars = 100 µm.

2.2. Hepatic Specification (Generation of Hepatic Progenitors)

The ECM is a dynamic structure and, during embryo development, it remodels itself
according to current tissue requirements. Therefore, it is essential to adjust the culture’s
physical conditions to mimic the natural development process. It is shown that the hepatic
progenitor-like environment is beneficial for the differentiation of DE cells to hepatic
lineage [5]. Therefore, at the second step of the differentiation, we transferred DE cells from
Matrigel to the LN521 matrix, which was shown to be a suitable matrix for the hepatic
specification in a previous study, and followed the previously described procedure for the
formation of hepatic progenitors [5]. BMP2, BMP4, and FGF proteins act in a concerted
manner, regulating the hepatic specification of DE cells [37]. It has been shown to be
effective in in vitro experiments for hepatic induction [5,38]. We modified the culture
medium with the growth factor combination of BMP2, BMP4, and FGF4 to mimic the
hepatogenesis process. By day 10, we observed the change of morphology: the cells
became heterogeneous, and cell types were grouped in clusters, some cells started to
acquire polygonal shape (Figure S1B, day 10).
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2.3. Differentiation and Maturation of Hepatic Progenitors
2.3.1. Optimization of the T3 Concentration

T3 activates the transcription of genes through the interaction with nuclear TRs that
serve as transcription factors in a ligand-dependent manner for the T3-responsive genes [39].
T3 was shown to induce hepatic differentiation in fetal liver [29] and liver regeneration [30].
We thus hypothesized that T3 administration during the expansion and maturation of hepatic
progenitors may positively affect the expression of specific hepatic genes and proteins.

To find the optimal T3 hormone concentration for the improvement of hepatic matu-
ration, we tested four T3 concentrations (1 nM, 10 nM, 100 nM, and 1000 nM) and three
administration timing intervals (from day 9 to day 22, from day 13 to day 22, and from
day 17 to day 22). We performed hepatic differentiation of GM23720B cells and assessed
the influence of different T3 concentrations and time of its administration by the level of
mRNA expression of the key early, midlate, and late hepatic markers.

Alpha-1-fetoprotein (AFP), a marker of the early hepatic development, is supposed to
decrease by the end of the differentiation experiment, meaning the natural switch from
fetal stage to the adult stage of hepatocytes. The lowest AFP mRNA expression by the end
of the differentiation was obtained using the administration of 1000 nM T3 from day 9 until
day 22 (Figure S2A).

The rise of the expression of midlate marker albumin ALB indicates further hepatic
differentiation. The highest ALB induction in the cells was obtained after the treatment with
1 nM and 100 nM T3 from day 13 to day 22 (Figure S2B). The highest level of TH responsive
THRSP (or SPOT14), whose expression characterizes adult hepatocytes, was achieved
by the treatment with 1000 nM T3 from day 9 to day 22 (Figure S2C). The expression of
CK19, the marker of the bile duct epithelium and hepatic progenitors, should decrease
after the hepatic progenitor stage. CK19 expression in all the conditions decreased after
day 9, though the level at the end of differentiation was higher than that in primary human
hepatocytes (PHH). The lowest expression was achieved by treating cells with 10 nM T3
from day 13 or 17 to day 22 and with 1000 nM T3 from day 17 to day 22 (Figure S2D). T3
treatment did not affect the liver-specific marker AAT induction, which decreased after day
17 in both treated and nontreated cells (Figure S2E).

We did not find a universal hormone concentration that upregulates midlate and
all the late markers and, at the same time, downregulates the early markers. Although
the treatment with the highest T3 concentration slightly decreased AAT expression, it
dramatically increased THRSP and decreased AFP, while ALB upregulation depended on
the timing of the T3 treatment. CK19 downregulation also relied on the later administration
of the moderate concentration of T3. Thus, we chose to use 1000 nM T3 from day 9 to day
13 and 10 nM T3 from day 13 onwards. We observed the hepatic mature and immature
gene expression pattern change until day 17 (Figure S3). We found no significant decrease
of AFP by day 17 (Figure S3A). ALB gene expression has increased from day 9 to day 17
without the T3 treatment, however, no significant difference was found in ALB expression
dynamics between T3-treated and nontreated cells (Figure S3B). No difference was found
between T3-treated and nontreated cells in CK19 and THRSP expression (Figures S3C
and S3E). CYP3A4 expression increased after day 13 in both treated and nontreated cells
(Figure S3D). We suggest that a 17-day differentiation procedure is not enough for the cells
to acquire maturity status, and thus subsequently implemented the 22-day differentiation
protocol (Figure S1A).

Distinctive hepatocyte morphology is characterized by polarization, polygonal cell
shape, and round nucleus [10]. Each cell should be connected with the adjacent cell through
tight junction. By day 22 T3-treated and nontreated cells increased in size and developed
more flat cell areas. Many polygonal cells contained vesicular structures (Figure S1B, day 22).

2.3.2. Gene Expression Profiles of GM23720B-Derived Cells

The maturity of iPSC-derived HLCs is generally assessed via the analysis of the
downregulation of immature markers and the upregulation of mature liver markers.
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ALB mRNA expression significantly increased by day 22 compared to day 10 indepen-
dently of T3 administration (Figure 3A) indicating the absence of T3-mediated regulation
of ALB expression. AFP encodes transporter protein AFP. It is known to be expressed by
hepatic progenitors, such as oval cells, and fetal hepatocytes. Its expression is inhibited
after birth [12], giving away its functions to ALB. An earlier study showed that T3 induced
rat liver oval cell differentiation into hepatocytes by inducing the expression of HNF4A
and reducing the expression of AFP [29]. In our study, AFP gene expression level gradually
increased after day 10. First, on day 14, we observed a downregulation of AFP in cells
treated with the T3 hormone. By day 22, AFP was also downregulated by T3, though the
difference was not statistically significant (Figure 3B). These results indicate that the T3
hormone downregulated AFP during hepatic progenitor differentiation into hepatocytes.
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had bright staining signals for HNF4A, F-actin, CK18, CK19, AFP, and ALB (Figure 4). It 

Figure 3. The mRNA expression patterns of the mature hepatic (ALB, AAT, total HNF4A, liver HNF4A, and THRSP), fetal
hepatic (AFP and DIO3) specific markers during hepatic differentiation of GM23720B cells. Relative gene expression was
measured by qPCR and normalized with the RPLP0 housekeeping gene. Fold inductions were calculated with the reference
to the stem cell samples (SC). n = 3 biological repeats. Error bars are SD. One-way ANOVA followed by Sidak’s multiple
comparisons test was used to compare between any pairs. Statistical significance * adjusted p < 0.05, ** adjusted p < 0.01,
*** adjusted p < 0.001, and **** adjusted p < 0.0001 in comparison with SC are shown above bars. Statistically significant
differences * adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001, and **** adjusted p < 0.0001 between days of the
differentiation or between the T3-containing (+T3) or no T3 are shown above lines.
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At the DE stage, we observed the dramatic upregulation of DIO3 with the subsequent
decrease in upcoming timepoints. After day 10, the expression of DIO3 decreased in both
treated and nontreated cells, and at day 22, there was no difference between the conditions
indicating no influence of the T3 hormone on DIO3 expression (Figure 3C).

An increase in AAT expression in nontreated cells was detected already at day 14
compared to day 10, while in the T3-treated cells, it increased only by day 22. However,
there was no difference in AAT expression by the end of the differentiation between the
treated and nontreated cells (Figure 3D).

We did not observe any significant change in the total HNF4A expression level during
the differentiation (Figure 3E). We assessed the HNF4A liver isoform mRNA and found
its upregulation in all the conditions after the DE stage of the differentiation. It sharply
increased at day 10 with a decrease at day 14 in all the conditions. Furthermore, we did not
observe any change or difference in its expression by T3 treatment (Figure 3F).

TH responsive THRSP (or SPOT14) was significantly upregulated at day 14 in both
conditions and day 22 in T3-treated cells. In contrast, nontreated cells did not show
an increased level of THRSP (Figure 3G). An expected increase in the mature marker
THRSP expression by T3 treatment indicates the sensitivity of the cells to the TH and an
enhancement of the lipid metabolism function of HLCs [40].

2.3.3. Protein Expression in GM23720B-Derived Cells

The protein expression pattern of the GM23720B-derived hepatic cells was studied
using two methods: immunohistochemical staining with further visualization using confo-
cal microscopy and Western blotting. Staining of GM23720B-derived hepatic progenitors
did not show the difference between T3-treated and nontreated cells, both of which had
bright staining signals for HNF4A, F-actin, CK18, CK19, AFP, and ALB (Figure 4). It is
worth noting that F-actin staining showed polarized polygonal cell morphology after T3
treatment.

Staining of GM23720B-derived fetal hepatocytes showed that T3 treatment did not
affect the expression of HNF4A, CK18, CK19, and CYP3A4 protein expression. T3-treated
cells exhibited a polarized polygonal morphology, as seen by F-actin staining and seemed
to have weaker CK19, AFP, and ALB signals than the nontreated cells (Figure 5). However,
treatment with T3 hormone dramatically increased the positive NTCP (a sodium/bile acid
cotransporter encoded by solute carrier family 10 member 1) signal (Figure 5).

Western blotting analysis demonstrated that without the T3 treatment, AFP protein
expression rose on day 14 and further increased by day 22 (Figure 6A). Cells treated with T3
possessed significantly lower level of AFP on day 22 than nontreated cells (Figure 6A). ALB
levels in both treated and nontreated cells increased from day 14 to day 22. On day 22 there
was no difference in ALB intensity between T3-treated and nontreated cells (Figure 6B).
The relative intensity of HNF4A (all isoforms) rose at day 10 and then decreased by day 14
in the case of nontreated cells. T3-treated cells decreased the HNF4A intensity from day 14
to day 22 (Figure 6C). CK19 was upregulated at day 10 and then decreased by day 22 in
nontreated cells. T3 treatment did not change CK19 protein expression (Figure 6D).

The postnatal repression of fetal-specific liver genes is one of the key mechanisms
for liver maturation [41]. A recent study dedicated to the enhancement of hiPSC-derived
HLCs maturity and functionality showed the improvement of metabolic functions, but the
expression of AFP increased at the stage of hepatic progenitors and remained high until the
end of the differentiation [42]. Previously, T3 was found to decrease AFP production and
increase ALB production in mouse fetal liver cells [43]. In our protocol, the fold induction
of ALB expression in hiPSC-derived HLCs was higher than in a previously published
study using growth factor cocktail for the hepatic differentiation of hPSC [44]. Although,
in our study, T3 did not significantly decrease the mRNA expression of AFP by the end
of the differentiation, the treatment with T3 resulted in a decrease of AFP protein level
in HLCs. We speculate that it might be affected by the increase of post-transcriptional
AFP repression indirectly caused by T3 action. However, the suppressive effect of T3 on
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AFP expression is visible at the stage of fetal hepatocytes when cells were subjected to
a higher concentration of T3. The hepatocyte-specific NTCP is an essential membrane
transporter for bile acids [45]. In the current study, the upregulation of NTCP may indicate
the promotion of hepatic maturation by T3. The induction of NTCP is highly important
for the liver cell model for drug research due to its role in various liver diseases [45] and
hepatitis B and D viruses entry [46]. However, T3 did not regulate the major serum protein
ALB.
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Figure 4. Expression of HNF4A, F-actin, CK18, CK19, AFP, and ALB proteins in GM23720B-derived
cells at day 13 (hepatic progenitor stage) of the differentiation with or without T3 hormone in
differentiation medium. Nuclei of cells were stained with DAPI (blue). Proteins of interest were
stained either with Alexa Fluor 488 (HNF4A, CK18, and AFP), shown in green, or with Alexa Fluor
594 (F-actin, CK19, and ALB), shown in red. Scale bars = 100 µm.
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Figure 5. Expression of HNF4A, F-actin, CYP3A4, CK18, CK19, NTCP, AFP, and ALB proteins in GM23720B-derived cells at
day 17 (fetal hepatocyte stage) of the differentiation with or without T3 hormone in differentiation medium. Nuclei of cells
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AFP), shown in green, or with Alexa Fluor 594 (F-actin, CK19, NTCP, and ALB), shown in red. Scale bars = 100 µm.
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p < 0.01, *** adjusted p < 0.001, and **** adjusted p < 0.0001 in comparison with SC are shown above bars. (E) Representative
membrane picture of three independent experiments.

3. Materials and Methods
3.1. Cell Line

We purchased hiPSC line GM23720B from Coriell Institute (USA). Cell culture was
performed on Matrigel matrix (BD Biosciences) with daily mTeSR™1 (STEMCELL™ Tech-
nologies) medium change. Subculture was done every three–four days using Versene
solution 1:5000 (Invitrogen, 15040033) for cell detachment.

3.2. Hepatic Differentiation

Stem cells were differentiated to DE in RPMI-1640 medium (Gibco, 31870–025, Carls-
bad, CA) supplemented with 1 × GlutaMAX™ (Gibco, 35050–038), 100 ng/mL activin A
(AA) (PeproTech, 120-14E), and 1 × B-27 (Gibco, 17504–044) as described previously [19].
At day 5 or 6 DE cells were detached using enzyme-free cell dissociation buffer (Gibco,
13151-014) for 15 min at 37 ◦C and transferred on the laminin-521 (LN521, Biolamina)
coating by following a previously published protocol [5]. LN521 dilution was prepared in
1 × DPBS with Ca+ and Mg+ (final concentration is 10 µg/mL) and incubated in culturing
wells either overnight at +4 ◦C (slow coating) or for two hours at +37 ◦C (fast coating). DE
cells were detached with the enzyme-free Cell Dissociation Buffer (Gibco, 13151-014) for
15 min at +37 ◦C. Then they were seeded on LN521 at the density 7.47 × 104 cells/cm2

and cultured in Hepatocyte Culture Medium (HCM™ SingleQuots™ Kit; Lonza CC-4182,
without rhEGF and gentamicin-amphotericin-1000) supplemented with 5 ng/mL fibroblast
growth factor 4 (FGF4, PeproTech, 100-31), 10 ng/mL bone morphogenetic protein 2 (BMP2,
Pepro-Tech, 120-02), and 10 ng/mL BMP4 (PeproTech, 120-05) for four days with daily
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medium change to obtain hepatic progenitors. Then hepatic progenitors were cultured in
HCM supplemented with 10 ng/mL hepatocyte growth factor (HGF, PeproTech, 100-39),
10 ng/mL Oncostatin M (OSM, PeproTech, 300-10T), and 0.1 mM Dexamethasone (DEX,
Sigma-Aldrich, D4902) for four days to get immature hepatocytes. Culture medium was re-
newed every second day. These cells were cultured in HCM supplemented with 10 ng/mL
OSM, 25 ng/mL bone morphogenetic protein 7 (BMP7, PeproTech, 120-03), 0.1 mM DEX,
and 10 µM DAPT (Tocris, 2634) in DMSO for four days. Culture medium was changed
every second day. Finally, the cells were cultured in HCM medium supplemented with
25 ng/mL BMP7, 0.1 mM DEX, and 10 µM DAPT in DMSO for five days. We changed the
culture medium every second day. To find the optimal T3 hormone concentration for the
improvement of hepatic maturation, we first tested four concentrations of triiodothyronine
(T3; Sigma, T6397-100MG) hormone in HBSS buffer (Gibco, 14025-050) (1 nM, 10 nM,
100 nM and 1000 nM) and three administration timing intervals (from day 9 to day 22, from
day 13 to day 22, and from day 17 to day 22). After qPCR assessment of hepatic markers,
we chose to use 1000 nM T3 from hepatic progenitor stage for four days followed by 10 nM
T3 for the rest of differentiation period (Figure S1A). During T3 treatment, 1000 nM or
10 nM T3 in HBSS was added into cell culture wells daily.

3.3. RNA Isolation and cDNA Conversion

We isolated RNA from cells at five timepoints of the differentiation: stem cells (day
0), DE stage (day 6), hepatoblasts stage (day 10), fetal hepatocytes (day 14), and adult
hepatocyte-like cell stage (day 22). Cells were lysed using TRI-reagent (Zymo-research,
R2050-1-50). Thereafter, RNA was isolated using a Direct-zol RNA MicroPrep kit (Zymo-
research, R2060) accordingly to the manufacturer’s instruction. Human fetal liver (HFH)
mRNA was purchased from BioChain (lot numbers are HFH1: A601605, HFH2: A601607,
and HFH3: B210099) and primary human hepatocyte (PHH) mRNA samples were isolated
from PHHs (BD Gentest™, PHH1: #454503, lot 95; PHH2: #454503, lot 99; PHH3: #454426,
lot 453251202). RNA concentration was measured with NanoDrop™ One (Thermo Scien-
tific). The cDNA conversion was made with a High-Capacity cDNA reverse transcription
kit (Applied Biosystems, 4368814).

3.4. Quantitative PCR (qPCR)

A StepOnePlus Real-Time PCR System (Applied Biosystems) machine was used for
performing qPCR reactions of the cDNA samples using either a PowerUp SYBR Green
Master Mix (Applied Biosystems, A25741) or TaqMan Gene Expression Master Mix (Ap-
plied Biosystems, 4369016). After qPCR using PowerUp SYBR Green Master Mix the target
specificity was assessed by melting curves. For the relative gene expression calculation, a
housekeeping gene ribosomal protein, large, P0 (RPLP0) was used. All the used primers
and TaqMan® Gene Expression Assay mixes are listed in Tables S1 and S2, respectively. All
primers were designed by Primer Express v2.0 software (Applied Biosystems) [5], and they
were synthesized by Oligomer Oy (Helsinki, Finland) or Metabion (Planegg, Germany).
The relative quantification of each target gene in comparison with the housekeeping gene
was made by a standard curve method based on a published mathematical model [47]. The
standard curve method calculates the actual amplification efficiency, which is then taken
into the calculation of relative gene expression. The mean expression values in undifferen-
tiated stem cells (Day 0) were set as one and used as a reference for the calculation of the
relative gene expressions in followed timepoints.

3.5. Protein Isolation

Protein samples were collected from cells at five time points: stem cells (day 0), DE
stage (day 6), hepatoblast stage (day 10), fetal hepatocyte stage (day 14), and adult HLC
stage (day 22). Cells were lysed using a 1x protease inhibitor cocktail (Sigma Aldrich,
P8340) in Pierce RIPA buffer (Thermo Scientific, 89901) for 10 min on ice. Thereafter,
samples were centrifuged at 14000 g for 15 min at +4 ◦C to pellet the cell debris. The
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supernatant was collected and frozen. Protein concentration was calculated based on
absorbance measurement using a Pierce BCA Protein Assay Kit (Thermo Scientific, 23227)
according to the instruction. The absorbance was detected on a Varioscan LUX device with
Scanit 6.0 program.

3.6. Western Blot Analysis

Protein samples were diluted in 4 × Laemmli buffer (Bio-rad, 1610747) with 10%
β-mercaptoethanol. Protein samples (5 µg) and PageRuler Plus Prestained Protein Ladder
(Thermo Fisher Scientific, 26619, 5 µL) were loaded into the Mini-PROTEAN TGX Stain-free
precast gel 4–20% (Bio-rad, 4568096) and run at voltage 125 V for approximately 90 min in
a Mini-PROTEAN device. Thereafter, the gel was electroblotted to a 0.2 µm nitrocellulose
membrane using a Trans-Blot Turbo Mini Nitrocellulose Transfer Pack (Bio-rad, 1704158) on
a Trans-Blot Turbo Blotting System using a built-in program. Blocking was accomplished
in a 5% milk solution. The membranes were incubated with the primary antibody dilution
in 1% milk overnight at +4 ◦C and, thereafter, with the secondary antibody dilution in 1%
milk for 1 h at +25 ◦C. After each antibody incubation stage, membranes were washed with
TBS-T three times for 15 min. The antibodies used in Western blotting in the current study
are listed in Table S3. A Clarity Western ECL Substrate kit (Bio-Rad, 1705061) was used for
visualization of the secondary antibody signals. Images were taken on a ChemiDoc MP
imager (Bio-Rad). Relative quantities of proteins were calculated using Image Lab 6.0.1
(Bio-Rad).

3.7. Immunofluorescent Staining

For the immunostaining, cells were cultured and differentiated either in 8-well Lab-
Tek® Chamber Slide™ systems (Nunc, 177445, Roskilde, Denmark) or in black 96-well
µ-plates (ibid, 89626, Planegg/Martinsried, Germany). The cells were fixed at the stage
of undifferentiated SCs (day 0), DE (day 5), hepatic progenitor stage (day 13), and fetal
hepatocyte stage (day 17). Fixation with 4% paraformaldehyde for 10 min was followed
by permeabilization either with 0.1% Triton X-100 or with 0.5% Saponin for 10 min. The
blocking step was made by 10% normal goat or donkey serum (Millipore, Burlington, MA)
for 1 h. Primary antibody staining was conducted for 24 h at +4 ◦C, and negative controls
included staining with non-immunized normal rabbit IgG (Peprotech 500-P00), goat IgG
(Santa Cruz Biotechnology, sc-2018), and mouse IgG (Peprotech 500-M00). Thereafter, cells
were stained with the secondary antibodies conjugated with Alexa Fluor 594 or Alexa
Fluor 488 (Invitrogen, 1:400) for 1 h at room temperature. Cell nuclei were stained with
DAPI (Sigma-Aldrich, D8417, 12.5 µg/mL in MilliQ water) for 2 min. Cells in chamber
slides were mounted with a Vectashield mounting medium (Vector, H-1500). Samples
in 96-well µ-plates were filled up with 1xDPBS. The protein expression was visualized
using a confocal microscope Leica TCS SP5II HCS A with aHCX PL APO 20×/0.7 objective.
DAPI was excited with UV (diode 405 nm/50 mW), Alexa Fluor 488 with an Argon 488 nm
laser, and Alexa Fluor 594 with a DPSS (561 nm/20 mW) laser. Primary and secondary
antibodies are listed in Table S4.

3.8. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 8 software. Statistical
significance was determined by one-way analysis of variance (ANOVA) followed by
Sidak’s multiple comparisons test. Differences of adjusted p < 0.05 (*), adjusted p < 0.01 (**),
adjusted p < 0.001 (***), and adjusted p < 0.0001 (****) were considered significant.

4. Conclusions

Taken together, T3 at the chosen concentrations selectively influenced the expression
of fetal marker AFP and maturation markers THRSP and NTCP during the differentiation
of hiPSCs into HLCs in vitro. To make a thorough examination of the T3 action during
hepatic differentiation and maturation of hiPSCs, more liver markers and functions need
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to be measured, such as drug metabolizing enzymes, glycogen production, and albumin
secretion. Based on the current results, we cannot make a concrete conclusion that the
treatment of T3 can improve hepatic maturation. The physiological changes during the
perinatal period involve not only the surge of THs, but also changes in other hormones and
growth factors. The use of T3 during in vitro hPSC differentiation may not be sufficient to
generate mature hepatocytes. Complete hepatic maturation requires a cocktail of optimal
hormones and growth factors. In addition, the T3 effect on the expression of genes and
proteins need to be further studied. The use of TR antagonists and gene knockout cells can
elucidate the role of TRs and downstream molecules. Our recent study offers a method to
efficiently generate knockout hPSC lines by CRISPR/Cas 9 genome editing technology [48].
Previously, liver gene regulation by TH has been studied in human fatty liver [49] and
rodents [50,51]. To the best of our knowledge, this is the first study addressing T3 influence
on hepatic differentiation of hiPSCs in vitro.

Supplementary Materials: The followings are available online at https://www.mdpi.com/article/
10.3390/ph14060544/s1, Figure S1. Hepatic differentiation of the hiPSC line GM23720B. A: Scheme of
the optimized differentiation protocol. Beginning from day 10 cells were differentiated either without
T3 hormone (a) or with T3 hormone (b) in the medium. B: The morphological changes of GM23720B
and their derivatives during hepatic differentiation. Pictures were taken at five timepoints (day 0, day
6, day 10, day 14, and day 22). Scale bars = 100 µm. Figure S2. The preliminary assessment of the T3
action at different concentrations and at different timepoints. The mRNA expression patterns of the
mature hepatic (ALB, THRSP, and AAT), fetal hepatic (AFP), and hepatic progenitor (CK19) specific
markers during hepatic differentiation of GM23720B cells. Relative gene expression was measured
by qPCR and normalized with the RPLP0 housekeeping gene. Fold inductions were calculated with
the reference to the undifferentiated stem cell samples (Day 0). N = 1 biological repeat. HFH: human
fetal hepatocyte; PHH: primary human hepatocyte. Figure S3. The comparison of two time intervals
(from day 9 to day 13 and from day 13 to day 17) of the T3 administration. The T3 action was assessed
by the mRNA expression patterns of the mature hepatic (ALB, CYP3A4, and THRSP), fetal hepatic
(AFP), and hepatic progenitor (CK19) specific markers during 17 days of the hepatic differentiation of
GM23720B cells. Relative gene expression was measured by qPCR and normalized with the RPLP0
housekeeping gene. Fold inductions were calculated with the reference to the undifferentiated stem
cell samples (Day 0). N = 3 biological repeats. Error bars are SD. One-way ANOVA followed by
Sidak’s multiple comparisons test was used to compare between any pairs. Statistical significance
* adjusted P < 0.05 and **** adjusted P < 0.0001 in comparison with Day 0 are shown above bars.
Statistically significant differences * adjusted P < 0.05 and **** adjusted P < 0.0001 between days of
the differentiation are shown above lines.
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