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Choroidal neovascularization (CNV) is a type of eye disease that can cause vision loss. In recent years, many studies have
attempted to investigate the major pathological processes and molecular pathogenic mechanisms of CNV. Because many
diseases are related to genes, the genes associated with CNV need to be identified. In this study, we proposed a network-based
approach for identifying novel CNV-associated genes. To execute such method, we first employed a protein-protein interaction
network reported in STRING. Then, we applied a network diffusion algorithm, Laplacian heat diffusion, on this network by
selecting validated CNV-related genes as the seed nodes. As a result, some novel genes that had unknown but strong
relationships with validated genes were identified. Furthermore, we used a screening procedure to extract the most essential
genes. Eleven latent CNV-related genes were finally obtained. Extensive analyses were performed to confirm that these genes
are novel CNV-related genes.

1. Introduction

Choroidal neovascularization (CNV) is a typical pathogenic
process that refers to the abnormal creation of blood vessels
specifically in the choroid layer of the eye. As a severe patho-
genesis of one subtype of age-related macular degeneration
(AMD), CNV can be clinically concomitant with various
ocular symptoms such as extreme myopia and malignant
myopic degeneration. According to the recent epidemiologi-
cal statistics provided by Lancet, more than 6 million people
around the world suffered from AMD in 2015 [1]. Based
on another independent survey, the prevalence of CNV-
associated AMD was found to be 1.2% of all adults aged
43–86 years [2], indicating that CNV may be one of the
major causes of vision loss.

As mentioned above, CNV is a major threat to visual
health, especially in elderly people around the world. There-
fore, for centuries, scientists have attempted to determine
the major pathological processes and molecular pathogenic
mechanisms of CNV [3, 4]. However, the detailed and
comprehensive mechanisms of CNV have not been fully
elucidated. According to existing literatures, the major
pathogenic mechanisms of CNV can be attributed to the
imbalance of antiangiogenic factors and angiogenic factors
[5, 6]. The imbalance of these factors in the choroid may
promote vasculogenesis and angiogenesis pathologically
related to CNV [6]. In terms of regulators, PEDF (pigment
epithelium-derived factor) [6] and VEGF (vascular endothe-
lial growth factor), which are antiangiogenic and typical
angiogenic factors, respectively) [5] have both been confirmed
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to contribute to the initiation and progression of CNV.
However, the factors or initiators that drive the abnormal
biological functions of PEDF and VEGF have not been
confirmed. Hypoxia [7], high glucose [8], protein kinase C
activation [9], advanced glycation end products [10], reac-
tive oxygen species [11], activated oncogenes [12], and
abnormal cytokine production [13] may all contribute to
the pathogenesis and clinical symptoms of CNV.

Although the pathogenesis of the diseases we have dis-
cussed is complicated, we can still simply cluster all the
potential pathogenic factors into two groups: genetic factors
and environmental factors [3, 4]. In this study, we computa-
tionally investigated the genetic pathogenesis of CNV.
According to recent publications, various genetic factors
have been confirmed to contribute to CNV. Abnormal
angiogenesis and antiangiogenesis are two major pathogenic
processes in such disease [5, 6]. Recent publications revealed
that various genes related to angiogenesis and antiangiogen-
esis may directly participate in the pathogenesis of CNV.
VEGF [14] and FGF2 [15] are two typical genes associated
with angiogenesis. In 2009, these genes have been confirmed
to be related to CNV and regulate its rate of progression
[16]. Besides these genes, another functional gene called
CFI, which is related to extreme myopia, has also been
reported to contribute to CNV pathogenesis [17, 18], reveal-
ing the complicated genetic basis of CNV. Other functional
genes associated with cell proliferation, such as RELA [19],
NFKB1 [20, 21], and RELB [19], have all been reported to
promote abnormal angiogenesis during the initiation and
progression of CNV.

For decades, scientists have attempted to reveal the
comprehensive genetic background of CNV. However, iden-
tifying and validating CNV-associated genes one by one is
quite expensive and time consuming. In recent years, with
the development of high-throughput sequencing, bioinfor-
matics algorithms have provided us a novel and more
effective approach for identifying CNV-associated genes. In
2016, a systematic prediction [22] based on all the identified
CNV-related genes, protein–protein interaction (PPI) net-
work, and shortest path algorithm identified various genes
associated with CNV, including ANK1, ITGA4, and CD44.
Most of these genes have already been identified to contrib-
ute to abnormal angiogenesis or antiangiogenesis in the
choroid [22], validating the efficacy and accuracy of compu-
tational prediction on disease-associated genes. Therefore, in
this study, we introduced a novel computational method
called Laplacian heat diffusion (LHD) [23] to further explore
the pathogenic factors of CNV. This study not only identi-
fied potential CNV-associated genes but also revealed the
detailed pathogenesis of CNV.

2. Materials and Methods

2.1. CNV-Associated Genes. Genes associated with AMD
were first obtained from a previous study [24]. In detail,
we downloaded the “Additional file 3” in such study, which
contained these genes. Then, according to “Additional file
5”, genes in CNV up or CNV down modules were picked
up, accessing 37 CNV-associated genes (Table S1). These

genes were further converted to Ensembl gene IDs to be
consistent with the protein IDs in the PPI network from
the STRING database [25]. These genes comprised a seed
gene set S.

2.2. PPIs. In general, proteins interact with each other to reg-
ulate biological process; thus, they share similar biological
functions. Based on this assumption, many studies have
been devoted to infer protein functions. Therefore, potential
CNV-associated genes can be identified from the known
CNV-associated genes and their interaction network.

We downloaded 4,274,001 human protein-protein inter-
actions (PPIs) for 19,247 proteins from STRING (https://
www.string-db.org/, version 10) [26]. These interactions
were derived from genomic context predictions, high-
throughput lab experiments, (conserved) coexpression,
automated text mining, and previous knowledge in data-
bases. Thus, PPIs reported in STRING can widely measure
the associations of proteins compared with those in some
other databases [27, 28], in which PPIs were only deter-
mined by solid experiments. For each PPI, both proteins
are represented by Ensembl IDs, and a score ranging from
150 to 999 is assigned. A high score indicates that the corre-
sponding interaction is supported by high-quality evidence.
The interaction score between two proteins (P1 and P2)
was denoted as IðP1, P2Þ. Using the abovementioned data,
we can construct a PPI network consisting of 19,247 nodes
and 4,274,001 edges, which connects two nodes with interac-
tion score as the weight if and only if two proteins interact.
The PPI network is denoted as G. Such PPI network has
been widely used in many researches [29–37].

2.3. Laplacian Heat Diffusion. Nowadays, network methods
are more and more popular to deal with different biological
and medical problems [30, 32, 36, 38–41]. This study also
adopted a powerful network method, LHD algorithm. As a
type of network diffusion method, heat diffusion follows
some rules to transmit heat on the seed nodes to surround-
ing nodes in the network. The heat on a node indicates its
connections to seed nodes. In this study, the LHD algorithm
[23] was applied to search for novel CNV-related genes,
which was a heat diffusion process on a Laplacian matrix
constructed from protein-protein network.

Given a PPI network G, we can first construct its adja-
cent matrix A based on the edge weights. Then, we normal-
ize it column wisely as follows:

A′ i, j½ � = A i, j½ �
∑n

k=1A k, j½ � , ð1Þ

where i is the column index of 19,247 nodes in G and j is the
index of CNV-related genes. Each column in A′ was a
19,247-dimensional vector. Each element was the heat of a
node in the network G. Initially, the component in A′ corre-
sponding to 37 CNV-related genes was configured to be
1/37; other components were set to 0. Then, the values of
each vector were updated as follows:

Ht i½ � =H0 i½ � exp −λitð Þ, ð2Þ
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where Ht is the heat distribution at time t and λi is the ith
eigenvalue of matrix A′. We updated the vectors until the
heat distribution vectors at two consecutive time points
change as small as a defined threshold. After the diffusion
process, each node was assigned a heat value. A larger heat
value indicates that the node is more important. Thus, we
selected nodes with heat values greater than the defined cut-
off and mapped those nodes back to the corresponding
genes.

In this study, we used the LHD algorithm (https://CRAN
.R-project.org/package=diffusr) to perform the analysis with
default parameters on the PPI network G.

2.4. Postprocessing of CNV-Related Candidate Genes.
According to the LHD-based method, we can obtain a large
number of candidate CNV-related genes. However, some of
them are essential genes, while others are nonessential genes.
A three-stage method was applied to select the essential
genes by integrating other biological information: (1) Z-
score based on permutation test to exclude false positives,
(2) maximum interaction score (MIS) based on PPI infor-
mation to exclude genes with few connections to the
validated CNV-related genes, and (3) maximum function
score (MFS) based on biological function annotation infor-
mation to filter functional genes.

2.4.1. Z-Score. To evaluate the significance of the produced
heat values, we randomly sampled 1000 gene sets and calcu-
lated the mean and standard deviation of these heat values.
Then, we calculated the Z-score for all CNV-related candi-
date genes. In detail, 1000 gene sets with a size of 37 were
randomly generated. For each gene set, we performed the
LHD algorithm on the PPI network G by using it as the seed
set. Then, each gene g was assigned a heat value. The above
process was run for the produced 1000 gene sets. Each g
received 1000 heat values and a real heat value based on 37
validated CNV-related genes. We calculated the measure-
ment Z-score as follows:

Z‐score gð Þ = h − �h
sd , ð3Þ

where h is the real heat value of gene g and �h and sd are the
mean and standard deviation of 1000 heat values of the 1000
randomly produced gene sets, respectively. The higher the
Z-score of one gene is, the more likely it is a real CNV-
related gene. In this study, we selected genes with Z-score
greater than 1.96.

2.4.2. MIS. After the permutation test, some CNV-related
candidate genes were further verified to have strong associa-
tions with the validated CNV-related genes. In general,
interacting proteins always exhibit similar functions. Based
on this observation, we calculated MIS as follows:

MIS gð Þ =max I g, g′
� �

∣ g′ is a validated CNV‐related gene
n o

,

ð4Þ

where Iðg, g′Þ is the interaction score between two genes
from the STRING database. A high MIS value indicates that
this gene is strongly connected to the validated CNV-related
genes; thus, it is more likely to be true CNV-associated gene.
Here, we set a threshold of 900 (the highest confidence
score in the STRING database) to filter out genes with
low MIS values.

2.4.3. MFS. To be CNV-related genes, they must highly
contribute to certain biological processes involved in CNV.
To further select more reliable CNV-related candidate genes,
Gene Ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) [42] pathways were used.
We extracted important candidate CNV-related genes with
similar GO terms and KEGG pathways to validate CNV-
related genes. The enrichment theory [43, 44] was applied
to estimate the relationships between genes and GO/KEGG
pathways. It encodes a gene as a vector. The relationship
between two genes can be calculated as follows:

Q g, g′
� �

=
E gð Þ ⋅ E g′

� �

E gð Þk k ⋅ E g′
� ����

���
, ð5Þ

where EðgÞ is the column vector obtained according to
enrichment theory.

Similarly, for each gene, MFSðgÞ was calculated as
follows:

MFS gð Þ =max Q g, g′
� �

∣ g′ is a validated CNV‐related gene
n o

:

ð6Þ

The higher the MFS of one gene is, the more GO/KEGG
pathways it shares with the validated CNV-related genes.
The final candidate CNV-related genes were extracted with
an MFS value greater than a defined cutoff of 0.9.

3. Results

In this study, we presented a computational approach to
infer novel CNV-associated genes using the LHD-based
method. The entire procedures are illustrated in Figure 1.
This approach collected verified CNV-related genes, which
were extrapolated to identify novel candidate genes on the
PPI network using Laplacian heat diffusion. Next, these
identified candidate genes were further screened to filter
out false positive genes that are not associated with any
CNV-related biological process.

We first selected genes with a heat value > e − 10, and a
total of 19,218 genes were obtained. Then, these genes were
evaluated using the permutation test with 1000 randomly
generated sets. We selected genes with a Z-score greater than
1.96 and obtained a list of 153 genes. We further filtered out
genes with fewer connections to the validated CNV-related
genes by MIS score. We kept genes with MIS value greater
than 900 and obtained 27 genes. Finally, for each of the 27
genes, we calculated the MFS and selected genes with an
MFS value greater than 0.9, resulting in a final list of 11
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CNV-related genes, which is totally different from previous
discoveries [22]. The selected numbers of putative genes in
different steps of LHD are shown in Table 1, and the detailed
information of the 11 final candidate CNV-associated genes
is listed in Table 2. The interaction network between the 11
candidate genes and 37 verified CNV-related genes is shown
in Figure 2. All measurements mentioned above are listed in
sheets 1–4 of Table S2.

4. Discussion

As we have analyzed above, we applied a novel computa-
tional method named Laplacian heat diffusion [45] to iden-
tify potential CNV-related genes based on the existing PPI
network provided in STRING [25]. According to such algo-
rithm and the database, we screened out eleven functional
genes that may directly or indirectly participate in the path-
ogenesis of CNV. To validate the efficacy and accuracy of
our newly applied computational method, we performed a
systematic datamining on the biological functions and
CNV relevance of all predicted genes. The predicted genes
have been validated by recent publications. The detailed
analysis on each gene can be seen below. For a clear descrip-
tion, we classified these genes into some classes, which is
illustrated in Figure 3.

4.1. Matrix Metalloproteinases (MMPs). MMP3 (ENSP0000
0299855), which ranks the highest in the prediction list,
has been predicted to be related to the pathogenesis of

CNV. Generally, it has been widely reported to contribute
to the activation of procollagenase [46] and matrix remodel-
ing [47]. In terms of its potential pathogenic functions in
CNV, this gene has been confirmed to act abnormally in
the choroidal neovascular membranes, implying its patho-
genic potential [48]. Further studies on the contribution of
hypoxia to CNV confirmed that our predicted gene MMP3
may contribute to hypoxia-induced apoptosis and secretion
of proangiogenic factors in the choroid under hypoxia
microenvironment, which further initiates CNV [49]. There-
fore, our predicted gene MMP3 may functionally be a
potential driving factor for CNV, demonstrating the
accuracy of our prediction result. Apart from MMP3, three
other components of the MMP family, namely, MMP13
(ENSP00000260302), MMP7 (ENSP00000260227), and
MMP10 (ENSP00000279441), have also been predicted to
contribute to the pathogenesis of CNV in our prediction list
with a high rank. With similar biological functions as
MMP3, all of such three genes (MMP13, MMP7, and
MMP10) have been reported to participate in the abnormal

String

Candidate
genes

Eleven
candidate genes Analysis

Protein-protein
interaction

network

Laplacian heat diffusion

CNV-associated
genes

Post-processing method
Z-score > 1.96

Maximum interaction score ≥ 900
Maximum function score > 0.9

Figure 1: Entire procedures to identify novel choroidal neovascularization- (CNV-) related genes. A protein-protein interaction network
reported in STRING is employed. Laplacian heat diffusion (LHD) with validated CNV-related genes as seed nodes is applied to such
network for extracting raw candidate genes. They are further filtered by a postprocessing method, resulting in eleven candidate genes.
These genes were extensively analyzed.

Table 1: Number of candidate CNV-related genes in different
stages of LHD-based method.

Method
Network diffusion

algorithm
Z-score MIS MFS

LHD-based method 19,218 153 27 11
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angiogenesis of choroidal tissues, validating their specific
contribution to CNV. In 2011, a study [50] on CNV in a
mouse model confirmed that the deficiency of MMP13 con-
tributed to the impairment of neovascularization formation
in choroid tissues, and such pathogenesis could be restored
by injecting mesenchymal cells secreting MMP13, validating
the specific role of this gene during CNV initiation and
progression. As forMMP7, basal laminar and linear deposits
are typical complications of CNV, contributing to the consti-
tution of the CNV microenvironment [51, 52]. A recent
study [53] on the typical basal laminar and linear deposits
of CNV confirmed that MMP7 together with its homologue
MMP13 may contribute to CNV by regulating the inflam-
matory processes in the microenvironment of choroidal tis-
sues. Furthermore,MMP10 has also been validated by recent
publications. Although no reports connected MMP10 and
CNV directly, the specific contribution of all metalloprotein-
ases including MMP10 on choroidal microenvironment
remodeling and inflammation mediation implies the specific
biological function of MMP10 during the progression of
CNV [54].

4.2. Growth Factors. HBEGF (ENSP00000230990) has also
been predicted to contribute to the progression of CNV.
As a typical growth factor, HBEGF participates in the ERBB2
signaling pathway and interacts with functional genes such
as EGFR and ERBB4 [55, 56]. A recent study confirmed that
HBEGF may affect the production and biological functions
of VEGF in CNV [57]. Therefore, although no direct reports
confirmed the detailed biological function of HBEGF in
CNV, this gene may interact with VEGF and play a crucial
pathogenic role during the progression of CNV. Another
functional growth factor encoding gene HGF (ENSP0000
0222390) has also been predicted to contribute to the path-
ogenesis of CNV. Generally, the binding of HGF to its target
receptor (hepatocyte growth factor) contributes to the regu-
lation of cell growth, cell motility, and morphogenesis in
various cell and tissue subtypes [58, 59]. As for its unique
pathogenic contribution to CNV, a paired experimental
study [60] on CNV confirmed that compared with normal
tissues, the pathogenic tissues of the choroid during CNV

initiation and progression have different expression profiling
of growth factors including VEGF, HGF, and FGF, implying
the potential pathogenic role of HGF in such disease. In
2011, a specific study on the biological and pathogenic
functions of cytokines in CNV confirmed that HGF has a
mitogenic effect on choroidal cells, promoting neovasculari-
zation processes [61]. Therefore, such gene may be a poten-
tial CNV-associated gene. As the next predicted growth
factor in the predicted list of genes, VEGFD (ENSP0000
0297904) has been widely reported to be a member of the
platelet-derived growth factor family. This gene has been
reported to promote angiogenesis [62], lymph angiogenesis
[62], and endothelial cell growth [63]. As the homologue
of the identified key driver gene of CNV (VEGF) generated
by differential alternative splicing, VEGFD directly partici-
pates in the pathogenesis of CNV, regulating the same bio-
logical processes of VEGF [64]. Recent clinical studies [65]
confirmed that VEGFD may also be a candidate marker
for the diagnosis and treatment of CNV, and drugs that
target VEGF to relieve symptoms may also target the
products of VEGFD.

4.3. MMP Inhibitors. TIMP2 (ENSP00000262768) has been
widely reported to act as a natural inhibitor for MMPs
[66]. With a specific expression pattern in vitreous and sub-
retinal fluid, this gene has been found to be expressed in
choroid tissues [67] and directly contribute to the activation
of the hypoxia-induced VEGF signaling pathway and MMP
regulation [68]. Considering the irreplaceable role of VEGF
in CNV, TIMP2 may be a potential CNV-associated gene.

4.4. Collagens. Based on our newly presented computational
methods, we also obtained two collagen coding genes that
may contribute to the pathogenesis of CNV, namely,
COL3A1 (ENSP00000304408) and COL18A1 (ENSP0000
0347665). COL3A1 encodes the pro-alpha1 chain of type
III collagen, a fibrillary collagen. Based on existing litera-
tures, this gene contributes to the regulation of cortical
development together with type I collagen in soft connective
tissues [69, 70]. As for its specific pathogenic contribution to
CNV, a specific study [71] confirmed that COL3A1 may

Table 2: Eleven candidate genes yielded by LHD-based method.

Ensemble ID Gene symbol Description Heat Z-score MIS MES

ENSP00000299855 MMP3 Matrix metallopeptidase 3 8:79E − 05 2.0806 999 0.9761

ENSP00000230990 HBEGF Heparin-binding EGF-like growth factor 9:01E − 05 3.0964 989 0.9608

ENSP00000260302 MMP13 Matrix metallopeptidase 13 1:54E − 04 3.9922 964 0.9600

ENSP00000260227 MMP7 Matrix metallopeptidase 7 1:25E − 04 3.8042 975 0.9580

ENSP00000262768 TIMP2 TIMP metallopeptidase inhibitor 2 1:20E − 04 3.2461 994 0.9569

ENSP00000222390 HGF Hepatocyte growth factor 1:09E − 04 4.0224 922 0.9487

ENSP00000304408 COL3A1 Collagen type III alpha 1 chain 1:40E − 04 2.6753 951 0.9461

ENSP00000279441 MMP10 Matrix metallopeptidase 10 1:31E − 04 3.2940 977 0.9186

ENSP00000347665 COL18A1 Collagen type XVIII alpha 1 chain 1:25E − 04 2.5902 991 0.9183

ENSP00000277480 LCN2 Lipocalin 2 9:96E − 05 2.1251 985 0.9141

ENSP00000297904 VEGFD Vascular endothelial growth factor D 2:13E − 04 6.6122 939 0.9078
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contribute to actin cytoskeleton remodeling and affect the
specific lesion size and fibrosis of CNV. Similarly, the next
predicted gene (COL18A1) has also been reported to partic-
ipate in collagen-associated CNV pathogenesis [72]. Cur-
rently, no direct pathogenic experiment has confirmed that
COL18A1 can induce the progression of CNV indepen-
dently. Other studies on collagen families including collagen
XVIII [48, 73, 74] in CNV and their respective angiogenic
functions have validated the potential pathogenic role of
our predicted collagen encoding genes.

4.5. Lipocalins. Apart from MMPs, collagen, and growth
factor-associated genes, we also obtained a specific lipocalin
encoding gene, namely, LCN2 (ENSP00000277480). Gener-
ally, this gene has been identified in the lung, breast [75],

and eye secretions [76] and contribute to the transport of
hydrophobic ligands [77]. As for its specific contribution to
CNV, this gene may promote angiogenesis and neovascular-
ization under pathogenic conditions [78, 79]. With a high-
expression pattern in choroid tissues [80] and its interaction
with MMPs [81], LCN2 has been confirmed to participate in
the pathogenic activation of the AKT2–NF-κB–lipocalin-2
axis in CNV [82].

Taken together, the predicted functional genes are enriched
in MMP-, growth factor-, collagen-, and lipocalin-related
genes, implying the specific role of such components during
the initiation and progression of CNV. The predicted genes
have all been confirmed by recent publications as we have
described above. Therefore, the computational approach
in this study may be quite effective and accurate for
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Figure 2: Interaction network between the 11 candidate genes and verified 37 CNV-related genes.
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identifying CNV-associated genes. This study not only
identified a group of functional CNV-associated genes and
potential related biological processes but also contributed
to the improvement of current computational prediction
approaches on the genetic background of diseases.

5. Conclusions

This study employed a powerful network diffusion method
to identify possible CNV-related genes in a PPI network.
To obtain reliable genes, a three-stage method followed to
screen out key latent CNV-related genes. The analysis on
final obtained genes indicate that they can be novel CNV-
related genes with high likelihood. It is hopeful that the
new findings reported in this study can provide new insights
for investigating CNV.
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