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Obesity is a major public health concern at the origin of many pathologies, including
cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly
increased, as well as the one of hormone-dependent cancers. The metabolic changes
caused by overweight mainly with the development of adipose tissue (AT), insulin
resistance and chronic inflammation induce hormonal and/or growth factor imbalances,
which impact cell proliferation and differentiation. AT is now considered as the main
internal source of endocrine disrupting chemicals (EDCs) representing a low level systemic
chronic exposure. Some EDCs are non-metabolizable and can accumulate in AT for a
long time. We are chronically exposed to low doses of EDCs able to interfere with the
endocrine metabolism of the body. Importantly, several EDCs have been involved in the
genesis of obesity affecting profoundly the physiology of AT. In parallel, EDCs have been
implicated in the development of cancers, in particular hormone-dependent cancers
(prostate, testis, breast, endometrium, thyroid). While it is now well established that AT
secretes adipocytokines that promote tumor progression, it is less clear whether they can
initiate cancer. Therefore, it is important to better understand the effects of EDCs, and to
investigate the buffering effect of AT in the context of progression but also initiation of
cancer cells using adequate models recommended to uncover and validate these
mechanisms for humans. We will review and argument here the potential role of AT as
a crosstalk between EDCs and hormone-dependent cancer development, and how to
assess it.

Keywords: adipose tissue, endocrine disruptor (EDC), cancer, secretome, model, endocrine disrupting chemicals
INTRODUCTION

Obesity, defined as an abnormal or excessive fat accumulation in the body, is a major public health
concern with more than 650 million obese adults in 2016 (from World Health Organization).
Obesity is at the root of many pathologies, whether functional (orthopedic, esthetic, psychological
complications, benign (diabetes, endometriosis) or malignant (gastro-intestinal tract and hormone-
dependent cancers). Numerous studies demonstrated the relationship between obesity and an
n.org July 2021 | Volume 12 | Article 6916581
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increased risk of cancer (1–4). For example, obesity increases the
risk of breast cancer after menopause by 8% and is responsible
for 34.1% of endometrial cancers. Globally, 15-20% of total
cancer-related mortality in adults aged 30 and over are
attributable to obesity or overweight. Obesity provokes
metabolic changes related to adipose tissue (AT) development
such as insulin resistance and chronic inflammation. These
changes induce hormonal and/or growth factor imbalances,
which impact cell proliferation and differentiation and can also
explain the increased risk of obesity-related cancers.

Climate transition which has begun several years ago is
associated with the use of many pollutants. Some of these
pollutants are chemicals that accumulate during the food chain
in different tissues but mainly in adipose tissue (AT) due to their
lipophilic nature. Some of these persistent organic pollutants
(POPs) have already been regulated and/or withdrawn from the
market due to their carcinogenic properties. They are still found
in many products from the chemical industry, such as pesticides,
some plastics or cleaning products, or even in building materials.
They are usually classified into five categories (5): dioxins,
polychlorinated biphenyls (PCBs), organochlorine pesticides
(OCs), polybrominated flame retardants (PBDE) and
perfluorinated compounds (like PFOS and PFOA) found
especially in non-stick coatings (6, 7).

Because of their long half-life and their ability to store in AT,
populations remain exposed, from fetal life, and therefore at risk
of developing pathologies even when they are exposed to low
doses of these pollutants. It has been shown that some of these
POPs could interfere with hormonal signaling and/or regulation
pathways, thus giving them endocrine disrupting (ED) activity
(5). Early and/or chronic exposure to POPs with ED properties
can modify the incidence of certain diseases, in particular obesity
(8) or hormone-sensitive cancers (thyroid, prostate, testis, breast,
ovary) (9, 10).

Hence, there are credible to convincing evidence for the link
between obesity and cancer in one hand, and on the other hand,
as we will discuss below, between ED chemicals (EDCs) and
obesity or EDCs and cancer. However, the link between EDCs,
obesity and cancer have not been yet demonstrated. This link
could be the adipose secretome perturbed by EDCs, which
modify the balance between proliferation and differentiation
cell processes.
EDCs AND HORMONE SENSITIVE
CANCERS

The development of some cancers is stimulated by hormones,
which naturally circulate in the body and bind to membrane and/
or nuclear receptors of cancer cells favoring their growth and
multiplication. Among these hormone-dependent cancers,
prostate cancer (PCa) and endometrial cancer (ECa) are the
most common cancers of the male and female reproductive
systems, respectively, in addition to breast cancer (BCa) which is
the most common cancer in women worldwide (2). Steroid
hormones (estrogens, androgens) play an important role in the
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etiology, progression and treatment of hormone-dependent
cancers (11–13). It is therefore obvious that exposure to EDCs
can influence the incidence and development of those
cancers (9).

EDCs have been firstly identified as risk factor with the
dramatic story of diethylstilbestrol (DES) (14). This synthetic
diphenol with potent estrogenic properties was widely prescribed
to pregnant women until 1970s to reduce the risk of abortion;
however, several studies have reported an increased risk of rare
cancers in women progenies (14, 15). Importantly, deleterious
effects of prenatal DES exposure have been shown to persist in
second-generation paving the way of the concepts of epigenetic
transgenerational inheritance (16). Since then, several
epidemiological studies supported by in vivo and in vitro
experiments have confirmed this association between EDCs
(notably PCBs, dioxins, DDE and bisphenol A [BPA]) and an
increased risk of hormone-dependent cancers in both sexes (7,
17–19). Regarding testicular cancer, we and others have shown
that BPA was able to stimulate the proliferation of seminoma
cells involving GPR30/GPER pathway (20–22). Concerning PCa,
Prins et al. have shown that exposure to BPA makes prostate
stem cells more sensitive to estrogen in adulthood and therefore
more likely to develop PCa (23, 24). Regarding persistent EDCs,
although discussed, exposure to chlordecone constitutes a
demonstrative example with a significant increase in the risk of
PCa (25) and of recurrence after radical prostatectomy (26).
Observational and experimental studies have suggested a role of
PCB-153, an industrial organochlorine product, in the
development of high-grade PCa (27). However, a previous
study observed an inverse correlation between plasma
concentrations of PCB-153 and PCa (28). Likewise, studies
differ about a positive association (29) or not (30) between
elevated serum levels of PFOA and PCa onset and/or
progression. Thus, despite this extensive work on the role of
certain EDCs in the incidence of hormone-sensitive cancers,
diverse investigations for their action modes, their effects on
tumor growth and on the formation of metastases especially in
human are still poorly understood (7, 31).
EDCs AND ADIPOSE TISSUE

AT is a major player in toxicological responses to exposure to
EDCs, especially to POPs with predominantly halogenated
structure which makes them non-metabolizable and very
lipophilic (32). By storing POPs, AT may appear to have a
protective role, but it is rather considered to be the main internal
source of chronic low-level systemic exposure to EDCs since they
will be released progressively or massively when lipolysis will
occur. Therefore, AT represents a dynamic storage compartment
for EDCs within the body with a continuous flow between
storage and release in post-exposure periods. Various in vitro
and in vivo studies have focused on this dynamic mobilization of
EDCs by AT, for instance a murine cell model mimicking
lipolysis has been developed and tested for PCBs (33). Using a
xenografted fat model, others have shown that TCDD stored in
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AT of xenograft can be released into the recipient mice and
modify gene expression providing a direct evidence of the
potential deleterious effects of TCDD (34). Recently, we have
shown in a large prospective study that massive weight loss
during the first year following bariatric surgery is associated with
a prolonged release of POPs from AT, mainly PCB-153, DDE
and hexachlorobenzene (35). The fat depot specific differences in
EDC bioaccumulation have also been investigating but to date
divergent results were obtained even though there is an
agreement concerning the abundance of certain EDCs and the
correlation with AT macrophage infiltration, adipocyte size or
with metabolic parameters (36, 37).

In addition to its storage role, AT functions as a full-fledged
endocrine organ producing and responding to hormones and
adipokines (38–40). Several EDCs have been described in vitro
and/or in vivo to profoundly affect AT physiology: adipocyte
differentiation, adipocytokine secretion, oxidative stress and
inflammation (8, 41, 42). Numerous publications have
demonstrated a possible role for EDCs in the genesis of
obesity, they have been called obesogen based on the
hypothesis of Blumberg and Grun (8, 38, 41, 43, 44). Indeed,
in case of chronic high caloric intake, AT undergoes into
morphological changes: hyperplasia (increase of adipocytes
number) and hypertrophy (lipid accumulation in the
adipocytes resulting in the increase of adipocyte size) (38, 45).
Hyperplasia takes place in healthy AT expansion. However,
hypertrophy leads to dysfunctional adipocytes development,
secreting adipokines as leptin, adiponectin or resistin for the
main ones in addition to pro-inflammatory adipocytokines such
as MCP-1, TNF-alpha, IL-6, IL-8. Hypertrophy also increase
hypoxia, decreasing vascular supply resulting in adipocyte death
by a rupture of the membrane, leading to a release of cellular
content into the microenvironment. All of this results in the
infi ltration of inflammatory immune cells including
lymphocytes, granulocytes type 1 macrophages leading to a
change in AT microenvironment characterized by a chronic
inflammation, the development of crown-like structures (dead
adipocytes surrounded by macrophages within AT). Those
structures generate reactive oxygen species (ROS) that are
likely to induce DNA damages. This low-grade chronic
inflammation affects local metabolism, but also systemic energy
homeostasis. EDCs can act on hyperplasia and/or hypertrophy of
the AT but also on adipose secretion (32, 46). For example,
because PPAR is a key molecule in the regulation of
adipogenesis, any EDC acting as an agonist on this receptor
will be likely to cause an expansion of adipocytes, and therefore a
modification of the secretome and act as an obesogenic EDC. It is
the case of tributyltin (TBT) (44) and PFOA (29, 47–50). Indeed,
TBT has been shown to promote inflammatory infiltration into
adipocytes but also in reproductive tract in addition to increase
fat mass (51–53). In addition to binding to PPAR, some EDCs
promote adipogenesis by other mechanisms, such as via
estrogen, glucocorticoid receptors or others. It has also been
shown that some EDCs, such as dioxins, were able to induce a
pro-inflammatory action on murine (54) and human (55)
adipocyte cells, as well as TCDD in mouse AT through AhR
Frontiers in Endocrinology | www.frontiersin.org 3
pathway (55). In parallel to in vitro and in vivo studies, several
epidemiological studies support the association of pre/postnatal
exposure to EDCs and increased BMI with the concept of
transgenerational effects on progeny (7, 8, 41, 44). Therefore,
EDCs that disrupt the coordinated regulation of adipocyte
development, metabolism and endocrine function may result
in disturbances in local and systemic energy metabolism and
inflammatory response (56). The impact of EDCs on adipocyte
endocrine function have been investigated but mainly in the
context of obesity and/or cardiometabolic disorders. Further
studies are required to fully examine their role alone or in
cocktail at different doses and exposure notably in the context
of cancer.
CANCER AND ADIPOCYTE SECRETOME

Despite recent advances in understanding the biological basis of
cancer, the mechanisms underlying its metastatic spread are not
clearly established. In this process, the tumor environment plays
an essential role. Indeed, a dialogue between cancer cells, the
immune system and neighboring tissue cells such as AT is
established and modulates the growth and migration of cancer
(57, 58). This tumor microenvironment can also transform some
adipocytes in so-called cancer-associated adipocytes (CAA) (59).
It is also now well established that AT is a key player in the tumor
microenvironment, by secreting factors that promote tumor
progression and/or by providing metabolite substrates to
cancer cells (38, 60–62). An excessive development of AT, as
observed in obesity, associated with the existence of a metabolic
syndrome, has been correlated with a marked increase in the
aggressiveness of cancers (38, 63–65). Adipocytes and AT cells
secretome is composed of lipids, adipokines, inflammatory
cytokines, peptide hormones as well as extracellular vesicles
working both in paracrine and endocrine, extracellular matrix
components (38, 60–62).

Among paracrine and endocrine effects, the best
characterized adipocytokines are the leptin and the adiponectin
(66, 67). In vitro studies have demonstrated that leptin was able
to activate ERK1/2 and c-Jun NH2-terminal Kinase (JNK)
pathway and so promote cancer cell proliferation (68).
However, no strong evidence showed the in vivo implication of
leptin in tumorigenesis, although leptin levels or leptin signaling
dysregulation have been observed in BCa, PCa and ECa (69).
Concerning adiponectin, which circulating levels is inversely
correlated to obesity, in vitro studies have shown its inhibitor
role in proliferation and apoptosis in cancer cell line such
as liver, breast, endometrium and stomach through the
activation of AMPK and the inhibition of PI3K/Akt, ERK1/2
pathway, NF-kB, Wnt-b-catenin pathway (70). Similarly,
in vivo experiments demonstrated that adiponectin reduced
tumorogenesis of cancer cells and that adiponectin-deficient
mice developed more tumors (71). Clinical studies indicated a
positive correlation between leptin:adiponectin ratio and
increased risks for some cancers like ECa in post-menopausal
women (72), BCa (73) and PCa (74). However, a metanalysis
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has then discussed leptin:adiponectin ratio and demonstrated
no strong prognosis value for PCa (75).

In addition to adipokines, other factors secreted by adipocytes
are involved in tumor progression processes more particularly
through a paracrine action. In case of PCa, adipocytes from
periprostatic AT (PPAT) secrete CC-chemokine ligand 7 (CCL7)
which can diffuse through prostatic capsule to reach the tumor.
Interaction between CCL7 and its ligand CC-chemokine receptor
3 (CCR3) will allow tumor migration outside of prostatic gland
and initiate metastatic process (61, 76). More recently, creatine
has been identified as metabolic substrate in BCa cells (77),
which accelerates tumor progression due to a transformation
into phosphocreatine to fuel tumor growth, especially in the
context of obesity (77). In mammary human tumor, it has been
shown that adipocytes in contact with the tumor presented
phenotypic modification such as delipidation, dedifferentiation,
with an overexpression of pro-inflammatory cytokines such as
IL-6 (78).

The bidirectional communication between tumors and
adipocytes have also been shown. After invading AT, tumors
induce adipocyte lipolysis and thereby released fatty acids,
stimulate ROS production favoring tumor invasion (79).
Moreover, some AT cells called adipose stromal cells (ASC,
multipotent mesenchymal progenitors) can be recruited from
AT tumor through chemokine gradient (62) and then enhance
PCa progression (80). Besides, FABP4, an abundant adipocyte
protein, has been shown to be secreted by adipocytes but also by
PCa and stromal cells. This put FABP4 at the heart of a
communication between adipocytes and tumor stimulating
MMPs and cytokine production in the PCa stromal
microenvironment to favor tumor progression (81). More
examples of transmitting signals between tumor cells and
adipocytes including the potential implication of extravesicles/
exosomes have been reviewed elsewhere (39, 57).

Overall, obesity represents a high-risk factor for several
cancers because it promotes AT remodeling which can favor
tumorogenesis and tumor progression through a crosstalk
between tumor cells and adipocytes. Adipocyte secretome has
been so far rather implicated in aggressiveness than in initiation
of tumorogenesis. These deleterious effects of AT on cancer cells
could be induced or exacerbated by the POPs stored there, which
could therefore play an important role in the initiation,
progression and/or metastasis of hormone-sensitive cancers
which develop later in life (Figure 1A).
MODELS TO ASSESS EDCs EFFECT ON
ADIPOSE SECRETOME AND CANCER
DEVELOPMENT

Data from epidemiological studies are essential for the detection
of potential adverse effects of EDCs but usually provide only
suggestive data (41). However, regulators need strong proofs
of the interferences of EDCs with the hormonal system. Thus,
in vitro assays are required to decipher EDCs molecular
mechanisms. To validate in vitro experiments and implement
Frontiers in Endocrinology | www.frontiersin.org 4
them with physiological and transgenerational data, in vivo or at
least ex-vivo models are needed. Thus, it is important to develop
alternative systems making it possible to screen these molecules,
upstream, to demonstrate in a reliable, reproducible and robust
manner, their safety or their potential toxicity (Table 1). Multiple
alternative systems have been developed with frog embryos as
developmental toxicity test or zebrafish xenograft assay (5).

Regarding adipose models, 3T3-L1 mouse cells is the most used
cell line with the subclone 3T3-F442A. They have allowed to
decipher adipogenesis molecular mechanisms and regulations and
to screen multiple drugs before starting clinical trials (82). EDCs
have been extensively studied in these cells notably to examine their
obesogenic capacity (8, 41, 43, 44). To understand the impact of
adipocyte secretome, coculture have been developed. Initially,
indirect cocultures were performed by incubating cells with
adipocyte conditioned medium. This approach has been
conducted with different cell types such as melanoma (83), glioma
(84) or PCa cells (76). 3T3L-1 as well as ex-vivo AT conditioned
medium were able to increase overall survival of cancer cell lines
both by increasing proliferation and decreasing apoptosis (83, 84)
and to promote migration of tumor cells (76). Based on these
approaches and to understand the potential role of EDCs on
tumorogenesis or tumor progression through the modification of
AT secretome, normal or tumoral cell lines/primary cells of an
organ could be incubated with conditioned media of adipocytes
prior exposed to EDCs. Another way to study adipocyte secretome
is to perform “direct” coculture assay based on Boyden
chambers with an insert. For instance, cocultures of BCa and
3T3-F442A cells were used to study the bidirectionel
communication between these cells (78, 79).

The results obtained from toxicity and toxicokinetic studies
conducted on animals are usually difficult to transpose to humans
(41). Over the past years, human multipotent cell models have been
developed, notably hMADS cells (human multipotent adipose-
derived stem cells) (85) and hASCs (human primary adipose‐
derived stromal/stem cells) (86), which allow to well-characterize
the different events of lineage commitment (82). TCDD has been
shown to increase inflammatory gene expression in hMADScells but
more strongly in undifferentiated than in differentiated adipocytes
(55). Bisphenol S has been shown to deregulates adipokine secretion
in a fat depot-specific manner in omental versus subcutaneous
derived adipocytes from hASCs (87). More recently, Koual et al.
have shown that coculture of human BCa cells with hMADS cells,
although not differentiated into mature adipocytes, treated with
TCDD leads to an increased MCF7 cell growth (19).

While 2D cultures ofASCs are easy to isolate and to differentiate
into mature adipocytes, they present numerous limitations,
including immortalization and lack of neighboring cells. ASCs
have been shown to contribute to AT microenvironment given
the opportunity to develop in vitro tissue-engineered adipose
models such as 3D culture and/or cocultures with other cell types
(i.e. endothelial cells or macrophages) (88–92). Recently, self-
assembled adipose constructs into 3D spheroids using primary
human SVF cells and a human blood product-derived biological
scaffold have been validated (91). 3D adipocyte cultures bring new
insight to study connective tissue interactions and crosstalk with
July 2021 | Volume 12 | Article 691658
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other cells such as cancer cells. Using adipocytes in a 3Dcollagen gel
matrix, proliferation rate of human bone-metastatic PCa cell line
PC3 increased as well as the expression ofVEGF andPDGF (93), as
it was previously observed with LNCaP or DU145 cells (94).

The other main limitation of classical cell culture is the use of
only one cell type while an organ is composed of several cell types
that communicate together. This issue can be resolved using a
cutting-edge technology developed this past decade: organoids
(95, 96). Organoids allow the study of cell-cell communication
but also organ functionality. Organoids have been developed for
hormone sensitive organ (thyroid, prostate, testis, endometrium,
ovarian); their potential applications and limitations have been
recently reviewed (97–100). Furthermore, organoid treated with
special drugs presents phenotypic and morphological
Frontiers in Endocrinology | www.frontiersin.org 5
specificities and this allows an easy and relatively cheap drug-
screening platform (101), including the field of precision
medicine (102) but also the identification of adverse effects of
EDCs as discussed for thyroid gland (98). Therefore, organoids
can be a good model to screen EDCs impact on the balance of cell
differentiation/proliferation through modification of adipocyte
secretome. However, because of medium incompatibility,
cocultures using organoids and adipose cells, or direct
incubation with adipocyte-conditioned medium cannot be
performed, even with immune (103), stromal or vascular
components (104). This demonstrates the necessity to
developed adapted technology such as microfluidic system as
already described in BCa cells (105) or to identify specific
molecules present in AT secretome by omics approaches.
A

B

FIGURE 1 | Overview of EDCs action in adipocytes and cancer cells and models to study EDCs. (A) Potential or hypothetical model of how EDCs can interfere
in hormone sensitive cancer development or progression with adipocytes. EDCs can act a) directly on hormone-sensitive cells to modify their physiology and/or
function to induce or exacerbate cancer hallmarks and/or b) on adipocytes by interfering with (i) nuclear or (ii) membrane receptors to modulate adipocyte secretome
through genomic or non-genomic pathways, otherwise EDCs can be stored in (iii) lipid droplets and be released, progressively during all the life or massively as
observed after a weight lost. (B) Requirement of complementary approaches to investigate impact of EDCs on health. Main questions and assays from in vitro and
in vivo models to human.
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Therefore, multiple models have been developed to study
EDCs impact on the physiology of diverse tissue/organ, more
precisely EDCs storage and release from AT and EDCs effects on
proliferation and differentiation of hormone-sensitive cells
which are summarized in Figure 1B.
CONCLUSION

To study the impact of EDCs on tumor initiation/progression, it
is important to be able to provide relevant tools allowing
predictive analysis, upstream of the health risk, and in
particular carcinogenic, of these molecules. There are inherent
biases in epidemiological studies considering EDCs, which
prevent definitive data on their role in carcinogenesis/
metastatic spread. It is currently recognized that chronic
exposure to EDCs may be responsible for an over-incidence of
hormone-dependent cancers in humans and that EDCs impact
on AT functioning. However, the links between EDCs, AT and
cancer remain largely unknown. Therefore, alterations in AT
secretome by EDCs could allow to identify specific markers,
predictive factors of tumor progression, usable for various
Frontiers in Endocrinology | www.frontiersin.org 6
stakeholders in the field (clinicians, manufacturers, decision-
making bodies and regulatory health agencies). A better
understanding of the functional alterations in AT by EDCs
could therefore provide explanatory avenues to elucidate the
complex links between obesity and some types of cancer.
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