
RESEARCH ARTICLE

A three-way approach for protein function

classification

Hafeez Ur Rehman1☯*, Nouman Azam1☯, JingTao Yao2☯, Alfredo Benso3☯

1 Department of Computer Science, National University of Computer and Emerging Sciences, Peshawar

Pakistan, 2 Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada,

3 Department of Computer & Control Engineering, Politecnico di Torino, I-10129, Torino, Italy

☯ These authors contributed equally to this work.

* hafeez.urrehman@nu.edu.pk

Abstract

The knowledge of protein functions plays an essential role in understanding biological cells

and has a significant impact on human life in areas such as personalized medicine, better

crops and improved therapeutic interventions. Due to expense and inherent difficulty of bio-

logical experiments, intelligent methods are generally relied upon for automatic assignment

of functions to proteins. The technological advancements in the field of biology are improv-

ing our understanding of biological processes and are regularly resulting in new features

and characteristics that better describe the role of proteins. It is inevitable to neglect and

overlook these anticipated features in designing more effective classification techniques. A

key issue in this context, that is not being sufficiently addressed, is how to build effective

classification models and approaches for protein function prediction by incorporating and

taking advantage from the ever evolving biological information. In this article, we propose a

three-way decision making approach which provides provisions for seeking and incorporat-

ing future information. We considered probabilistic rough sets based models such as Game-

Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing

three-way decisions. An architecture of protein functions classification with probabilistic

rough sets based three-way decisions is proposed and explained. Experiments are carried

out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the

corresponding functional classes extracted from the Gene Ontology (GO) database. The

results indicate that as the level of biological information increases, the number of deferred

cases are reduced while maintaining similar level of accuracy.

Introduction

All living organisms are composed of cells, which are intricately arranged chemical factories

that obtain matter from their environment and use this raw matter to generate copies of them-

selves [1]. Behind this miraculous functioning of the cells are the most important biochemical

molecules called proteins. Due to their role in almost every biological activity, it is crucial to

have a clear understanding of their respective functions. Moreover, the knowledge of protein
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functions is also essential for understanding how biological activities are performed at the

molecular level. This is useful in developing personalized medicine, more effective therapeutic

interventions as well as understanding biological entities as engineered systems [2–7]. On the

other hand, when the number of sequenced genomes are growing, the overwhelming majority

of new proteins with unknown functions continue to emerge at an exponential rate. Under

these conditions, it is not feasible to manually identify and assign functions to proteins. Intelli-

gent mechanisms are generally relied upon to automatically predict and assign functions to

proteins [8–10].

Several methods have been proposed for characterization of protein functions. The early

and conventional techniques were generally based on the most fundamental type of informa-

tion about proteins i.e., their amino acid sequence, utilizing tools such as Basic Local Align-

ment Search Tool (BLAST) [11]. Sequence of a protein determines its different characteristics

such as its sub-cellular localization, possible structural conformations as well as its functions

[3]. Some of the prominent approaches in this category can be found in [12–14]. With the

availability of data from massive high-throughput experiments, features based on different

data such as genomic contextual data and Protein-Protein Interactions (PPIs) data, has also

emerged. Recent and advanced computational methods utilized these and similar information

in designing approaches for prediction task. For example, features based on genomic contex-

tual data were utilized by [12, 15, 16], features based on protein-protein interaction data were

used by [17–20], and features exploiting function structure relationship were reported in [21–

23]. As we have access to more interesting information, we may expect more effective models

and approaches for precise prediction of protein functions.

Due to technological advancements, our understanding of biological processes is improving

and new features describing proteins are emerging on regular basis [3]. It is inevitable to

ignore these anticipated features in designing more effective and efficient prediction tech-

niques. An important issue that needs to be addressed in this context is how to develop effec-

tive models by incorporating and taking advantage from the ever evolving biological

information that leads to new features and characteristics of proteins. This however has gener-

ally been overlooked and received little or no attention in the existing literature. A general

assumption, although not explicitly stated, is that the information is being fixed (i.e., not

dynamic and evolving) while developing classification approaches. This assumption may not

be always useful, for instance, consider the classification of proteins whose functions may not

be precisely identified due to lack of associated biological information (although we may antic-

ipate it in future) thereby leading to compromised results. To address this issue, i.e., incorpo-

rating the anticipated future information into the predictive task, we propose a three-way

decision making approach that includes a decision option of deferment. This option is exer-

cised whenever we have inconclusive and insufficient evidence to reach confirmed or certain

decisions. The deferred decision option provides provisions for incorporating future informa-

tion which may be used in deciding the deferred cases. In particular, three types of decisions

are used, i.e., accept, reject and deferment in order to classify functions of proteins.

There are different models for inducing three-way decisions. In this article, we investigate

and examine probabilistic rough sets based three-way decision making approaches for protein

functions classification [24]. The probabilistic rough sets can be used to induce three regions

corresponding to a concept (represented in terms of a set), namely, positive, negative and

boundary regions. The three regions lead to three-way decisions in the form of acceptance,

rejection and deferment, respectively. The three regions and their respective decisions are

defined and controlled by a pair of thresholds. There are different forms and models of proba-

bilistic rough sets based on how these thresholds are obtained and interpreted. We consider

two such models, i.e., Game-Theoretic Rough Sets (GTRS) [25–27] and Information-Theoretic
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Rough Sets (ITRS) [28]. Moreover, we examine and define five three-way approaches based on

the GTRS and ITRS by employing different measures and iterative methods. To incorporate

and take benefit from these three-way approaches in real applications, we propose an architec-

ture of protein functions classification. Lastly, we evaluated the three-way approaches on the

dataset of Saccharomyces cerevisiae species proteins which is obtained from Uniprot database

[29], with the corresponding functional classes extracted from the well known Gene Ontology

(GO) database [30]. The experimental results indicate that by increasing the level of biological

information associated with proteins, the number of deferred cases can be reduced while

maintaining the same level of accuracy. We comprehensively benchmark our approaches

under these settings and conclude that the classification becomes more crisp as the knowledge

of associated biological information matures.

The code (Python/Bash/Matlab) and data files used in this work are available as a zip file

(“Protein_Functions_TWD_data_code.zip”) from http://tinyurl.com/jdpwkkq.

Background

Protein function classification

An important factor that impacts the performance of function prediction models is the type of

biological information used to infer functional association among proteins. Until recently,

many high throughput techniques have been developed to devise mechanisms leading to pre-

cise prediction of protein functions. These techniques utilize information derived from

sequence similarity, protein 3D structure, phylogenetic profiles, protein complexes, PPIs, gene

expression profiles [31–33]. The most prominent techniques utilize proteome-scale PPI net-

works that have been retrieved for several organisms including yeast and human. Protein-pro-

tein networks are graphs where each node represents a protein and edges between nodes

represent an interaction. An interaction in the network is either a direct physical association

between the proteins (typically retrieved via two hybrid analysis [34] or on the other hand if

two interacting proteins are part of the same multi-protein complex, they are also considered

as interacting proteins [35]. Thus from informatics point of view an interaction is not neces-

sarily a direct physical association of proteins but sometimes it is mutual presence in the same

protein complex depending on the experiment which reveals the interaction.

The most recent as well as renowned approaches in the field of protein function prediction

use protein-protein interactions data in different ways [31–33]. A wide majority of these tech-

niques are based on the fact that interacting proteins are likely to share common functions as

they interact for an associated biological activity. Methods in this category assign annotations

to protein under question, based on the functions of their neighboring proteins. The methods

vary in the extent to which they employ global features of the interactome in annotating pro-

teins, or the way they exploit the topological features of the interactome [17, 18]. In addition to

that, the methods are based on quite varied underlying formulations and use well understood

concepts from the fields of graph theory, graphical models, stochastic processes, probabilistic

graphs or clustering [18, 19].

Another class of approaches are based on utilizing the GO structure into computational

models by incorporating the semantic similarity offered by the Direct Acyclic Graph (DAG)

architecture of gene ontology. The integration of multi-level gene ontology terms exploiting

their relationships for protein function prediction was investigated in [2, 8, 9, 36]. These meth-

ods calculate different similarity measures by operating on GO term dependencies to define

functional associations among proteins. A similar technique based on the Markov Random

Field (MRF) properties of protein-protein networks, integrated the inter-species protein

homolog information to construct MRF based graphs using the gene ontology terms was
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outlined in [8]. The authors report high precision when tested for a limited set of functional

terms [8].

Another type of biological information that is frequently used for uncharacterized proteins

is the number of motifs conserved in those proteins [9, 36]. Several functionally conserved pro-

teins are found to have motifs that associate them to a particular molecular activity. For exam-

ple, hypothetical protein YIL169C is conserved with Chemotaxis_Transduce_2 and T_SNARE

motifs, and similar motifs in known proteins can be used to link functional information with

the protein under investigation. Integrating heterogeneous information conserved across pro-

teins of unknown function, with state of the art classification scheme may help to increase pro-

tein function prediction accuracy.

The existing computational approaches have significantly contributed in understanding

and characterizing protein functions by investigating and utilizing different types of features.

However, there is still a need for approaches to incorporate and integrate the ever evolving fea-

tures of proteins for precise prediction of their functions. These new features, once known and

available, will give better insight into biological activities thereby are expected to provide more

precise characterization of proteins. In the later sections of this article, we present a three-way

approach to address these issues.

Three-way decisions

In many real life decision making scenarios involving vague and uncertain information, the

three-way decision making strategy including a delay, deferment or non-commitment deci-

sion option is a better and more useful approach [37–39]. To explain this, consider the follow-

ing examples: 1) How do we make a purchase decision based on information gathered from

blogs, reviews, friend suggestions and experiences? 2) How do doctors make diagnosis deci-

sions based on the presence of some symptoms and tests? 3) How do military commanders

decide to carry out military actions based on intelligence information? In all these and similar

decision scenarios, the decision makers are faced with two types of situations. Either they have

sufficient and convincing information necessary to make a decision or they are faced with

vague and incomplete information which is insufficient to make a useful decision. In the for-

mer case, the decision makers can exercise immediate and certain decisions in the form of

acceptance/rejection, yes/no or true/false. In the latter case, the decision makers may not be

able to make certain decisions. For instance, the diagnosis tests are inconclusive or the intelli-

gence information is vague or incomplete. A better and more useful choice in such uncertain

and doubtful situations is to delay the decisions, assuming that future information will evolve

which will make the decision making more obvious and evident. Three-way decisions is essen-

tially the same approach to decision making. We make immediate accept or reject decisions if

we have convincing and sufficient evidence based on the available information. On the other

hand, we make a deferment decision whenever we lack sufficient evidence.

In fact, three-way decisions has been practiced over the years across different domains,

including, medical decision making, psychology, social judgment theory, management sci-

ences and machine learning [40–44]. These application domains suggest that three-way deci-

sions enjoy a good history from usage and application perspective, however, it is surprising to

note that from theoretical perspective, it lacks a unified formal description over the years [45].

This theoretical gap was first recognized in the rough sets community. In particular, Yao intro-

duced a general theory of three-way decisions, motivated by the rough sets based three regions

[45]. The essential notion in the theory adopted from rough sets is the division of the universe

into three pair-wise disjoint regions. The theory however is not restricted to rough sets and

goes beyond it by considering rough set theory as one of many possible ways to construct and
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induce the three regions [39, 46]. Three-way decisions may be formulated based on the theo-

ries such as rough sets, interval sets, shadowed sets, approximations of fuzzy sets, a threshold

approach in medical and orthopairs [47–54].

An important consideration in formulating three-way decisions is the division of the uni-

versal set into three pair-wise disjoint regions. It is recently argued that an equally important

consideration is the design of effective strategies for processing the three regions [39]. The real-

ization of these two essential components, i.e., division and processing lead to the trisecting

and acting framework of three-way decisions [39].

The trisecting and acting framework explains and presents three-way decisions as a two

step process. In the first step, i.e., trisecting, the universe is divided into three pair-wise disjoint

regions. This means that we seek tripartition of the universe. In the second step, i.e., acting,

strategies are designed for processing the three regions to obtain three-way decisions. This

framework aimed at introducing three-way decisions at a more generic level. Generally, the

division of the universe is carried out based on an evaluation function and a pair of thresholds.

The evaluation function assign an evaluation value to each object by employing some criteria.

The objects whose evaluation values are at or above a certain threshold of acceptance makes

up the POS region. The objects whose evaluation values are at or below a certain threshold of

rejection make up the NEG region. The objects whose evaluation values are above the rejection

threshold but below the acceptance threshold make up the BND region. A specific definition

of evaluation based three-way decisions based on a single evaluation function (used for evalu-

ating both acceptance and rejection) and totally order set is given in [39].

There are many issues and challenges for building and using three-way decision models.

Some of these issues include the definition and construction of evaluation functions, the defi-

nition of the domains for the evaluation functions, the determination and interpretation of

acceptance and rejection levels, the measurement of the quality of the three regions, generation

of predictive rules from the three regions for making decisions on new objects, descriptive

rules for describing the three regions and design of strategies and actions corresponding to the

three regions [39, 45]. Based on how these issues are handled and interpreted, we may have dif-

ferent three-way decision making models and approaches. We focus on three-way decisions

with probabilistic rough sets.

An architecture of protein function classification with three-way

decisions

To make effective use of three-way decisions, we propose an architecture for supporting pro-

tein functions classification decisions. The architecture may be utilized in building systems to

provide decision support capabilities for deciding protein functions. Fig 1 shows the logical

view of the architecture and highlights its intended applications. The architecture supports

user queries in the form of protein IDs (also called Uniprot IDs) which are mapped to func-

tional classes by making use of three-way decisions. Fig 2 shows the physical view of the archi-

tecture along-with its various components. These components have different capabilities and

functionalities ranging from supporting interaction of end user using interface to storing, col-

lecting and manipulating the data for providing decision support.

The clients or end users will interact with the system through interfaces. Considering a typi-

cal client-server model over the Internet platform where the system is deployed over the serv-

ers and provides services by responding to client queries. The interfaces may be presented to

the end users through Web browsers. The users can send their queries on proteins and see the

resulting functions returned by the system. The interfaces should be carefully designed and

has to be clear, complete, consistent and should provide guidance to users for correctly using
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the systems. In some cases, it may also provide auto correction facility. Besides interface, there

are various other components at the core of the architecture namely Knowledge Discovery,

Feature Extractor, Learning Module, Knowledge Base and Control Functions. We now

explains each of them briefly with their intended functionalities.

Knowledge Discovery/Information Retrieval: The Knowledge Discovery module interacts

with both the worldwide biological databases and feature extractor module. As new features

are evolving, the feature extractor module may require different type of biological information

to compute feature values. On one hand, it will provide querying and searching facilities for

extracting information from relevant biological databases and on the other side, it is responsi-

ble for passing them to the feature extractor module.

Feature Extractor: The features describing proteins are computed based on relevant data

extracted from biological databases which are spread around the world. The feature extractor

module request or query the information retrieval component for providing relevant informa-

tion necessary for computing a feature value. The information retrieval component extracts

the required information from the world wide biological databases. For example, for getting

one of the features namely, protein interaction networks (PIN), this module will ask for rele-

vant information, i.e., number of interactors corresponding to a protein. The information

retrieval identifies and searches the relevant databases such as STRING and IntAct databases

and will pass the respective information to the feature extractor. The feature extractor module

Fig 1. Logical view of the architecture with three-way decisions for protein function classification.

doi:10.1371/journal.pone.0171702.g001
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is then responsible for further processing in order to calculate the feature value, e.g. the num-

ber of interactors present in both the databases. As new features become available due to tech-

nological advancements, the feature extractor module will ask for new type of information

from the information retrieval component and do the relevant computation and processing to

calculate feature values. In section Data Preparation, we describe different types of features

that have evolved over the time and explain the types of data that is required to computed

them.

Learning Module: The learning module interacts with the feature extractor and knowledge

base. This module will incorporate intelligent techniques to make useful inferences from the

data to reach effective classification decisions. In this article, we suggest a classification mecha-

nism based on three-way decisions as one of the possibility. An important output of the learn-

ing module will be a set of functions that are being performed by a protein.

Knowledge Base: The knowledge base contains necessary information that is learned and

made available by the learning module. The information, such as, decision thresholds and

rules for classifying proteins may be stored in the knowledge base for future use.

Control Functions: This module is included to ensure security and protect the system from

attacks and unauthorized usage. It should provide functionalities such as access rights and

permissions.

Fig 2. Physical view of the architecture with three-way decisions.

doi:10.1371/journal.pone.0171702.g002
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Realization of rough sets based three-way decisions

Three-way decisions is a better and useful choice in applications with evolving information. In

this section, we explain this phenomena using rough sets based three-way decisions. For the

sake of completion, we review the main notions of rough sets.

Three-way decisions using rough sets

Three-way decisions using rough sets are defined by considering an information table S which

is defined as a tuple.

S ¼ ðU;At; fVaja 2 Atg; fIaja 2 AtgÞ; ð1Þ

where U is a finite set of objects also known as the universe, At is a finite set of attributes, Va is

the domain of attribute a 2 At and Ia is an information function which provides a mapping

from U! Va. In particular, the information function Ia assigns to each object x 2 U a value in

Va i.e., Ia(x) 2 Va. A major concern in rough set theory is how to discern objects. The equiva-

lence relation defined on U is used for this purpose. For a set of attributes A� At, the equiva-

lence relation, namely, EA is defined as,

EA ¼ fðx; yÞ 2 U � Uj8a 2 A; IaðxÞ ¼ IaðyÞg: ð2Þ

This means that any two objects x and y in U are equivalent or in other words indiscernible

based on attribute set A 2 At if they share the same values on all attributes in A.

The equivalence relation may be used to create equivalence classes which induces a parti-

tion of U denoted by U/E. An equivalence class with an object x is given by [x] = {y 2 U|xEy}.

The fundamental notion of rough set theory, i.e., approximations and the three regions are

defined using equivalence classes as follows.

aprðCÞ ¼ fx 2 U j ½x� � Cg; ð3Þ

aprðCÞ ¼ fx 2 U j ½x� \ C 6¼ �g: ð4Þ

The lower and upper approximations are used to define the positive, negative and boundary

regions (which leads to three-way decisions, already discussed in the section Three-way Deci-

sions) given by [24, 55],

POSðCÞ ¼ aprðCÞ

¼ fx 2 U j ½x� � Cg;
ð5Þ

NEGðCÞ ¼ ðaprðCÞÞc

¼ fx 2 U j ½x� \ C ¼ �g;
ð6Þ

BNDðCÞ ¼ aprðCÞ � aprðCÞ

¼ fx 2 U j ½x�⊈C; ½x� \ C 6¼ �g:
ð7Þ

The three regions has a simple but very meaningful interpretation. We accept an object as

belonging to the concept if it is in the positive region. We reject an object as belonging to the

concept if it is in the negative region. We defer the decision for an object as belonging to the

concept if it is in the boundary region. The three regions representation of rough sets defined

in Eqs (5)–(7) has lead to the introduction of the theory of three-way decisions [39]. In fact,
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the major notion of three-way decisions, i.e., the division of universal set into three regions is

borrowed from rough sets.

The deferment decision option which is exercised based on the boundary region is useful in

at least two aspects. Firstly, it provides hints for seeking and incorporating anticipated future

information in the decision making model for making decisions on the deferred cases. It is

hoped that as information matures, the number of deferred cases will reduce thereby leading

to more precise decisions. Secondly, the deferred cases which are typically associated with high

levels of uncertainty and therefore, no obvious immediate decisions, the deferment decision

option may help avoiding some false decisions. The former aspect is of particular interest from

protein functions classification perspective We further elaborate this in the next section.

Three-way decisions and evolving information

The information describing the functions of proteins are evolving. An interesting issue is how

to build effective decision making model for taking advantage of evolving information of pro-

tein functions. In this section, we elaborate the role of rough sets based three-way decisions as

one of the possibility. In particular, we explain, how evolving information leading to new fea-

tures can be effectively utilized in three-way decision making based on rough sets. We consider

a demonstrative example for this purpose based on an information table of Table 1.

The rows of the Table 1 represent the proteins labeled as Pi’s and the columns describe the

feature or characteristics of proteins. The last column labeled as “Function” represents the

decision attribute. The Function = Yes means that a protein performs the function and

Function = No means that the protein does not perform the function. Let us assume three

instances in time, i.e., t0, t1 and t2 with t0 < t1 < t2. Further assume that at time instance t0, we

only have information about the “Localization” of the proteins. At time instance t1, we have

additional information of “interacting proteins” of the proteins and at time instance t2, we

have more additional information about the “No. of Domains” of the proteins. Using the infor-

mation available at time instance t0, i.e., “Localization”, we have the following equivalence clas-

ses.

fO1;O2;O8g; fO3;O4;O5;O6;O7g; ð8Þ

Using the above equivalence classes, we can compute the positive, negative and boundary

Table 1. An information table for proteins.

Objects Localization available at t0 Interacting proteins available at t1 No. of Domains available at t2 Function

P1 Mitochondria 0 0 Yes

P2 Mitochondria 0 1 No

P3 CytoPlasm 1 0 Yes

P4 CytoPlasm 2 0 No

P5 CytoPlasm 2 0 No

P6 CytoPlasm 0 0 Yes

P7 CytoPlasm 2 1 No

P8 Mitochondria 0 1 No

doi:10.1371/journal.pone.0171702.t001
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regions using Eqs (5)–(7). The three regions are given by,

POSðCÞ ¼ ;;

NEGðCÞ ¼ ;;

BNDðCÞ ¼ fO1;O2;O3;O4;O5;O6;O7;O8g;

ð9Þ

In the same way we can compute the three regions at time instances t1 and t2, when we have

additional information in the form of “interacting proteins” and “No. of Domains”. Table 2

summarizes the three regions corresponding to the information available at the three instances

of time. Looking at the three regions for the different time instances, we may note that objects

in the boundary region are decreasing and are becoming part of the positive or negative

regions as more information is available at time instances of t1 and t2. In other words, the addi-

tional information about the “interacting proteins” and “No. of Domains” of the objects has

increased the size of the positive and negative regions. This means that we can make more

decisions in the form of acceptance or rejection when the level of available information

increases. In this article, we argue that this property of three-way decision making can be quite

useful for making decisions on protein functions classification.

In order to see the same phenomena visually, we include Fig 3. In each sub figure, the

green, red and orange colours represents the positive, negative and boundary regions. The cir-

cle represents a certain concept and the small rectangles depict the equivalence classes. From

Fig 3(a), we have least information and in Fig 3(c), we have most information. In Fig 3(b), we

have moderate level information. We may note that as information matures, we have finer

Table 2. Property of the three regions with evolving information.

Localization time t0 Interacting proteins time t1 No. of Domains time t2

POS(C) ; {O3, O6} {O1, O3, O6}

NEG(C) ; {O4, O5, O7} {O2, O4, O5, O7, O8}

BND(C) {O1, O2, . . ., O8} {O1, O2, O8} ;

doi:10.1371/journal.pone.0171702.t002

Fig 3. The three regions with evolving information. The sub-figures from left to right should be read as a, b and c respectively.

doi:10.1371/journal.pone.0171702.g003
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level details leading to refined partitions. This is shown by the smaller sized boxes in Fig 3(b)

and 3(c). The finer level details due to additional information enables us to move some of the

equivalence classes from boundary to either positive or negative regions thereby increasing

their respective sizes. This leads to fine tuning of positive and negative regions and we gradu-

ally converge to the concept, i.e., the circle (Fig 3(c)).

Three-way decisions using probabilistic rough sets

The conventional rough set model (outlined in Section Three-way Decisions using Rough

Sets) provide a useful approach for inducing and making three-way decisions. However, this

conventional rough sets model which is also sometimes referred to as Pawlak rough set model

suffers from a key limitation. Researchers argue that the conditions in the upper and lower

approximations may be too strict when it comes to real applications. Specifically the conditions

in Eqs (3) and (4), i.e., [x]� C and [x] \ C 6¼Ø reflecting whether [x] is fully contained in C
and whether [x] has some overlap with C, respectively, may be too restricted in the sense that

they ignore the degree of an overlap between a set and a concept. To overcome this difficulty,

many researchers proposed different extensions of rough sets. The probabilistic rough sets rep-

resent one class of such extensions and include decision-theoretic rough sets, variable preci-

sion rough sets, 0.5-probabilistic rough sets, Bayesian rough sets, information-theoretic rough

sets and game-theoretic rough sets.

The general form of probabilistic rough sets resulted from the studies on decision-theoretic

rough sets [56, 57]. The probabilistic lower and upper approximations for a concept C are

defined using a pair of thresholds (α, β) as [58],

apr
ða;bÞ
ðCÞ ¼ fx 2 U j PðCj½x�Þ � ag; ð10Þ

apr
ða;bÞ
ðCÞ ¼ fx 2 U j PðCj½x�Þ > bg; ð11Þ

where P(C|[x]) denotes the conditional probability of a concept C with an equivalence class

[x]. Given that an object x 2 [x], the conditional probability highlights the evaluation of an

object x to be in C. The three rough set regions based on lower and upper approximations are

defined as,

POSða;bÞðCÞ ¼ fx 2 UjPðCj½x�Þ � ag; ð12Þ

NEGða;bÞðCÞ ¼ fx 2 UjPðCj½x�Þ � bg; ð13Þ

BNDða;bÞðCÞ ¼ fx 2 Ujb < PðCj½x�Þ < ag: ð14Þ

The POS(α,β)(C), NEG(α,β)(C) and BND(α,β)(C) in Eqs (12)–(14) are referred to as positive, neg-

ative and boundary regions, respectively. Based on how these thresholds are determined and

interpreted we have different probabilistic rough set models.

To demonstrate the use of three-way decisions for proteins functions classification, we

focus on two probabilistic rough set models, namely, GTRS [25–27] and ITRS [59]. These two

models have at least two advantages over other models.

• Firstly, compared to some of the earlier probabilistic models, such as, 0.5-probabilistic rough

set model and (0.5, β) model, where due to restricted pairs of thresholds, the determination

and interpretation of thresholds are ignored, the GTRS and ITRS allows for investigation

and examination of thresholds based on different aspects.
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• Secondly, unlike other models that require user intervention to set the thresholds, such as,

decision-theoretic rough sets and variable precision rough sets, the GTRS and ITRS can be

used to learn and set the thresholds automatically when combined with some typical search

mechanism [25].

For the sake of being complete, we briefly explain and discuss the GTRS and ITRS models.

Three-way decisions using game-theoretic rough sets. The game-theoretic rough sets or

GTRS utilizes game-theoretic formulation to determine thresholds of probabilistic rough sets

[26, 27]. In particular, the thresholds are interpreted based on a tradeooff solution between

multiple criteria employed in a game setting for analyzing rough sets [25–27]. A typical game

in GTRS has three essential components, i.e., game players, strategies and payoff or utility

functions. These components are generally represented as a tuple {P, S, u}. We now explain

each of them.

Game players: The players in the game are denoted by a set P. Generally, there can be n
players in a game. However, for the sake of simplicity, a two player game is commonly consid-

ered in GTRS. Based on the overall game objective and goals, we may have different types of

game players. For instance, in a previous game for analyzing region uncertainty, the players

were defined as the uncertainty of the immediate and deferred decision regions and in another

game that seek for a balanced rough set model, the players of accuracy and generality were

used [25, 60]. In general, the players in the game are selected to reflect the overall purpose of

the game. In GTRS, the players are defined as different aspects and properties of rough sets

based classification and decision making such as accuracy, generality, precision and

uncertainty.

Strategies: Each player in the game participate by playing different strategies. The set of

strategies available to player i is denoted by Si. The Cartesian product of all possible strategy

sets is denoted by S = S1 × S2 × . . . × Sn, where S contains ordered pairs of the form (s1, s2, . . .,

sn) such that s1 2 S1, s2 2 S2 and sn 2 Sn. Each order pair in S is called a strategy profile and rep-

resents a certain situation encountered in a game.

The strategies in GTRS are realized as different changes and modifications in the (α, β)

thresholds. Depending on the initial values of thresholds, we may have different types of strate-

gies. For instance, if the initial values of (α, β) are set to (1, 0.5), then the strategies may be for-

mulated as decreasing levels of α and β. Alternatively, when the initial values of (α, β) are set to

(1, 0), then the strategies may be formulated as decreasing levels of α and increasing levels of β.

Please note that in order to keep the regions disjoint, it is assumed that 0� β< α� 1.0. The

strategies of the players in a game lead to effective modification of the thresholds which ulti-

mately determines the final configuration of the thresholds.

Payoff functions: The payoff functions for the players are represented by a set u = (u1, . . .,

un). Each ui is a real valued utility function for player i and it maps the strategy profiles to real

values, i.e., ui: S 7! <. In particular, the payoffs reflect the utilities of performing or selecting a

certain strategy. Recall the game players in GTRS which are represent different aspects or

properties of rough sets, the payoff function for a certain player is based on particular measure

employed for evaluating its respective property.

In a game setting, every player wants to perform a strategy that will maximize its payoff.

The selected strategies of the players however affect their opponents payoffs. The game solu-

tion is used to choose a balanced and trade off point based on the utilities of all the players.

The game solution of Nash equilibrium is commonly used in GTRS for this purpose.

Considering a strategy profile s−i = (s1, s2, . . ., si−1, si+1, . . ., sn), which means a strategy pro-

file without player i strategy. Moreover, the strategy profile (s1, s2, . . ., sn) may be denoted in

revised notation as (si, s−i). The strategy profile (s1, s2, . . ., sn) = (si, s−i) is a Nash equilibrium if
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[61],

8i; 8s0i 2 Si; uiðsi; s� iÞ � uiðs
0

i; s� iÞ; whereðs0i 6¼ siÞ ð15Þ

This means that for all players i, their respective strategies, i.e., si is the best response to s−i. In

other words, a strategy profile constitutes a Nash equilibrium when no player is benefited from

changing his strategy alone.

The above game description is used in GTRS to formulate a game. However, with a single

one time and non-repeated game, we may not be able to reach effective thresholds that fulfill

the demands of the underlying applications. We need to repeat the game. The essential idea is

to repeatedly modify and refine the thresholds, until we achieve certain performance criteria.

By formulating a game and utilizing the notions such as game solution and repetitive games,

the GTRS seek for an effective configuration of the threshold levels that are employed in the

probabilistic rough sets framework to induce three-way decisions.

Three-way decisions using information-theoretic rough sets. The Information-theo-

retic rough sets (or ITRS) approach the threshold determination issue from the viewpoint of

minimizing the information uncertainty of the probabilistic rough set regions [59]. Let ΔP(α,

β), ΔN(α, β) and ΔB(α, β) denote the overall uncertainties of the probabilistic positive, negative

and boundary regions respectively. The ITRS is based on minimization or optimization of the

following problem.

arg min
ða;bÞ

Dða; bÞ; where;

Dða; bÞ ¼ DPða; bÞ þ DNða; bÞ þ DBða; bÞ
ð16Þ

Please be noted that we used slightly modified notations that were reported in [25]. Eq (16)

suggests that we seek thresholds (α, β) that will minimize the uncertainty of the three regions.

The overall uncertainty in Eq (16) is typically considered as an average uncertainty of the

three regions [59].

DPða; bÞ ¼ PðPOSða;bÞðCÞÞdPða; bÞ; ð17Þ

DNða; bÞ ¼ PðNEGða;bÞðCÞÞdNða; bÞ; ð18Þ

DBða; bÞ ¼ PðBNDða;bÞðCÞÞdBða; bÞ; ð19Þ

where δP(α, β), δN(α, β) and δB(α, β) are the uncertainties of the three regions which may

be computed and interpreted using different measures of uncertainties. Moreover,

P(POS(α,β)(C)), (POS(α,β)(C)) and P(POS(α,β)(C)) are the probabilities of the three regions. Two

measures, i.e., Shannon entropy and gini coefficient are being previously employed for inter-

preting and measuring the uncertainties of the three regions, i.e., δP(α, β), δN(α, β) and

δB(α, β). We now define each of them.

Consider a partition based on a concept C, given by, πC = {C, Cc} and another partition with

respect to the thresholds (α, β), given by, π(α,β) = {POS(α,β)(C), NEG(α,β)(C), BND(α,β)(C)}. The

uncertainty in πC with respect to the three probabilistic regions based on Shannon entropy is
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given by, [59],

dPða; bÞ ¼ HðpCjPOSða;bÞðCÞÞ ¼ � PðCjPOSða;bÞðCÞÞ log PðCjPOSða;bÞðCÞÞ

� PðCcjPOSða;bÞðCÞÞ log PðCcjPOSða;bÞðCÞÞ;
ð20Þ

dPða; bÞ ¼ HðpCjNEGða;bÞðCÞÞ ¼ � PðCjNEGða;bÞðCÞÞ log PðCjNEGða;bÞðCÞÞ

� PðCcjNEGða;bÞðCÞÞ log PðCcjNEGða;bÞðCÞÞ;
ð21Þ

dPða; bÞ ¼ HðpCjBNDða;bÞðCÞÞ ¼ � PðCjBNDða;bÞðCÞÞ log PðCjBNDða;bÞðCÞÞ

� PðCcjBNDða;bÞðCÞÞ log PðCcjBNDða;bÞðCÞÞ:
ð22Þ

Where we used the additional notations H(πC|POS(α,β)(C)), H(πC|POS(α,β)(C)) and H(πC|

POS(α,β)(C)) to be consistent with the earlier notations [59]. The measure of gini coefficient is

also used in the same way to determine the uncertainties of the three regions [62]. The uncer-

tainties of the three regions are computed as [62],

dPða; bÞ ¼ GðpCjPOSða;bÞðCÞÞ ¼ 1 � PðCjPOSða;bÞðCÞÞ
2

� PðCcjPOSða;bÞðCÞÞ
2
;

ð23Þ

dNða; bÞ ¼ GðpCjNEGða;bÞðCÞÞ ¼ 1 � PðCjNEGða;bÞðCÞÞ
2

� PðCcjNEGða;bÞðCÞÞ
2
;

ð24Þ

dBða; bÞ ¼ GðpCjBNDða;bÞðCÞÞ ¼ 1 � PðCjBNDða;bÞðCÞÞ
2

� PðCcjBNDða;bÞðCÞÞ
2
:

ð25Þ

Please note again that the notation G(πC|BND(α,β)(C)), G(πC|BND(α,β)(C)) and

G(πC|BND(α,β)(C)) are being used for the sake of being consistent with the previous notations

[62].

The ITRS is generally combined with a searching mechanism to determine effective thresh-

olds. In particular, the minimization of overall uncertainty in Eq (16), is used to guide the

search towards optimal thresholds. Recently, the gradient descent approach was suggested in

this regards [59].

Three-way decision algorithm for classifying protein

In this section, we look at three-way decision approach from implementation perspective.

Algorithm 1 is presented for this purpose. The algorithm explains how three-way decisions

can be used in classifying proteins with evolving information.

Algorithm 1 Iterative Three-way decision making algorithm

Input:An informationtablecontaininga new featureand POS(α,β)(C),
NEG(α,β)(C), and BND(α,β)(C) basedon informationfrom previousfeatures
Output:Updatedregions,POS(α,β)(C), NEG(α,β)(C) and BND(α,β)(C)
1: if QP(α, β)� c1 and QN(α, β)� c2 then
2: Determinethresholds(α0, β0) using GTRS and ITRS for informationtable
with U = BND(α,β)(C)
3: POS(α0, β0)(C) = {x 2 BND(α,β)(C)|P(C|[x])� α0}
4: NEGða0;b0ÞðCÞ ¼ fx 2 BNDða;bÞðCÞjPðCj½x�Þ � b

0
g
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5: BND(α0, β0)(C) = {x 2 BND(α,β)(C)|β0 < P(C|[x])< α0}
6: POS(α,β)(C) = POS(α0, β0)(C)

S
POS(α,β)(C)

7: NEG(α,β)(C) = NEG(α0, β0)(C)
S
NEG(α,β)(C)

8: BND(α,β)(C) = BND(α0, β0)(C)−BND(α,β)(C)
9: else
10: Determinethresholds(α, β) usingGTRS and ITRS.
11: POS(α,β)(C) = {x 2 U|P(C|[x])� α}
12: NEG(α,β)(C) = {x 2 U|P(C|[x])� β}
13: BND(α,β)(C) = {x 2 U|β < P(C|[x])< α}
14: end if
15: returnPOS(α,β)(C), NEG(α,β)(C), BND(α,β)(C)

The algorithm accepts information table containing information about a new feature and

the three regions based on the previous features, i.e., positive, negative and boundary regions

denoted as POS(α,β)(C), NEG(α,β)(C), and BND(α,β)(C), respectively. In line 1, the algorithm

evaluates the positive and negative regions by employing some quality criteria denoted as

QPOS(α,β) and QNEG(α,β) (representing some quality related aspect of the positive and negative

regions, respectively). These notations are introduced to represent the general notion of any

criteria that is employed for evaluating the three regions. They may be interpreted in terms of

cost, risks, uncertainty, accuracy or precision. The quality of the regions may be measured

based on the notions such as risks, cost, uncertainty, accuracy or precisions. As discussed in

the previous subsection titled Three-way Decisions and Evolving Information, when the fea-

tures evolve, the positive region gradually converges to the concept C (i.e., more precisely

reflect the region representing the concept) and the negative region gradually converges to the

complement of the concept Cc (i.e., more precisely reflect the region not in the concept),

respectively. As a result, the quality of the two regions improves. As improvement in quality is

a gradual process in this case, at the current level of information, the quality of the positive and

negative regions may or may not be effective (please be noted that the term effective here may

have different interpretation based on the underlying applications). We deal with these two

cases separately.

If the quality of the regions are above some acceptable levels c1 and c2, we will only examine

the objects in the boundary region and will not further investigate the positive and negative

regions. The boundary is expected to shrink further as we have access to new features. In any

other case, we will examine the full information table to obtain the three regions. In other

words, we are not satisfied with the quality of the positive and negative regions (they are below

the levels c1 and c2) and we expect that additional information may improve their respective

quality levels. We first deal with the former case. In line 3, we determine thresholds based on

the reduced information table with U = BND(α,β)(C). As new information becomes available in

the form of a new feature, we may be able to confidently classify further objects in the bound-

ary. This is shown in line 4-7 where we further divide the objects in the boundary region. In

line 6-8, we update the three regions based on further examination of the boundary. From line

10-13 we examine the case when the positive and negative regions based on the previous

knowledge were not of acceptable quality. We therefore examine the full information table and

update the three regions accordingly. The Fig 4 represents the essential ideas of the algorithm

1 in diagrammatic form.

It may be noted that the constants c1 and c2 may be defined in different ways depending on

the application needs and requirements. For instance, if we want to reduce the processing

overload, we may define them moderately. On the other hand, if processing overload is not an

issue and we are more concerned about the accuracy, then we may define them more strictly.

Other ways in which they may be defined are by making comparison with the quality of the
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regions obtained with the standard Pawlak models or other known models in the domains or

by considering the improvement in quality based on the new features.

Experiment setup

Data preparation

To evaluate the use of three-way approach, we examine the application of three-way decisions

on well studied Saccharomyces cerevisiae species proteins [63, 64], obtained from most widely

used Uniport database [29]. From various classification schemes developed to standardize the

descriptions of protein functions, we chose the state of the art Gene Ontology (GO) [30] classi-

fication scheme. The gene ontology is a structured, controlled vocabulary of protein functions

also called terms. GO terms provide consistency in annotating protein roles in the cellular con-

text. It is arranged in a DAG (please refer to Section Background) structure in which each

node of the graph represents a unique functional term and each term is arranged in a parent

child relationship with other terms. The child term either is a special case of the parent or is a

part of the parent process i.e., a sub-process or component. For the evaluation of our method-

ology we operate on molecular function category of gene ontology. To reveal the evolving

nature of biological information, we present features in the order in which they are evolved

over the time i.e., most basic type of information is presented first and so on [3]. For classifying

a protein into one or more molecular function terms of gene ontology, we retrieve ten different

types of features from varied biological databases. Each feature is helpful in characterizing one

or more functional categories and is represented by the symbol Fi.
Protein Sequence Length (F1): In every cell, genes are converted into proteins via the pro-

cesses of transcription and translation also called the central dogma of molecular biology. The

end product of these processes is a sequence built from twenty amino acids, and is commonly

known as the primary structure of a protein. The amino acid sequence is the most basic type of

information available about a protein, as it can provide concrete evidence about different char-

acteristics of a protein such as its binding sites, sub-cellular localization, structure and

Fig 4. Visualization of iterative three-way decision making algorithm.

doi:10.1371/journal.pone.0171702.g004
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function. To quantify these biological aspects of a protein, we use feature (namely F1), as the

length of protein sequence which is extracted from Uniprot database [29].

Protein Localizations (F2): The location of a protein in the cell can also be associated with

its function. Co-localized proteins are more likely to be part of same molecular activity. Like-

wise, proteins localizing in many different locations can be part of diverse activities. To capture

this aspect, we calculate feature F2 as the number of locations a protein can localize. The pro-

tein localization data is retrieved from the Uniprot database [29].

Biological Processes (F3): A biological process refers to the series of events performed by

one or more assemblies of molecular functions with a defined beginning and end. A protein

participating in many biological processes is more likely to have many molecular level roles.

Thus the number of biological processes of a protein can also be used to capture the molecular

level activities of a protein. As a third feature (F3), we count the number of biological processes

of a protein. It is obtained by retrieving counts of Biological Process ontology terms from the

Gene Ontology database [30].

Number of Interacting Proteins (F4): For calculating the fourth feature of our method,

namely F4, we use genome wide protein-protein interactions (PPI) data to predict proteins

function. In a living cell, protein-protein interactions are amongst the most ubiquitous types

of interactions and their precise knowledge helps in understanding the activities performed by

a protein as well as the processes it is part of. A protein having many different interacting part-

ners can be said to be part of many different functions. Thus the number of interactions (F4) of

a protein can be linked to the wide variety of activities it performs. We obtain PPI data from

most widely used PPI databases, namely, IntAct [65] and STRING [66]. Since protein-protein

interactions databases are noisy, we only consider interactions that are experimentally verified

and are supported by at least two experiments.

Number of Domains (F5): Protein domains are the sequential units that fold in a particular

shape, making independent structures in different proteins. Several classification schemes

have been proposed e.g., [67] to define and demarcate different domains of which some based

on clustering conserved subsequences into related domain families, others on known distinct

structural classes [68]. One of the most famous and widely used domain classification schema

is the Interpro database [69]. InterPro database contains diagnostic signatures of protein

sequences consisting of models e.g., regular expressions models, Hidden Markov Models etc.,

which describe protein domains found within sequence. Domains are the most important fea-

ture among relevant sequence features of a protein that associate it to a particular kind of func-

tions. To integrate domain relevance we also use as a feature (namely F5) the number of

Interpro conserved domains within a query protein sequence.

Number of Conserved Motifs (F6): A motif is a conserved amino acid sequence pattern in

a protein sequence that may be associated to a specific function. These subsequences may

often contain small “gaps” of fixed or variable lengths among amino acids of the subsequence.

The knowledge of exact patterns of motifs and their functions is helpful in the understanding

of structure and function of related proteins in which such motifs may appear. For example, if

a motif of a certain family is present in a protein sequence then it will make it highly probable

to functionally associate that protein with the functions of that motif i.e., we can associate pro-

teins with functions by merely checking the presence of certain motifs. Thus in our technique,

as sixth feature (F6) we count the number of conserved motifs in a protein sequence using Pro-
site motif database [70].

Number of Protein Structures (F7): A protein’s primary structure consists of sequence of

amino acids. These amino acids due to their varied physical and chemical properties as well as

the presence of different participant cellular forces, assumes a unique configuration in three-

dimensional space. This stable configuration of proteins is also called the tertiary structure of
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proteins. This final configuration or structure of a protein is strongly correlated to its function,

because in many biological processes, the interacting proteins have to come into physical con-

tact in order to accomplish the desired function. The structure of a protein also determines

many of its functional characteristics, for example its inter-facial binding sites, the specific

ligands it binds to, cellular localizations, as well as other proteins it can interact with. Among

all the structural databases PDB (Protein Data Bank) [71] is by far the most reliable, wide-rang-

ing as well as popular repository for experimentally derived protein 3D structures. We query

the PDB database to obtain the number of experimentally determined structures associated to

a protein under investigation and use this information as a feature (namely F7) to characterize

its function.

Molecular Weight of Protein (F8): Although weight of a protein is not strongly related to

its function but in some cases it can be used to generally group them into broader functional

categories. We retrieve Molecular weight rounded to the nearest mass unit (Dalton) from Uni-

prot Database [29] and use it as a feature (namely F8) for our 3-way classifier.

Number of Interfacing Residues in Protein Structure (F9): Many proteins bind together

and form multi-protein complexes. Different proteins in the complex perform different func-

tions. These functions are associated with the number of residues on a protein’s interface that

enables it to stabilize, bind and form complexes. Owing to the significance of interfacing resi-

dues we utilize a structural feature i.e., the number of residues on the protein’s interface to

characterize function of a protein. The interfacing residues can vary for various functional

activities. To capture this aspect we used PDBe PISA server [72], to retrieve the number of pre-

dicted interfacing residues and use it as feature (namely F9) for our 3-way classifier.

Binding sites in the Predicted Interface (F10): A protein’s physical interaction with other

molecules, determines its biological activities. For example antibody proteins selectively bind

to viruses or bacteria to choose them for destruction, the hexokinase protein binds to ATP

molecule as well as with glucose molecule in order to catalyze their chemical reaction, and so

on. Without any doubt almost all proteins stick, or bind, to other molecules in order to per-

form their activities at molecular level. Some proteins bind very tightly while others bind for a

short period of time depending on their specificity as well as the molecular task they have to

perform. Each protein can usually bind to one or few other molecules determined by the

nature of binding residues (also called binding sites) at its surface. To determine the specificity

of a protein for binding and performing wide variety of functions we calculate a feature

(namely (F10), which is the number of binding sites on its surface that are predicted using

PDBeFold Server [73].

The above features namely, F1 to F10, are extracted using the Feature Extractor module

(already described in Section An Architecture of Protein Function Classification with

Three-way Decisions), from the world wide biological databases using the knowledge discov-

ery module. The Feature Extractor module also has the capability to incorporate any new fea-

ture, say F11 in the predictive task. To imitate the ever evolving nature of biological

information, we selected and ranked features from most basic type to the latest type i.e, F1

namely, sequence similarity, is a basic type of feature and F10 namely, number of binding sites

on a protein interface, is a specific feature known after information evolution.

Three-way approaches used in the experiments

We performed experiments with five three-way decision making approaches based on GTRS

and ITRS. Specifically three of these approaches are based on GTRS and two of them are based

on ITRS.
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The three approaches with GTRS are based on different games that are formulated based

on description in Section Three-way Decisions using GTRS. The essential difference in these

games are the consideration of different types of game players. Two of these games are based

on examining a balance between the uncertainties of probabilistic rough set regions. These

games are based on two players, namely, immediate decision region, denoted as I and deferred

decision region, denoted as D. The player I reflects the collective uncertainty in probabilistic

positive and negative regions and the player D denotes the uncertainty in the probabilistic

boundary region. By realizing changes in thresholds as game strategies, the players in a game

compete in a game by selecting appropriate changes in the thresholds which are used in deter-

mining the final settings of the thresholds. Two games are constructed with these game players,

i.e., player I and D by realizing different interpretation and computation of uncertainty. In one

game, the uncertainty is measured with the Shannon entropy and in another game it is mea-

sured with gini coefficient. These two games will be referred to as GTRSE and GTRSG, respec-

tively. These game were previously examined in the context of text categorization and medical

decision making [25, 62, 74]. The third game in GTRS is based on determining a trade off

between two aspects of rough sets based classification, namely, accuracy and generality. This

game was previously examined in the context of recommender systems in [60]. We will refer

to this game as GTRS(A,G).

Two approaches are considered with the ITRS. These two approaches are ITRS based on

Shannon entropy and ITRS based on Gini coefficient as discussed in Section Three-way Deci-

sions using ITRS. We denote these approaches as ITRSE and ITRSG, respectively. Both of

these measures interpret the uncertainty in a different way and therefore will lead to different

thresholds.

In all experiments, we considered the top five most frequent protein functions in the data-

base. For each protein function (recall that each protein function is considered as a category),

we learn the probabilistic thresholds (α, β) and performed three-way decisions using the five

approaches discussed above in this section. We considered four feature sets. In each feature

set, we consider the features whose relevant information was previously available or which

emerged roughly at the same time. In particular, the first feature set comprise of F1, F2 and F3

(please refer to Section Data Preparation for their details). We denote the first feature set as

FS1. The second feature set denoted as FS2, is given by FS1 [ F4. The third and fourth feature

sets, denoted as FS3 and FS4 are given by FS3 = FS2 [ {F5, F6} and FS4 = FS3 [ {F7, F8, F9, F10},

respectively. Please be noted that the FS1 contains the oldest available information about pro-

teins while FS4 is the represents the most recent information comprising the previous knowl-

edge and newly evolved information. Finally, all the results are based on 10 folds cross

validation.

Results and discussion

Experimental results

We report the results of accuracy and generality for the considered three-way approaches. The

accuracy and generality may be defined as [24],

Accuracyða; bÞ ¼
jðPOSða;bÞðCÞ \ CÞ

S
ðNEGða;bÞðCÞ \ CcÞj

jPOSða;bÞðCÞ
S

NEGða;bÞðCÞj
; ð26Þ

Generalityða; bÞ ¼
j POSða;bÞðCÞ

S
NEGða;bÞðCÞj

jUj
; ð27Þ
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The accuracy highlights the relative number of correct classification decisions for the objects

in the universal set and the generality reflects the relative number of objects for whom classifi-

cation decisions can be made. Table 3 shows the results obtained with the GTRS based

approaches. The rows of the table correspond to the results obtained with a particular set of

features and the columns correspond to results of accuracy and generality for different

approaches. The best results for accuracy and generality against each approach is presented in

bold. We may note that the best results for the generality for the three approaches are against

the highest feature set size. Moreover, the generality of the three approaches improve as the

feature set size is increased. In particular, the generality of GTRS(A,G) with lowest feature size is

23.77% and the highest feature set size is 68.75%. This represents a total increase of 44.98% in

generality. For the other two approaches, i.e., GTRSE and GTRSG, similar increases in general-

ity with values 45.75% and 39.78% are noted based on the lowest feature set size and highest

feature set size. Since the features represent the available level of information for predicting

protein functions. We may conclude from these results that as the level of information

improves (i.e., as we include more features), we are able to make classification decisions for

more proteins.

Let us now look at the results of accuracy in Table 3. We may observe that in general, the

values of accuracy decrease slightly as we move from lower to higher feature set sizes. How-

ever, compared to the generality, we do not have significant different between these values. For

the three approaches, i.e., GTRS(A,G), GTRSE and GTRSG, the differences between the values of

accuracy for the lowest and highest feature set sizes are 2.16%, 1.41% and 1.62%, respectively.

From the results of accuracy and generality, we may notice that by increasing the number of

features or the level of information, we are able to make more decisions while mainlining the

same or similar level of accuracy.

Table 4 shows the results obtained with the ITRS based approaches. The increase in general-

ity for the two approaches, i.e., ITRSE and ITRSG between the lowest feature set size and high-

est feature set sizes are 14.36% and 18.29%, respectively. The accuracy values for the ITRSE and

Table 3. Results of accuracy and generality for GTRS.

Features GTRS(A,G) GTRSE GTRSG

Accuracy Generality Accuracy Generality Accuracy Generality

FS1 0.8031 0.2377 0.7938 0.2276 0.7969 0.2913

FS2 0.8058 0.3108 0.8077 0.2888 0.8071 0.3467

FS3 0.7808 0.6654 0.7853 0.6737 0.7807 0.6724

FS4 0.7815 0.6875 0.7797 0.6851 0.7807 0.6891

doi:10.1371/journal.pone.0171702.t003

Table 4. Results of accuracy and generality for ITRS.

Features ITRSE ITRSG

Accuracy Generality Accuracy Generality

FS1 0.8247 0.6008 0.8139 0.5972

FS2 0.8043 0.6296 0.8101 0.631

FS3 0.7927 0.7394 0.7878 0.7411

FS4 0.791 0.7444 0.7865 0.7801

doi:10.1371/journal.pone.0171702.t004

Protein function classification

PLOS ONE | DOI:10.1371/journal.pone.0171702 February 24, 2017 20 / 29



ITRSG approaches are decreased by a small 3.37% and 2.74%, respectively as we increase the

feature set size. comparing these results with the GTRS based approaches, we may note that

the generality values of the ITRS approaches are significantly better than those obtained with

the GTRS based approaches. However, for accuracy there is no significant different between

ITRS and GTRS based approaches as both of them are around 80%. Despite some differences

in the results with the two approaches, the key observation noted earlier in the discussion of

GTRS based results holds for the results in the case of ITRS as well. We may notice again that

increasing the number of features or the level of information lead to better generality (which

implies more classification decisions) while maintaining the same or similar level of accuracy.

In order to highlight this observation, we constructed two figures.

Fig 5 shows the results of the positive, negative and boundary regions based on the GTRS

and ITRS based approaches. Each bar in the figure is split into three parts, representing the

positive, negative and boundary regions respectively. Each set of four bars corresponds to a

particular approach and is separated by a large space. The four bars are placed in increasing

order of feature set sizes. In each set of four bars, the leftmost bar corresponds to the least fea-

ture set size and the rightmost bar corresponds to the highest feature set size. We may note in

Fig 5, that as we increase the feature set sizes, the positive and negative regions grow in size

while the boundary regions shrinks. According to the definition of generality in Eq (27), the

union of the positive and negative regions represents the generality. This figure highlights the

Fig 5. Results of the positive, negative and boundary regions.

doi:10.1371/journal.pone.0171702.g005
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same fact, noted earlier in the previous discussion, i.e., we are able to make more classification

decisions for proteins as the level of information increases (or number of features increases).

Please be noted that in probabilistic rough sets, it is not always necessary that the addition of

features will increase the positive and negative regions. However, we want to emphasize the

fact that it will result in improvement in the quality of the regions.

Figs 6 and 7 summarizes the results of accuracy and generality for the considered

approaches. The green colour in these figures represent the accuracy and the red colour indi-

cate the generality. The values of accuracy and generality are reported for all four feature sets

described in the previous section. It may be noted that for all the approaches, the generality

improves as we use higher number of features. However, on the other hand the accuracy is not

affected significantly. This means that by increasing the features, we are able to improve the

generality while maintaining the similar level of accuracy.

Fig 6. Accuracy and generality results of the GTRS based approaches.

doi:10.1371/journal.pone.0171702.g006
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Comparison with other approaches

In this section, we compare our method to the most widely used group of function prediction

techniques. The first choice of comparison is a most recent function prediction tool, namely

INGA (Interaction Network GO Annotator) [75], which is a state of the art tool to predict pro-

tein functions. INGA is based on a consensus strategy that maximizes the F-score by utilizing

protein interaction networks, sequence similarity as well as domain information for protein

function prediction. Since, information such as protein domains, protein interaction net-

works, sequence similarity are directly related to protein function and are at the heart of over-

whelming majority of methods that integrate it for protein function prediction, we chose to

compare our method against this function prediction tool.

To attain the most accurate comparative results, we run our algorithm for wider range of

target classes of the molecular function ontology in a ten-fold cross-validation setting. We

present the comparative results (i.e., Accuracy and Generality as defined in Eq (26)) of INGA

and our method in Table 5 when tried on Saccharomyces cerevisiae proteins. Clearly, our

Fig 7. Accuracy and generality results of the ITRS based approaches.

doi:10.1371/journal.pone.0171702.g007
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method outperforms IGNA in both aspects. The strength of our method mainly comes from

the fact that it is able to defer instances (i.e., proteins) for which there is less characterization

evidence at present, thus improving prediction accuracy.

In order to get further insight into the relative performance, we also consider some results

that were reported on similar problem. The most recent and well known schemes proposed for

the prediction of protein functions are evaluated in the CAFA (Critical Assessment of protein

Function Annotation) challenge [76]. The CAFA challenge is conducted after every two years

to have comparative evaluation of top schemes for the prediction of protein functions. One of

the best sequence alignment algorithm (i.e., BLAST), which is also used as a baseline scheme

for annotation transfer, achieved an accuracy of 38% during the CAFA challenge, when tried

on molecular function category of GO [76]. Likewise, the top schemes of the challenge have

reported to have an accuracy of 59.5% and 59.4%, respectively [76], when tested against hetero-

geneous ontology classes. On the other hand, our method have achieved an overall accuracy of

80% when tried for the same target classes, depicting a significant gain in terms of prediction

accuracy.

Another method, that is more recently proposed, by Mitrofanova et al. in [8], combines

inter-species homology data for protein function prediction and reported an accuracy of

97.7% when tried on Saccharomyces cerevisiae proteins. However, the results of this method

cannot be directly compared with our approach for a number of reasons. Firstly, this method

operates on fixed ontology sizes thus giving results for only 16 GO terms (target classes) out of

more than 30,000 GO terms. Secondly, the fixed GO terms chosen by the authors limit perti-

nence of their method to proteins directly annotated to those GO terms, hence limiting the

applicability of their algorithm to only a small number of proteins (hence, significant reduction

in generality). On the other hand, our algorithm has much wider GO coverage and results pre-

sented include all the yeast proteins.

As a final remark, it is pertinent to mention here that although three way classification

achieved far better results than the earlier proposed schemes but the main purpose of this

study was not the optimization of performance (in terms of precision or accuracy) of the ear-

lier schemes. But rather it should be looked at from the perspective of an examination, feasibil-

ity and appropriateness of considering three way classification schemes based on evolving

biological information for the task of protein function predictions.

In conclusion, the three way approaches considered in this study achieve an average accu-

racy of 80%. The incorporation of future information is useful as it improves the generality or

applicability of the models while maintaining similar level of accuracy. In particular, there is

an increase in generality by more than 40% for the GTRS based approaches and more than

Table 5. Comparison of the proposed three way classification method with top performing methods

of the field. The target classes comprise of broader gene ontology terms for Saccharomyces cerevisiae spe-

cies proteins.

Method’s Name Generality Accuracy

Three way decision using GTRS 68% 78.40%

Three way decision using ITRS 74% 79.2%

INGA (Interaction Network GO Annotator) tool [75] 60% 57%

Jones-UCL [76] 62% 59.5%

Argot [76] 61% 59.4%

BLAST Annotation Transfer (baseline method) [76] 78% 38%

doi:10.1371/journal.pone.0171702.t005
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14% for the ITRS based approaches. From the general trend in the results, it is suggested that

as more information becomes available, the generality may improve further. These results

advocate for the use of three-way approaches for protein functions classification.

Conclusion

Proteins are involved in almost every biological phenomena and the precise knowledge of

their functions plays an essential role in understanding biological processes. Intelligent mecha-

nisms are generally employed to assign and predict functions of proteins. The technological

advancements are continuously resulting in new information and features describing protein

functions which in turn can be utilized for improving the quality of protein function predic-

tions. An important issue in this context is to develop effective classification schemes and

models for classifying protein functions by incorporating evolving information. We propose a

three-way decision making approach to address this issue. The approach includes a deferment

decision option which is practiced in situations characterized by insufficient and incomplete

information. In particular, we considered probabilistic rough sets based models i.e., game-the-

oretic rough sets and information-theoretic rough sets for inducing and making three-way

decisions. An architecture of protein function classification with three-way decisions is also

proposed and explained. Experimental results on dataset from Uniprot database indicate that

as the level of biological information increases, the number of deferred cases are reduced while

maintaining similar level of accuracy. In particular, an average accuracy of 80% (±%2) was

reported for the considered approaches with an average generality improvement of 33% (±%5)

as we increase features.

We investigated the probabilistic rough sets which is one possible way for inducing three-

way decisions. Other approaches such as shadowed sets, statistical testing, interval sets and

ortho-pairs may also be examined to investigate the potential benefits of three-way approach

to protein function classification. Moreover, the three-way approach for protein function clas-

sification may further be evaluated and extended by incorporating new features resulting from

next generation sequencing data or from other high throughput experiments.

Supporting information

S1 File. “S1_File.zip”. The code (Python/Bash/Matlab) and data files along with instructions

are provided as a zip file.
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