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Abstract

This article provides a fully Bayesian approach for modeling of single-dose and complete pharmacokinetic data in a
population pharmacokinetic (PK) model. To overcome the impact of outliers and the difficulty of computation, a generalized
linear model is chosen with the hypothesis that the errors follow a multivariate Student t distribution which is a heavy-tailed
distribution. The aim of this study is to investigate and implement the performance of the multivariate t distribution to
analyze population pharmacokinetic data. Bayesian predictive inferences and the Metropolis-Hastings algorithm schemes
are used to process the intractable posterior integration. The precision and accuracy of the proposed model are illustrated
by the simulating data and a real example of theophylline data.
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Introduction

The population model is a pivotal element for the estimation of

the individual pharmacokinetic parameters needed for dosage

individualization. For a comprehensive discussion of the principles

of population pharmacokinetic analyses see Ette and Williams et al

[1–2]. One of the principal aim of population pharmacokinetic

studies is to estimate the parameters associated with intra- and

inter-individual variability in observed drug concentrations.

Another important aim in population pharmacokinetic model is

the establishment of relationships between parameters and

covariates to explain parameter variability and facilitate dose

adjustment decisions. So the explanation of the inter-individual

variability in terms of subject-specific covariates is crucial for the

study of population pharmacokinetics.

Many statistical models have been proposed to fit population

PK (PPK) parameters. The most popular analytic statistic model

for population PK data is the linear mixed model proposed by

Laird and Ware [3]. In this model, the probability distributions for

the response vectors of different individuals belong to a single

family. However some random-effects parameters vary across

individuals, with a distribution specified at the second stage. The

first nonlinear mixed-effects modeling program introduced for the

analysis of large amounts of pharmacokinetic data is NONMEM

[4]. In the NONMEM program, inter- and intra-individual

variability measures are combined, in a first-order approximation.

Besides, many other more accurate methods have been incorpo-

rated in this software including Expanded Least Squares (ELS) and

maximum likelihood method. In fact non-linear methods are used

to estimate parameters of a chosen compartmental model. This

method generally produces good results. For other nonlinear

models for the analysis of population pharmacokinetic data see

Wakefield et al [5–7], in which M-H algorithm is being used as an

implementation of MCMC.

Ruth Salway et al [8] proposed a generalized linear model

(GLM) with gamma distribution to deal with population PK data.

But in a number of cases, especially during the development of

new drugs, the structural pharmacokinetic model and inter and

intra-subject variability models could be misspecified. This may

lead to biased estimation for population parameters. Misspecifica-

tion of ka may lead to errors in the estimation of volume and PK

parameters such as maximal concentration (Cmax). Graphical

methods and Hosmer-Lemeshow type goodness-of-fit statistics can

be used to detect misspecifications, as can be seen in Janet R [9]

and Ivy Liu [10]. In the studies of other researchers, many semi-

parametric and nonparametric methods have been proposed to

reduce the bias of estimates [11]. However, in all of these methods

mentioned above, at least one of the following important issues

standout.

Firstly, all the models and methods have a common assumption

that the residual error is normally distributed, but that assumption

is not always proper. This assumption may lack the robustness

against departures from normality and outliers and may also lead

to misleading results. In the context of clinical trials with large

numbers of observations on per subject, often one or two of them

may give rather extreme response values, so a heavy tail

distribution may be more appropriate than the (log) normal
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distribution. When we try to estimate the parameters of

pharmacokinetic data with heavy tails, such (log) normality

assumptions are inappropriate to outliers and it may affect the

estimation of fixed effects and variance components seriously.

Secondly, the associated intensive computation burden in the

inference is a major challenge, and in some cases it can even be

computationally infeasible. Particularly, for nonlinear longitudinal

models the computational problem becomes much worse.

Therefore, in our study, a multivariate t distribution for a

generalized linear model is considered, which has two obvious

advantages: (1) t-distribution is more robust for modeling data with

heavy tails than the normal distribution, i.e. it is more prone to

outliers. It approaches the normal distribution as n (freedom

degree) approaches infinity, and smaller values of n yield heavy

tails. (2) GLM model is easier to compute than nonlinear models.

So in this paper, Bayesian method to estimate parameters in the

GLM model is employed. The most pragmatic merit of Bayesian

approach is the ability to take account of all parameter

uncertainties. In aspect of Bayesian method research, lots of

authors have advocated Markov Chain Monte Carlo (MCMC)

schemes to deal with intractable posterior integrations, which can

help reduce the difficulty of simulating directly from the posterior

distribution. Wakefield AJ(1996) has proposed that MCMC

methods used for hierarchical models [12]. O.Gimenez (2010)

adopted a Bayesian framework with MCMC to carry out

estimation and inference [13]. Chib considered several MCMC

sampling schemes for hierarchical longitudinal models [14].

This article addresses these issues by modeling the response

variable with outliers and using a Bayesian approach to investigate

estimated parameters of generalized linear model proposed by

Ruth Salway [8]. The rest of this article is organized as follows:

‘‘The Model’’ section describes the model and the chosen priors.

The Metropolis-Hastings reject algorithm is constructed in the

section of ‘‘Bayesian estimation and predictive inference’’.

‘‘Simulation Study’’ section provides three simulations to illustrate

the performance of our proposed method. Extensive model

checking is carried out for the theophylline data in the section of

‘‘Application’’. A conclusion is made in the part of ‘‘Discussion’’.

Methods

Generalized Linear Model with t Errors Distribution
In the PPK study, usually one or two of the observations may

give such a rather extreme response values that a heavy tail

distribution may be more appropriate than the (log) normal

distribution. Gomez et al. have introduced a multivariate gener-

alization of the power exponential distribution which could

effectively model heavy-tailed data [15]. This is a subfamily of

the elliptically contoured distributions, including the multivariate

normal distribution as a special case. Another better known

subfamily is the multivariate Student t distribution. The strategic

importance of these distributions arises because they only require

simple modifications to the multivariate normal distribution which

could be easily programmed.

The one-compartment model has been widely studied [16,17].

The concrete expression is

c(t)~
Dka

V (ka{ke)
fexp ({ket){ exp ({kat)g, ð1Þ

Where c(t) is drug concentration which is a function of time, D is

dose, V is the apparent distribution volume, and ka and ke are

respectively the absorption and elimination rate.

According to Ruth Salway et al [8], we can rewrite the one-

compartment model (1) as

c(t)~D exp (b0zb1t)½1{ expf{(ka{ke)tg�,

Figure 1. Examples of trace plots with MCMC.
doi:10.1371/journal.pone.0058369.g001

Population Pharmacokinetic Study
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where b0~ logfka=½V (ka{ke)�g and b1~{ke. This model is

really a transform of 1-compartment model. Let y(tij) be the j th

(j~1,:::,k) measured concentration for the ith (i~1,:::,n)
individual at time tij . Then using a GLM and fitting the log-

linear fractional polynomial model:

E(yij)~c(tij)~Di exp (b0zb1tijzb2=tij),

Here, b2 determines the absorption and we require b1v0 and

Figure 2. Relationship between population predicted value (pred, a, b) or individual predicted value (ipred, c, d) and observe
values (DV) using normal distribution (a, c) and multivariate t distribution (b, d), respectively.
doi:10.1371/journal.pone.0058369.g002
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b2v0 to ensure an increasing absorption phase and a decreasing

elimination phase. Owing to the skewed nature of pharmacoki-

netic data, we shall use a log transform of the data. And for the

GLM inference for other compartment model see Ruth Salway

2008 [8].

Let t Denote an n-dimensional multivariate t distribution with

location vector c, scatter matrix S and degrees-of-freedom u, then

a two-stage generalized linear random effect model that incorpo-

rates a finite mixture model could be rewritten as

Yi~D exp (T’bi)zei, ð2Þ

where bi~(bi0,bi1,bi2)0, ei*iid tni(0,S,u):

At the first stage represented by (2), Yi~(yi1,:::,yik)0 is the

observation vector for the ith individual; D exp (T’bi) is the

function defining the pharmacokinetic model, including subject-

specific variable (e.g. dose). The design matrix T equals (1,ti,1=ti)’,
and ti is the time schedule. b is the vector of fixed effects,

representing the population parameters. eij is the vector of random

effects, and S the positive definite covariance matrix. The

distribution of Yi can be expressed as Yi*tni(ci,S,u) and

interested parameters can be expressed in terms of

b~(b0,b1,b2)’, which representing the model parameters.

At the second stage.

bi~bzgi, ð3Þ

Table 1. Estimate’s comparison between normal distribution (N) and t distribution (t).

parameters Setting values Estimated results (N) Estimated results (t)

b0 0.4 0.3998(0.3997,0.4002) 0.4002(0.3994,0.4001)

b1 20.04 20.0393(20.0405, 20.0392) 20.0400(20.0401, 20.0398)

b2 20.2 20.2001(20.2004, 20.1996) 20.1999(20.2004, 20.1997)

s1 0.008 0.0092(0.0077,0.0105) 0.0088(0.0074,0.0104)

s2 0.008 0.0076(0.0072,0.0086) 0.0087(0.0076,0.0089)

doi:10.1371/journal.pone.0058369.t001

Figure 3. One sample of normal error terms with outliers.
doi:10.1371/journal.pone.0058369.g003

Population Pharmacokinetic Study

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58369



where b~(b0,b1,b2)’ is the associated fixed effects, and

gi*tn(0,V,v):
At the second stage given by (3), a finite mixture model is used

to describe the population distribution, where V represents the

correlation matrix. With equation (2) and (3), the population

physiology parameters such as half-life period, peak concentration

and time to peak (t1 2,= tmax and cmax) could be derived from

b~(b0,b1,b2)’ directly according to the formula given by Ruth

Salway et al [8].

Bayesian Inference
Methods such as Maximum likelihood techniques together with

the algorithm such as EM, SAEM have been frequently used in

GLMMs [18–19]. The computational burden is relatively small.

Due mainly to recent advances in computing technology, the

Bayesian sampling-based approach has been recognized as an

alternative modeling strategy to offer the data-analysis. The ability

to consider all parameter uncertainties is the merit in this

approach. And MCMC techniques have revolutionized the field

of Bayesian statistics by enabling posterior inference for arbitrarily

complex models. Of course it is true that the methods are

computer-intensive and compared to an ‘‘equivalent’’ maximum

likelihood analysis, the overall run-time may be much longer. In

our research, we adopt the Bayesian method for the model with

the t-distribution, the same as that of Wakefield et al [12]. Based on

the Bayesian theory, the posterior probability can be computed as

follows:

p(b,S,VDY ,D)~
p(Y Db,D,S,V)p(V)p(bDS)p(S)Ð

p(Y DD)dY

Since p(Y ) is a normalizing factor to ensure that

ð
p(bDY )db~1,

this factor in practice can be ignored unless alternative models are

compared. Bayes theorem concerns the terms involving b in

essence and hence the complete posterior is often written as

p(b,S,VDY ,D)!p(Y Db,D,S,V)p(V)p(bDS)p(S)

Here the posterior distribution is proportional to the product of

the likelihood and the prior.

To complete a Bayesian formulation of the model above, one

must specify a prior distribution for (b,S,V). Suppose (b,S,V) are

independent priors, that is

p(b,S,V)~p(b)p(S)p(V)

In this paper the traditional approach is adopted to avoid the

confusion. In the absence of sufficient information of prior of b, a

popular method of avoiding improper posterior distributions is to

use proper conjugate priors that are diffuse. For the reason that

closed form posteriors or full conditionals could be derived

analytically in this way, the distribution forms of priors are chosen

traditionally for mathematical convenience. For example, an

inverse-gamma prior is typically specified for S and V when the

form of the normal density was assumed for each observation.

Nowadays there exist several reliable methods for sampling from

non-standard distributions, so it is worthwhile giving a little more

thought towards one’s choice of priors. First Bayes (http://www.

shef.ac.uk/stlao/lb.html) is an entry-level/educational Bayesian

software package with a graphical interface, and it can be used to

explore which distributions best reflect any prior information. For

specific problems, prior uncertainty might be expressed better via

a log-normal or uniform distribution. For example, Natrajan and

Kass discussed the various options available for specifying non-

informative priors for variance components [20]. In our study, the

prior distributions are applied as follows:

b*N(b0,V), and we assume S,V are diagonal matrix with

S~S2
1I, s2

1*G(a,b), and V~S2
2I, s2

2*G(c,d). G(a,b) represents

Table 2. Estimate’s comparison between normal distribution (N) and t distribution (t).

parameters Setting values Estimated results (N) Estimated results (t)

b0 0.8 0.7997(0.7992,0.8001) 0.8000(0.7998,0.8001)

b1 20.04 20.0401(20.0405, 20.0398) 20.0400(20.0401, 20.0398)

b2 20.2 20.2002(20.2006, 20.1997) 20.1999(20.2001, 20.1997)

s1 0.008 0.0092(0.0076,0.0108) 0.0089(0.0074,0.0105)

s2 0.008 0.0077(0.0074,0.0081) 0.0084(0.0075,0.0090)

doi:10.1371/journal.pone.0058369.t002

Table 3. Estimate’s comparison between normal distribution (N) and t distribution (t).

parameters Setting values Estimated results (N) Estimated results (t)

b0 0.8000 0.9601(0.7065,1.1032) 0.7900(0.7812,0.8192)

b1 20.0400 20.0021(20.0490, 20.0011) 20.0410(20.0453, 20.0398)

b2 20.2000 20.4093(20.5978, 20.1927) 20.1999(20.2309, 20.1965)

s1 0.0100 0.0076(0.0052,0.0301) 0.0089(0.0071,0.0123)

s2 0.0010 0.0057(0.0003,0.0103) 0.0044(0.0007,0.0090)

doi:10.1371/journal.pone.0058369.t003

Population Pharmacokinetic Study
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gamma distribution with scale parameter a and location parameter

b. The single corresponding element of b represents the population

mean value, and the prior mean of which is typically set equal to

an initial estimate. The element of V that corresponds to the

gradients is usually set equal to zero, which represents none

existence of covariate effects. Initial estimates based on previous

studies may be a better choice, so in our study we use First Bayes

or S-PLUS to test different values of c and d to find a pair which

can result directly in a close match. Obviously the above discussion

of priors for V is also applicable to the S component. The hyper-

parameters may also be chosen in a similar way.

Combining the complete-data likelihood function of model (2)

with the prior distribution, we have the following joint posterior

density of b.

p(bDY)! P
n

i~1
(vz(Yi{D expfT’big)

0
S{1(Yi{D expfT’big))

|N(b0,V)G(a,b)G(c,d):

But, the posterior distribution is not tractable and thus we resort

to the simulation-based methods. We provide Metropolis-Hastings

algorithm schemes to deal with intractable posterior integration.

The acceptance probability is calculated via a rejection algorithm.

The implementation is described as follows:

The reject probability was denoted as

p~
f (yDbg)bg

i

f (yDbg{1)bg{1
i

, (i~0,1,2):

The rejection component proceeds are:

1. Generate alpha,U(0,1), and b*N(b0,V), independently;

2. Accept b if alpha,min (1,p), b1v0 and b2v0, which are the

constraints of the one compartment model, else keep the values

of last iteration.

Then repeat step 1 and 2 until convergence, and the estimation

could be obtained via analysis of the values of convergence part.

Figure 4. Observed concentrations of theophylline.
doi:10.1371/journal.pone.0058369.g004
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Results

Simulation Study
In order to illustrate that the model described above can be used

for application, we develop three simulated examples.
Example 1. Firstly, we generated samples from normal

distribution error terms, and analyzed these samples by normal

error and t-distribution error in the M-H algorithm, respectively.

The detailed processes are as follows.

The data containing 12 concentration measurements obtained

from each individual over the successive 36 hours was simulated

based on 10 subjects given a drug of 10mg dose each individual.

If b represent the collection of derived parameter vector

(b0,b1,b2)’, the population problem involves estimating b given the

observed data Y~(Y1,Y2,:::,Yn)’: According to the model

mentioned above, expressed by equation (2) and (3), we assigned

that b0~(0:4,{0:04,{0:2)’. Set initial values of b originated from

the initial estimates and then mi can be calculated. 10 subjects are

simulated in Example 1. Time schedules of blood samples are set

as [0.2 0.5 1 2 4 8 14 22 28 30 32 36]/h. The fixed effects are

assumed to be normal, and the variance is 0.008. Random error is

generated from the multivariate normal distribution with mean

value equal to 0 and correlation matrix set as a diagonal matrix

with element equal to 0.008. 100 samples have been obtained

following the above sets.

Stable parameter estimators will be derived as long as there are

enough iteration times through the following steps:

(i) Generate an identity matrix to save the posterior mean

matrix, and calculate the initial mean values.

(ii) Generate one random matrix sampled from the multivar-

iate t distributions for error. Then the simulated observa-

tions equal the mean described in (2) plus the error matrix.

(iii) Calculate the reject probability of the sample and judge the

acceptance probability for each parameter (b,S,V) via the

reject algorithm.

(iv) Update the parameters, and do the iteration 5000 times.

Iterating between step (ii) and step (iii) in the conceptual

algorithm until convergence.

(v) Repeat the steps from (ii) to (iv) 100 times. In each

repetition process, we discard these initial samples to reach

steady state distribution. We estimated the necessary burn-

in (e.g., 4000–5000 iterations) that collected from the

posterior distribution. There are 100 samples in total.

Therefore 100 parameter estimates are obtained, and then

the means and 95% confidence intervals are computed

from them.

With the assumption, the generated data are typical concen-

tration-time picture reflecting some unexpected conditions in the

Figure 5. The markov chain of the parameters.
doi:10.1371/journal.pone.0058369.g005

Table 4. Population model parameters in theophylline data.

parameters Estimated mean 95% CI

b0 0.7778 (0.7768, 0.7787)

b1 20.0379 (20.0380, 20.0377)

b2 20.1985 (20.1993, 20.1978)

doi:10.1371/journal.pone.0058369.t004
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PK study. For the Bayesian models we use independent normal

priors on the fixed effect. The markov chain as shown in Figure 1

could be obtained with the reject probability which is calculated by

using the reject algorithm described before. For this problem, it is

not easy to monitor convergence for S,V. Even if incorrect initial

valves are chosen, the chain will be rapidly converged to the

previous specified values. Stable markov chain of the interested

parameters is achieved after 5000 iteration times. The above

process was implemented using Matlab software and the program

codes are available in File S1. For example, Figure 1 shows that

the posterior means ranges narrowly in the specified prior values.

According to Figure 1, we can draw a conclusion that the

convergence could be obtained rapidly with the initial values of

(0.1, 20.1, 20.1). The means and 95% confidence intervals are

computed from the last 1000 iterations. Point estimates and 95%

interval confidence are presented in Table 1. For diagnostic plot to

evaluate the goodness of fit see Figure 2 From table 1 and figure 2,

it can be seen that the t distribution derives a close result with

corresponding normal models.

Example 2. The second simulation is to demonstrate that the

t distribution approach yields better estimates of the population

parameters when outliers are present. Unlike the above simula-

tion, error terms of the sample are assumed to be normal

distribution here. We random select 5% values of a sample, then

plus a shift (ƒ+5) to these selected value as outliers. For a

concrete example see Figure 3. Different from simulation in

Example 1, we set b0~(0:8,{0:04,{0:2)’, and S1~S2~0:008:
The results in table 2 shows that t distribution derives a more

accurate point estimates and a relative smaller interval than

normal distribution. The finding also shows that the generalized

linear model with a t-distribution may achieve reliable results

when the data exhibit outliers.

Example 3. Unlike the above simulations, error terms of the

sample are assumed to be t -distribution here. Again, we randomly

select 5% values of a sample, then plus a shift (ƒ+10) to these

selected value as outliers. Different from simulation in example 2,

we set b0~(0:8,{0:04,{0:2)’, and S1~0:01, S2~0:001. The

results in table 3 show that t distribution derives a more accurate

point estimates and a relative smaller interval than normal

distribution. The finding also shows that the generalized linear

model with a t distribution may achieve reliable results when the

data exhibit outliers.

Application
Here we present a true example. Real pharmacokinetic data are

available from the resource Facility for Population Kinetics at

http://www.rfpk.washington.edu. Initially this data set was used

for Bayesian analysis of linear and non-linear population models

by using the Gibbs sampling.

For a description of the theophylline study sees Upton et al

(1982). The parent drug concentrations in 24 hours are plotted in

Figure 4. Here we apply our method to the data of 12 subjects

given an oral dose of the antiasthmatic agent theophylline, with 10

concentration measurements obtained from each individual over

the successive 25 hours. The data was originally analyzed in Upton

et al. (1982) [21] and is available from the Resource Facility for

Population Kinetics. The data is shown in Figure 4. It has been

also used in Bayesian analysis of linear and non-linear population

models employing Gibbs sampling with normal errors [22].

Wakefield suggested the data be analyzed by the generalized linear

mixed model with the gamma error [8]. Now we apply t-

distribution for generalized linear mixed model. Again, a

convergence plot of markov chain has been obtained, as can be

seen in Figure 5. Confidence ellipse and confidence ellipsoid

pictures are shown in Figure 6. Most of the observations are

located inside the domain. Ignore some exceptional values, this

may suggest a good fit for the parameters. A comparable

representation with the gamma distribution for the derived

parameters can be seen in Table 4 and Table 5.

For performing the fitting of the model, we choose AIC

information criterion to further analyze the results and asses the

model. AIC information criterion, which can judge complexity of

models, is a standard to evaluate the goodness-of -fit of models.

After calculation, AIC values for the three models are obtained as

42.0077 for gamma model, 39.8176 for t-distribution model and

45.1087 for normal distribution model. The AIC value of t-

distribution is smallest, so in this application it is proper to assume

the error of pharmacokinetic model follows a t-distribution and it

is better than normal distribution.

Discussion

In population PK studies both random effects and within-

subject errors are assumed to be normally distributed for

mathematical convenience. However, such a normality assump-

tion may be not suitable and in turn may affect the estimates of

regression coefficients and variance components especially when

the experimental data is thicker than normal tails or atypical

observations. In this paper, we offered another distribution–

multivariate t-distribution for Population PK data, and have

obtained a more effective result than the Gamma distribution and

normal distribution. In Example 1, results of t-distribution and

normal distribution are close, indicating that t-distribution can be

used when estimating the parameters in population pharmacoki-

netic models. In Example 2, PPK sample is produced from normal

distribution and outliers are introduced. The results show t-

distribution is more accurate than normal distribution for this

sample. In Example 3, we introduced outliers from t-distribution,

which still works better than normal distribution. We conclude

that heavy-tailed t errors for generalized linear regression models

are more stable than the normal error model, in the presence of

outliers and it is an ideal method when processing clinical data.

We choose multivariate t-distribution for three reasons. Firstly,

normal distribution is the limit of t-distribution. When the degree

of freedom tends to be infinite, the t- distribution is exactly the

normal distribution. If the degree of freedom is small, then t-

Table 5. Comparing PK parameter estimates for theophylline data.

Gamma distribution 95% CI t distribution 95% CI Normal distribution 95% CI

tmax 2.01 (1.68,2.38) 2.15 (2.05,2.24) 2.37 (2.20,2.53)

cmax 8.82 (8.05,9.70) 9.46 (9.37,9.55) 9.28 (9.22,9.31)

t1/2 7.66 (6.99,8.42) 7.92 (7.85,7.99) 8.87 (8.64,9.10)

doi:10.1371/journal.pone.0058369.t005

Population Pharmacokinetic Study
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Figure 6. e,f,g: The confidence ellipse of the interested parameters. h: the confidence ellipsoid of the interested parameters.
doi:10.1371/journal.pone.0058369.g006
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distribution tends to be more suitable. Thus, for the real data, we

should estimate the degree of freedom of t-distribution in the very

beginning. In a Bayesian analysis of a model with t-distribution

developed by Geweke (1999) [22], the degree-of-freedom, if

unknown, must be sampled from its conditional distribution. In

this paper, our approach is similar to the method described by

Worsley and Friston (1995) and implemented in SPM99 [23]. This

is a data driven method and independent of any specific

preprocessing method. Obviously, if the number of effective

degree of freedom is large enough (say, .50), approximate

distributions can be used (e.g., normal or x2). Secondly, t-

distribution is advantageous over normal distribution especially

when there exist outliers in the data because t-distribution is more

stable than normal distribution. Thirdly, it only requires simple

modifications to the multivariate normal distribution which could

be easily programmed. It is obvious to use other distributions for

extension.

Bayesian estimation is a good method for Population PK data

(Wakefield et al. [24]). Wakefield [25] concluded that Bayesian

inference was practically feasible for GLMMs, and provided an

attractive choice to likelihood-based approaches. However there

have been two major obstacles during its routine use: the

specification of prior distribution and the evaluation of integrals

which are required for inference. If the likelihood is correctly

specified, the posterior distribution will be asymptotically normal

with the mean of the true values, and variance covariance matrix

may be given by the inverse of the expected information. Bayesian

methods can be applied to the fractional polynomial GLMM,

which can in turn be converted to PK parameters in straightfor-

ward fashion. In this study we placed priors on the model

parameters (beta0, etc.) instead of derived parameters of interest,

e.g., t1=2, cmax etc., to avoid complex calculation and inference.

Though in the pharmacokinetic study, these derived parameters

are more understandable and combine various sources of

information.

In this paper we also discussed informal (graphical) methods,

which could provide both informative diagnostic aids and easily-

understood inferential summaries and were sufficient for practical

purposes. Arguably the most useful graphical tool for assessing

convergence is the ‘‘trace’’ plot, using such a plot an experienced

analyst can usually detect when a single chain has reached steadily,

i.e., at what point the samples become independent of the starting

value. From Figure 1 and Figure 6, we could see that the

simulation process have implemented convergence.

There are many problems that need further studies in the

future. Firstly, in fact, missing data and censoring data are very

common in population PK data analysis. So it is worthwhile to

analyze missing data and censoring data by using t distribution.

Secondly, in this paper, we provide the Bayesian method for fitting

the pharmacokinetic data with t-distribution. Finding more

efficient computing algorithm for population pharmacokinetic

data with t-distribution should be considered in the future.

Thirdly, choice of covariance structure should also be considered

under the condition of t-distribution. Our methods are expected to

expand to the context of variance structures including hetero-

scedasticity, autocorrelation structure, or even autoregressive time

series structure.

Supporting Information

File S1 Simulation analysis matlab code. Matlab code for
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