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Abstract
Background: For patients with resectable locally advanced esophageal squamous cell carcinoma (ESCC), the current standard
treatment is neoadjuvant chemoradiotherapy (nCRT) plus radical surgery. Objective: This study aimed to establish a predictive
model, based on computed tomography (CT) radiomics features and clinical parameters, to predict sensitivity to nCRT in patients
with ESCC pre-treatment. The goal was to provide risk stratification and decision-making recommendations for clinical treatments
and offer more valuable information for developing personalized therapies.Methods: This retrospective study involved 102 patients
diagnosed with ESCC through biopsy who underwent nCRT. To select radiomics features, we used the least absolute shrinkage and
selection operator (LASSO) algorithm. A combined model was constructed, integrating the selected clinically relevant parameters
with the Rad-Score. To assess the performance of this combined model, we utilized calibration curves and receiver operating
characteristic (ROC) curves. Results: Nine optimal radiomics features were selected using the LASSO algorithm. The support
vectormachine (SVM) classifier was identified as having the best predictive performance. The area under the curve (AUC) of the SVM
training group was 0.937 (95% CI: 0.856-1.000), and of the validation group was 0.831 (95% CI: 0.679-0.983). Smoking and alcohol
history, neutrophil to lymphocyte ratio, serum aspartate aminotransferase to alanine aminotransferase ratio, and carcinoembryonic
antigen and fibrinogen levels were independent predictors of sensitivity to nCRT in patients with ESCC. The AUCs of the combined
model for the training and validation groups were 0.870 (95% CI: 0.774-0.964) and 0.821 (95% CI: 0.669-0.972), respectively. The
calibration curve showed that the nomogram’s predictions were close to the actual clinical observations, indicating that the model
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exhibited good predictive performance.Conclusion:Our combined model based on Rad-Score and clinical characteristics showed
high predictive performance for predicting sensitivity to nCRT in patients with ESCC. It may be useful for predicting treatment effects
in clinical practice and demonstrates the significant potential of radiomics in predicting and optimizing treatment decisions.

Keywords
neoadjuvant chemoradiotherapy, esophageal squamous cell carcinoma, radio-chemotherapy sensitivity, radiomics, machine
learning, clinical features

Introduction

Esophageal cancer is one of the most common malignant
tumors, ranking seventh in global incidence and sixth in
mortality in 2020, with over 544 000 deaths reported.1 China
has a particularly high incidence of esophageal cancer, ac-
counting for more than half of all cases worldwide,2 with 90%
of these patients suffering from esophageal squamous cell
carcinoma (ESCC).3 Owing to the non-specific early symp-
toms of esophageal cancer, 80%-90% of patients are diag-
nosed at an advanced stage and require comprehensive
treatment plans.4 Based on the CROSS and
NEOCRTEC5010 studies, neoadjuvant chemoradiotherapy
(nCRT) combined with radical resection has become the
standard treatment for patients with locally advanced re-
sectable esophageal cancer.5-7 The CROSS study is the
longest-running multicenter randomized controlled trial of
nCRT for esophageal cancer. Its results showed that, for
patients with locally advanced esophageal cancer, the median
overall survival of the patient group who received nCRT
combined with surgery was 48.6 months. This was signifi-
cantly higher than the 24 months in the group who received
surgery alone, with a significant benefit in the ESCC
population.5,6 The NEOCRTEC5010 study, a prospective
randomized controlled clinical trial conducted at eight large
esophageal cancer centers in China, further confirmed the
findings of the CROSS study. The results showed that nCRT
combined with surgery showed significant advantages in
median overall survival and disease-free survival compared
with surgery alone, making nCRT the preferred treatment for
patients with locally advanced ESCC.7

Some patients with ESCCwho undergo surgery after nCRT
still experience local recurrence and distant metastasis, at rates
of up to 33.7%–48%.8,9 The pathological complete response
(pCR) rate of nCRT is only 43.2%–49%,8,9 and the hetero-
geneity of treatment responses among patients reflects the
complexity of esophageal cancer. This indicates that evidence-
based treatment plans may not be well suited for all patients
with ESCC, posing a considerable challenge for clinicians.
Therefore, identifying patients with ESCC who are sensitive
to nCRT would enable clinicians to provide timely and more
specific interventions for patients at high risk of tumor control
failure and avoid unnecessary treatment for low-risk patients.

Radiomics is an emerging quantitative image analysis
method that uses digitalized, quantitative, and high-

throughput analysis of imaging modalities—such as com-
puted tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography-CT (PET/CT). Re-
searchers can delineate regions of interest (ROIs) and convert
them into imaging features such as intensity, texture, shape,
and wavelet transformation using machine learning technol-
ogy. These feature data are then subjected to dimensionality
reduction and normalization to select meaningful radiomics
features. Finally, radiomic labels are established through linear
or nonlinear machine learning methods, enabling compre-
hensive quantitative descriptions of the tumors. Radiomics, a
technique that converts high-dimensional medical imaging
data into quantitative features, has been applied to tumor
molecular classification, differential diagnosis, efficacy de-
tection, and prognostic evaluation, providing important as-
sistance in precision oncology clinical decision-making.10-13

Radiomics can serve as a potential tumor biomarker, providing
a more comprehensive description of potential tumor phe-
notypes by extracting imaging features. The main imaging
methods for evaluating esophageal cancer include CT, MRI,
and PET/CT. CT is currently the most commonly used
method, playing an important role in the diagnosis, staging,
treatment guidance, and follow-up of esophageal cancer. MRI
is of great value in the diagnosis of mediastinal lymph node
metastasis of esophageal cancer. However, owing to inter-
ference from heart movement and gastric motility artifacts, as
well as the long acquisition time that requires high patient
compliance, MRI is not currently recommended for routine
imaging of esophageal cancer. PET/CT is also not routinely
recommended, because of its high cost, radiation exposure,
and inability to detect subtle metastases. Therefore, this study
aims to conduct further research based on CT radiomics. To
date, radiomics analysis based on CT, MRI, and PET/CT has
shown good predictive value in terms of the efficacy, treatment
response, prognosis, and lymph node metastasis of esophageal
cancer.14-18 However, few studies have used CT radiomics
combined with clinical parameters to predict sensitivity to
nCRT in patients with ESCC.

The nCRT approach serves as a crucial therapeutic mo-
dality for ESCC. Predicting its efficacy is therefore vital for
constructing personalized treatment plans. However, there is
still a lack of an accurate and reliable predictive method to
assess the sensitivity of patients to nCRT in clinical practice.
Studies based on CT radiomics combined with clinical fea-
tures can improve prediction accuracy. By extracting
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quantitative features and combining them with machine
learning algorithms, CT radiomics can construct more precise
predictive models. These features can reflect the heterogeneity
within tumors and thus predict their responses to nCRT.
Compared with relying solely on clinical features, combining
CT radiomics features can significantly improve the accuracy
and reliability of prediction. By predicting a patient’s sensi-
tivity to nCRT, physicians can develop more personalized
treatment plans for patients, and for those who are predicted to
be sensitive, the current treatment regimen can be continued or
intensified. Conversely, for those predicted to be insensitive to
nCRT, treatment strategies can be adjusted to reduce unnec-
essary examinations and treatment costs while mitigating the
risk of treatment delays and adverse effects.

Therefore, this retrospective study intended to establish a
comprehensive model by extracting and analyzing the pre-
operative CT radiological features of patients with ESCC who
received nCRT, combined with clinical parameters, to identify
the optimal predictive model for patients with ESCC under-
going nCRT. The goal was to predict sensitivity to nCRT in
cases of ESCC before treatment, with the aim of providing risk
stratification and decision-making recommendations for
clinical treatment plans, as well as offering valuable infor-
mation for constructing personalized treatment plans.

Methods

Research Participants

Inclusion and Exclusion Criteria. This retrospective study se-
lected 102 consecutive patients with pathologically confirmed
ESCC from Shandong Cancer Hospital between 2016 and
2021. All of the patients received standard nCRT before
surgery. The study was approved by the Ethics Committee of
Shandong Cancer Hospital and Institute, affiliated with
Shandong First Medical University, which waived the re-
quirement for informed consent due to the retrospective nature
if the study. The workflow of the study is shown in Figure 1.

The main inclusion criteria were as follows: ESCC con-
firmed by pathological tissue examination through endoscopy;
patients evaluated by both the Radiation Oncology and
Surgical Oncology Departments who were identified as high
risk for surgery and were thus recommended to receive nCRT
first; patients assessed to be feasible for surgical treatment
after nCRT; patients with no prior radiation, chemotherapy, or
other anti-tumor treatments before CTexamination; those with
availability of clear CT images before treatment; and those for
whom complete clinical information was accessible through
the medical record system.

The main exclusion criteria were as follows: patients who
received only radiotherapy and chemotherapy and did not
undergo surgical treatment later on; those with incomplete
clinical case information (eg, missing baseline clinical data);
and those for whom the CT imaging quality did not meet our
required standards.

Treatment Protocol

The medical records of all included patients, who underwent
radical surgery after nCRT, were reviewed. The radiotherapy
techniques used were intensity-modulated radiotherapy and
three-dimensional (3D) conformal radiotherapy. The radiation
fractionation scheme was 1.8-2 Gy per fraction, administered
once daily, 5 days per week. The chemotherapy regimen
consisted of paclitaxel or 5-fluorouracil combined with
platinum-based drugs. Each patient received 4-6 cycles of
chemotherapy, with each cycle lasting 21 days. The dosage
and total number of chemotherapy cycles were adjusted based
on each patient’s condition, while adhering to the recom-
mendations of the Chinese Society of Clinical Oncology and
the National Comprehensive Cancer Network guidelines.
Surgical procedures included either three-incision radical
esophagectomy (neck, chest, and abdomen) or two-incision
radical esophagectomy (chest and abdomen).

Grouping

Based on their pathological results after esophageal cancer
resection surgery, the patients were divided into two groups:
the chemoradiotherapy-sensitive group, which included pa-
tients who achieved pCR; and the chemoradiotherapy-
resistant group, which included patients who did not
achieve pCR. pCR was defined as the absence of both residual
invasive disease and positive lymph nodes in all layers of the
esophagus in the surgical specimen after treatment (ypT0N0).

Clinical Model Construction

The patient data collected before treatment included the fol-
lowing parameters: sex, age, smoking history, alcohol history,
height, body surface area, weight, Karnofsky performance
status score, tumor location, clinical T stage, clinical N stage,
clinical tumor, node, and metastasis (TNM) staging, radiation
dose, neoadjuvant chemotherapy regimen, operative approach,
white blood cell count, lymphocyte count, neutrophil count,
platelet-to-lymphocyte ratio, platelet-to-monocyte ratio,
lymphocyte-to-monocyte ratio, systemic immune-
inflammation index, peripheral blood mononuclear cells, eo-
sinophils, basophils, red blood cell count, hemoglobin level,
platelet count, carcinoembryonic antigen (CEA) level,
neutrophil-to-lymphocyte ratio (NLR), fibrinogen (FIB) level,
cytokeratin 19 fragment level, prothrombin time, thrombin
time, activated partial thromboplastin time, D-dimer level,
serum aspartate aminotransferase to alanine aminotransferase
ratio (S/L), total protein, albumin, globulin, albumin-to-
globulin ratio, prealbumin, alkaline phosphatase, cystatin C,
and lactate dehydrogenase level. Clinical T-stage and N-stage
were assessed according to the eighth edition of the TNM
staging system for esophageal and esophagogastric junction
cancers by the Union for International Cancer Control and the
American Joint Committee on Cancer. Univariate analysis was
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performed to assess the relationship between clinical features
and sensitivity to nCRT in patients with ESCC. Clinical var-
iables with P values <0.05 were used to develop a clinical
model for predicting sensitivity to nCRT.

Radiomics Analysis

Image Segmentation. CT images taken within 1 month before
nCRT were collected and uploaded to the RadCloud radiomics
platform (https://radcloud.cn/). Two doctors with over 5 years of
experience in chest imaging diagnosis independently used the
3D-Slicer software to delineate the ROIs on the CT images,
outlining the primary esophageal tumor while avoiding vascular
bundles, fat, calcifications, the esophageal lumen, and sur-
rounding organs. For validation, 20 randomly selected patients
were reassessed by two experienced radiologists for repeated
segmentation. The inter-observer consistency coefficient was
calculated based on the results of the two radiomics feature
extractions, and an inter-observer consistency coefficient
of >0.75 was considered to indicate good robustness and re-
producibility.We performed a consistency check and found good
agreement between the ROI delineations of the two radiologists.

Feature Extraction and Selection. Radiomics features were
extracted from the ROIs using the RadCloud platform (https://
radcloud.cn/). In total, 1688 radiomics features were extracted
from the CT images of each patient. These features were clas-
sified into three categories. The first group (first-order statistics)

consisted of 126 descriptors that quantitatively characterized the
voxel intensity distribution within the CT images using common
basic metrics. The second group (shape- and size-based features)
included 14 3D features reflecting the shape and size of the
region. The third group (textural features) comprised 525 features
that quantified regional heterogeneity differences based on gray-
level run length and gray-level co-occurrence matrix
calculations.

After radiomics feature extraction, several feature selection
methods were used for normalization and dimensionality
reduction to ensure consistency in the magnitudes of different
features and reduce redundant features. Variance thresholding
(at a threshold of 0.8) was used to remove features with
variance values <0.8. The SelectKBest method, a univariate
feature selection approach, used P values to analyze the re-
lationship between features and the classification outcome,
and all features with P values <0.05 were selected. For the
LASSO model, L1 regularization was used as the cost
function, with a cross-validation error set to 5 and a maximum
number of iterations of 1000.

Construction of Machine Learning Models

The 102 patients with ESCC were randomly divided into
training and validation sets in a 7:3 ratio. Based on the ra-
diomics features selected using LASSO regression, a radio-
mics score (Rad-Score) was calculated by linearly weighting

Figure 1. Workflow of the study.
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Table 1. Comparison of Patients’ Characteristics Between Training
Set and Validation Set.

Clinical Characteristics
Training set
(n = 71)

Validation set
(n = 31) P value

Sex 0.963
Female 12 7
Male 59 24

Age 0.067
<61 32 8
>=61 39 23

Smoking history 0.993
No 32 14
Yes 39 17

Alcohol history 0.757
No 32 15
Yes 39 16

Height (cm) 0.344
<167 37 13
>=167 34 18

BSA (m2) 0.910
<1.96 69 30
>=1.96 2 1

Weight (Kg) 0.551
<62.4 39 19
>=62.4 32 12

KPS score 0.493
<85 35 13
>=85 36 18

Tumor location 0.829
Distal 36 15
Middle 25 13
Middle-Distal 9 3
Upper 1 0

Clinical T Stage 0.850
T2 7 2
T3 60 27
T4 4 2

Clinical N Stage 0.392
N0 18 12
N1 41 15
N2 12 4

Clinical Staging 0.547
IIA 9 6
IIB 8 6
IIIA 2 1
IIIB 50 18
IVA 2 0

Radiation dose 0.814
1.8 Gy*23 63 27
2 Gy*20 8 4

WBC (×109/L) 0.859
<6.75 38 16
>=6.75 33 15

(continued)

Table 1. (continued)

Clinical Characteristics
Training set
(n = 71)

Validation set
(n = 31) P value

LYM (×109/L) 0.064
<1.73 46 14
>=1.73 25 17

NE (×109/L) 0.859
<4.36 38 16
>=4.36 33 15

PLR 0.807
<176.08 44 20
>=176.08 27 11

PMR 0.859
<560.44 38 16
>=560.44 33 15

LMR 0.382
<3.65 41 15
>=3.65 30 16

SII 0.879
<774.49 47 21
>=774.49 24 10

PBMC (×109/L) 0.811
<0.96 68 30
>=0.96 3 1

EOS (×109/L) 0.735
<0.12 46 19
>=0.12 25 12

BASO (×109/L) 0.282
<0.04 38 13
>=0.04 33 18

RBC (×1012/L) 0.493
<4.6 36 18
>=4.6 35 13

HGB (g/L) 0.382
<143.4 30 16
>=143.4 41 15

PLT (×109/L) 0.213
<264.23 34 19
>=264.23 37 12

CEA (ng/ml) 0.871
<2.98 40 18
>=2.98 31 13

NLR 0.83
<2.53 35 16
>=2.53 36 15

FIB (g/L) 0.181
<3.59 38 21
>=3.59 33 10

Cyfra21-1 (ng/ml) 0.869
<3.15 47 20
>=3.15 24 11

PT (S) 0.467
<10.51 38 19
>=10.51 33 12

(continued)
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the corresponding coefficient values. The formula used for the
radiomics model was:

Rad� Score ¼ αþ n
Xn

i¼1

βiXi

where α represents the intercept, βi the value of the radiomics
feature, and Xi the corresponding coefficient.

In this study, eight classifiers—including K-nearest
neighbors (KNN), support vector machine (SVM), extreme
gradient boost (XGBoost), linear discriminant analysis
(LDA), logistic regression (LR), Bernoulli Naive Bayes
(BernoulliNB), multi-layer perceptron classifier (MLPClas-
sifier), and stochastic gradient descent (SGD)—were used to
construct the radiomics models. To evaluate the predictive
performance of the models, area under the curve (AUC) values
were calculated for both the training and validation datasets.
Four indicators were used to evaluate the performance of the
classifiers in this study: P (precision = true positives/[true
positives + false positives]), R (recall = true positives/[true
positives + false negatives]), F1-score (F1-score = P × R × 2/[P
+ R]), and support (total number in the test set).

Construction of the Combined Model

The clinical variables with P values <0.05 selected through
univariate analysis and Rad-Score were included in our model.
A combined model was established based on binary logistic
regression, and a nomogram was developed to present the
predicted probabilities of the outcomes visually. The perfor-
mance of the combined model was evaluated using receiver
operating characteristic (ROC) and calibration curves.

Statistical Analysis

The radiomics statistical analysis in this study was conducted
using the RadCloud platform. Statistical analysis of the clinical
factors was performed using SPSS 27.0 (IBM Corp.). Contin-
uous variables were tested for normality. Those that conformed to
a normal distribution were compared using independent samples
Student’s ttest, whereas those that did not were compared using
the Mann-Whitney U test. Categorical variables were compared
between groups using the chi-squared test. Statistical significance
was set at p < 0.05. Nomograms, ROC curves, and calibration
curves were generated using R version 3.6.0 for further analysis.
This research writing follows the STROBE guidelines.

Results

General Information

In total, 102 patients with ESCC who underwent nCRT were
included in this study. The patients were randomly divided into
training and validation sets in a 7:3 ratio, with 71 and 31 patients
in the training and validation sets, respectively. No significant
differences were observed in the general information between the
training and validation sets (p > 0.05; Table 1).

Extraction of Radiomics Features and Establishment of
Rad-Score

Based on the CT images, we first filtered 1688 radiomics features
using the variance method and then applied the optimal selection

Table 1. (continued)

Clinical Characteristics
Training set
(n = 71)

Validation set
(n = 31) P value

TT (S) 0.479
<13.78 42 16
>=13.78 29 15

APTT (S) 0.111
<29.98 36 21
>=29.98 35 10

D-dimer (mg/L) 0.571
<0.4 52 21
>=0.4 19 10

S/L 0.094
<1.26 38 11
>=1.26 33 20

TP (g/L) 0.101
<69.94 40 12
>=69.94 31 19

ALB (g/L) 0.757
<44.79 32 15
>=44.79 39 16

GLB (g/L) 0.607
<25.15 36 14
>=25.15 35 17

A/G 0.706
<1.86 43 20
>=1.86 28 11

PA (g/L) 0.507
<2.06 70 31
>=2.06 1 0

Cys C (mg/L) 0.729
<61 37 15
>=61 34 16

LDH (U/L) 0.933
<192.76 36 16
>=192.76 35 15

Abbreviations: KPS score, Karnofsky performance status score; WBC, white
blood cell; LYM, lymphocyte; NE, neutrophil; PLR, platelet-lymphocyte ratio;
PMR, platelet-to-monocyte ratio; LMR, lymphocyte-to-monocyte ratio; SII,
systemic immune-inflammation index; PBMC, peripheral blood mononuclear
cell; EOS, eosinophils; BASO, basophils; RBC, red blood cell; HGB, hemo-
globin; PLT, platelet. CEA, carcinoembryonic antigen; NLR, neutrophil-to-
lymphocyte ratio; FIB, fibrinogen; CYFRA21-1, cytokeratin-19 fragment; PT,
prothrombin time; TT, thrombin time; APTT, activated partial thromboplastin
time; S/L, serum aspartate aminotransferase to alanine aminotransferase ratio;
TP, total protein; ALB, albumin; GLB, globulin; A/G, albumin/globulin ratio;
PA, prealbumin; Cys C, cystatin C; LDH, lactate dehydrogenase.
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method K for further filtering. In the end, nine optimal features
were selected using the LASSO algorithm (Figure 2), and a
radiomics label (Rad-Score) was constructed (Table 2).

Table 3 summarizes the evaluation results of 8 classifiers
using different feature sets extracted from CT images, with
SVM being the most effective classifier.

Clinical Characteristics

Univariate analysis was performed on the clinical character-
istics of patients in the training set. As shown in Table 4,
smoking and alcohol history, NLR, S/L, CEA, and FIB were

identified as factors influencing the sensitivity of ESCC to
nCRT. A clinical model was constructed on the basis of these
independent predictors.

Construction and Validation of the Combined Model

Univariate analysis revealed a significant difference in Rad-
Score between the two groups of patients (p < 0.05). Com-
bined with clinical features (smoking history, alcohol history,
NLR, S/L, CEA, and FIB) with P values of <0.05, a combined
model was constructed based on binary logistic regression. A

Figure 2. LASSO algorithm on feature selected. (A) LASSO path; (B) MSE path; (C) Coefficients in the LASSO model. Using the LASSO
model, nine features that correspond to the optimal alpha value were selected.
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nomogram (Figure 3) was created, and the performance of the
model was evaluated using ROC and calibration curves. The
AUCs of the combined model for the validation and training
sets were 0.821 and 0.870, respectively. The calibration curve
showed that the nomogram’s predictions were relatively close
to the actual clinical observations. The ROC and calibration
curves of the combined model are shown in Figures 4 and 5.

Discussion

In this study, we developed and validated a combined model
based on CT radiomics and clinical parameters, which ef-
fectively predicted the sensitivity of nCRT in patients with
ESCC using machine learning methods. It may provide a
potentially effective, non-invasive, practical, and reliable
method for predicting the sensitivity of nCRT in ESCC pa-
tients, thereby offering clinicians with supporting information
for clinical decision-making.

One of the hallmarks of malignant tumors is their het-
erogeneity, which is associated with their malignant biological
behaviors.19,20 Radiomics can reveal microscopic tumor in-
formation that is undetectable in naked-eye analyses of two-
dimensional (2D) medical images, quantifying the internal
spatiotemporal heterogeneity of tumors.21,22 This information
includes cell infiltration, necrosis of fine structures, and ab-
normal angiogenesis. These factors can also reflect tumor
glucose metabolism and angiogenesis status to some
degree.12,23-26 A large number of previous studies have
demonstrated the application of radiomic features in pre-
dicting the treatment response of nCRT in patients with ESCC.
Liu Y et al established a model to predict pCR to nCRT in
ESCC by combining magnetic resonance radiomics and dy-
namic hemodynamics.27 The research teams of Liu Yand Lu S
both established MRI-based radiomic models to accurately
predict the pathological response of ESCC patients after re-
ceiving nCRT.28,29 Kasai A et al developed a CT-based ra-
diomic model combined with artificial intelligence (AI)

Table 2. Descriptions of Selected Radiomics Features and Their Associated Feature Groups and Filters.

Radiomics Feature Radiomics Class Filter

Median Firstorder Exponential
Range Firstorder Exponential
SmallAreaHighGrayLevelEmphasis Glszm Lbp-3D-k
Maximum Firstorder Wavelet-HLL
Range Firstorder Wavelet-LLH
SizeZoneNonUniformityNormalized Glszm Wavelet-LLH
SmallAreaLowGrayLevelEmphasis Glszm Wavelet-LLH
Kurtosis Firstorder Wavelet-HHL
ZoneEntropy Glszm Wavelet-HHL

Table 3. Evaluation Metrics for 8 Classifiers on Training Set and Validation Set.

Classifiers AUC 95% CI Sensitivity Precision F1-score Support

Training set SVM 0.937 0.856 - 1.000 0.840 0.890 0.860 37
XGBoost 0.998 0.972 - 1.000 0.970 1.000 0.990 37
KNN 0.892 0.808 - 0.976 0.760 0.900 0.820 37
BernoulliNB 0.806 0.702 - 0.910 0.700 0.740 0.720 37
LDA 0.841 0.751 - 0.931 0.810 0.830 0.820 37
LR 0.847 0.754 - 0.940 0.780 0.830 0.810 37
SGD 0.824 0.725 - 0.923 0.760 0.780 0.770 37
MLPClassifier 0.986 0.937 - 1.000 0.970 0.950 0.960 37

Validation set SVM 0.831 0.679 - 0.983 0.810 0.760 0.790 16
XGBoost 0.800 0.630 - 0.970 0.690 0.690 0.690 16
KNN 0.790 0.635 - 0.945 0.810 0.760 0.790 16
BernoulliNB 0.804 0.645 - 0.963 0.690 0.790 0.730 16
LDA 0.754 0.604 - 0.904 0.690 0.790 0.730 16
LR 0.742 0.591 - 0.893 0.690 0.790 0.730 16
SGD 0.754 0.606 - 0.902 0.750 0.800 0.770 16
MLPClassifier 0.746 0.588 - 0.904 0.750 0.710 0.730 16

Abbreviations: AUC, area under the curve; SVM, support vector machine; KNN, K-nearest neighbors; XGBoost, extreme gradient boost; LDA, linear
discriminant analysis; LR, logistic regression; BernoulliNB, Bernoulli Naive Bayes; MLPClassifier, multi-layer perceptron classifier; SGD, stochastic gradient
descent.
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technology to predict the response and prognosis of patients
with ESCC to chemoradiotherapy.30 For patients with locally
advanced ESCC, when nCRT combined with esophagectomy
is used as the standard treatment, many researchers have
explored neoadjuvant immunotherapy. Wang JL et al estab-
lished and validated a radiomic model based on enhanced CT
images combined with clinical data to predict the major
pathological response of patients with ESCC to neoadjuvant
immunotherapy.18 CT is the primary imaging modality used
during clinical staging and therapeutic response assessment
for esophageal cancer. This study primarily investigated CT-
based radiomics in ESCC by extracting 1688 radiomics
features from the ROIs on plain CT images, including first-
order statistics, shape, size, and texture features. These fea-
tures cover one-dimensional, 2D, and 3D characteristics, and
comprehensively describe the tumor characteristics in CT
images. We analyzed the correlation between these radiomics
features and the sensitivity of ESCC to nCRT. Nine relatively
important radiomics features, including five first-order fea-
tures and four gray-level size zone matrix features were

identified. First-order features represent the distribution of
voxel intensities in the image, whereas the gray-level size zone
matrix comprises texture features representing the spatial
characteristics or voxel intensity distribution of the image gray
levels, providing information on the relative positions of
different gray levels in the image. After feature selection, we
utilized eight classifiers to construct a radiomics model to
evaluate the maximal effect of CT radiomics in predicting the
sensitivity of ESCC to nCRT, and selected the most suitable
algorithm for fitting radiomics features. The results showed
that all eight classifiers exhibited high AUC values, with SVM
being the most effective classifier. These high AUC values
indicate that the CT radiomics model has a strong potential for
clinical application as a tool for predicting patient response
to nCRT.

Furthermore, this study screened six clinical factors that
were found to be associated with the sensitivity of ESCC to
nCRT (NLR, S/L, CEA, FIB, and smoking and alcohol his-
tory), and a clinical model was established based on these
factors. The NLR, the ratio of neutrophils to lymphocytes,

Figure 3. The visual nomogram in the combined model.

Table 4. Univariate Analyses of Variables Linked to pCR in Patients With ESCC.

Clinical Characteristics Non-pCR(n = 34) pCR(n = 37) P value

NLR 3.10 (0.95, 5.82) 2.13 (0.22, 9.5) 0.014
S/L 1.09 (0.47, 2.22) 1.33 (0.56, 2.88) 0.016
CEA 3.39 (1.44, 7.63) 2.67 (0.54, 10.13) <0.001
FIB 3.89 (2.54, 6.29) 3.47 (2.47, 4.76) 0.024
Smoking history 0.017
Yes 23 16
No 11 21

Alcohol history 0.002
Yes 25 14
No 9 23

Values are presented as means. Abbreviations: KNN, K-nearest neighbors; SVM, support vector machine; XGBoost, extreme gradient boost; LDA, linear
discriminant analysis; LR, logistic regression; BernoulliNB, Bernoulli naive Bayes; MLPClassifier, multi-layer perceptron classifier; SGD, stochastic gradient
descent.
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reflects the balance of these two inflammation-related cells and
can reflect the inflammatory response in the body. Changes in
this value may reflect alterations in the tumor microenvi-
ronment. Systemic inflammation is an important feature of
malignant tumors that may significantly affect tumor initiation
and progression, as well as their invasive and metastatic ca-
pabilities. Recent studies have found that an elevated NLR is
associated with poor prognosis in many tumors31 and can
reflect the sensitivity of patients with tumors to treatment.32,33

S/L, which is the ratio of AST to ALT, represents two enzymes
that are involved in various biochemical metabolic pathways
of cells and are commonly used indicators to reflect liver
function. Elevated S/L ratios represent high oxidative stress
and an inflammatory environment in the body. Oxidative
stress and inflammation are closely related to cancer
development.34,35 The S/L ratio is an independent prognostic
factor for malignancies such as prostate and bladder
cancer.36,37 CEA is an acidic glycoprotein present on the

surfaces of cancer cells that exists as a membrane structural
protein with human embryonic antigen characteristics. It is a
broad-spectrum tumor marker that can be used for disease
monitoring, therapeutic response evaluation, and the prog-
nostic assessment of various malignancies.38-41

FIB, a plasma protein synthesized in the liver, is an
important indicator of coagulation function.42 Changes in
FIB levels reflect abnormal activation of the coagulation
system. A number of studies have shown that a hypercoagu-
lable state is associated with tumor invasion and metastasis.43,44

An abnormal coagulation status can also affect the generation
and function of immunosuppressive cells, leading to abnormal
functions of regulatory T cells, tumor-associated macrophages,
and other immunosuppressive cells—thus providing im-
mune escape mechanisms for tumor cells.45,46 Smoking
and alcohol consumption represent high risk factors for
esophageal cancer. Tobacco contains carcinogens such
as aromatic amines, aldehydes, phenols, and nitrosamines,

Figure 4. ROC curve analysis for the nomogram. (A) Combined model in training set; (B) Combined model in validation set.
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which can affect the development of esophageal cancer
when passing through the esophagus.47 The main compo-
nent of alcohol is ethanol, which is oxidized to acetaldehyde
by alcohol dehydrogenase in the liver, then metabolized to
acetic acid by acetaldehyde dehydrogenase. Ethanol and
acetaldehyde can enter esophageal epithelial cells through
local infiltration or systemic circulation, exerting direct
carcinogenic effects. When smoking and alcohol con-
sumption exceed certain levels, the risk of esophageal
cancer increases significantly.48

In this study, these six clinical factors were combined with
the Rad-Score to construct a combined model, upon which a
nomogram model was then developed. The predictive per-
formance of the combined model was evaluated using ROC
and calibration curves. The results showed that the combined
model exhibited good predictive performance, with an AUC
value of 0.870 in the training set and 0.821 in the validation
set. The calibration curve demonstrated appropriate goodness
of fit for the combined model. Overall, we have success-
fully developed a combined predictive model for assessing
the sensitivity of patients with ESCC to nCRT and it has

demonstrated good predictive performance in both training
and validation sets.

Despite our promising results, this study had certain lim-
itations. First, this was a retrospective study with a relatively
small sample size, and no sample size analysis and calculation
were performed. The applicability of the model requires
further validation in a larger sample. Second, this study es-
tablished an esophageal cancer prediction model using ra-
diomics, identifying 9 features from the 1688 extracted
features related to treatment efficacy and deriving a linear
regression equation. However, because of the small number of
cases in this study, it may lead to overfitting in linear analysis,
thereby affecting prediction accuracy. In addition, interpreting
the relationship between these features and tumor biological
characteristics remains an issue to be resolved. Finally, there
are standardization issues with CT image data across different
hospitals and equipment, which can affect the extraction of
radiomics features and the generalization ability of the model.
The current research is still in its preliminary stage and re-
quires validation and application in larger-scale, multi-center
clinical trials.

Figure 5. Calibration curve analysis for the nomogram. (A) Combined model in training set; (B) Combined model in validation set.
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Conclusion

Our combined model based on CT radiomics and clinical
parameters showed good performance for predicting the
sensitivity of patients with ESCC to nCRT. This model can
effectively provide risk stratification and inform decision-
making for clinical treatment. By providing information tai-
lored to each patient’s unique circumstances, this can enhance
personalized therapy.
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