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Abstract: The IEEE 802.15.6 standard has the potential to provide cost-effective and unobtrusive
medical services to individuals with chronic health conditions. It is a low-power standard developed
for wireless body area networks and enables wireless communication inside or near a human body.
This standard utilizes a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol
to improve network performance under different channel access priorities. However, the CSMA/CA
proposed in the IEEE 802.15.6 standard has poor throughput performance and link reliability when
some of the nodes deployed on a human body are hidden from each other. We employ the RTS/CTS
scheme to solve hidden node problems in IEEE 802.15.6 networks over a lossy channel. To improve
performance of the RTS/CTS scheme, we adjust transmission power levels of the nodes according to
transmission failures. We estimate throughput and energy consumption of the proposed model by
differentiating several parameters, such as contention window size, values of bit error ratios, number
of nodes in different priority classes. The performance results are obtained through analytical
approximations and simulations. We observe that the proposed model significantly improves
performance of the IEEE 802.15.6 CSMA/CA by resolving hidden node problems.

Keywords: IEEE 802.15.6; RTS; CTS; wireless body area network; healthcare

1. Introduction

Heart disease is the leading cause of death worldwide. In 2016, 15.2 million people died as a result
of ischemic heart disease and stroke globally [1]. In the same year, chronic obstructive pulmonary
and lung diseases have killed 3 million and 1.7 million people, respectively, and while diabetes and
dementia killed around 3.6 million people. At present, healthcare systems are facing major challenges
due to rapid increase in human population, diseases, and health expenditure. According to [2],
the healthcare cost in the United States was 17.9% of the total Gross Domestic Product (GDP) in 2017,
and it is expected to reach 19.4% by 2027. Based on these statistics, the current healthcare systems
require new cost-effective solutions. Wireless Body Area Network (WBAN) [3,4] has emerged as one
of the key technologies to provide long term, remote, and cost-effective health monitoring of patients,
thus detecting early signs of diseases and providing feedback in real time [5]. A WBAN is comprised
of small and intelligent sensors that are implanted under the human skin or deployed on the human
body to monitor vital signs of patients. Such sensors may be used to control several diseases such

Sensors 2020, 20, 2368; doi:10.3390/s20082368 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0001-5906-9422
http://www.mdpi.com/1424-8220/20/8/2368?type=check_update&version=1
http://dx.doi.org/10.3390/s20082368
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 2368 2 of 16

as heart disease, diabetes, obesity, and other chronic conditions [6]. For example, electrocardiogram
patterns may be exploited to improve health status of patients suffering from ischemic heart disease [7].
With the inception of WBAN technology, researchers have focused on evaluating existing standards
such as IEEE 802.15.4 [8] for WBAN. However, these standards have not been adapted due to the
stringent quality of service requirements of nodes operating in close proximity to human tissues [9].

The IEEE has developed a new standard called IEEE 802.15.6 that allows wireless communication
inside or near the human body, and satisfies the WBAN requirements [10]. This standard employs
a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol that enables access
to the channel based on different user priorities and contention window sizes. The current version
of the IEEE 802.15.6 CSMA/CA encounters low throughput and high delay when some of the nodes
are hidden or exposed. The hidden node problem occurs when a node deployed on the human
body may communicate with the hub but may not be able to communicate with other nodes that
are communicating with the same hub. The exposed node problem occurs when a node is unable
to communicate with the hub due to interference with the neighboring transmission. The hidden
and exposed node problems occur in a variety of scenarios including when multiple IEEE 802.15.6
networks sharing the same spectrum coexist with each other or when some of the nodes in a single
IEEE 802.15.6 network are hidden or exposed due to body shadowing effects [11]. These problems may
also occur when the nodes are deployed on different locations with non-line of sight communication.
The RTS/CTS scheme has been proposed to address problems of hidden nodes in IEEE 802.11 and
IEEE 802.15.4 networks. The RTS/CTS scheme reduces collisions when nodes are hidden from the hub.
In case of problems associated with exposed node, it may increase throughput only when nodes are
synchronized and are able to hear the CTS packets. As discussed in [11], the RTS/CTS scheme has to
potential to significantly improve performance of the IEEE 802.15.6 CSMA/CA protocol.

1.1. Contribution

In this paper, we utilize a power aware RTS/CTS scheme in the IEEE 802.15.6 CSMA/CA based
networks in order to increase channel utilization when nodes are hidden in a network. The key
contributions of this paper are:

• We employ RTS/CTS scheme to solve hidden node problems in IEEE 802.15.6 CSMA/CA based
networks.

• we propose a power aware method that adjusts transmission power levels of nodes to avoid loss
of RTS or CTS packets.

• We propose a mathematical model to validate the proposed approach.
• We perform extensive simulations to show effectiveness of the proposed approach over the

conventional IEEE 802.15.6 CSMA/CA protocol in terms of throughput and energy consumption.

Under the assumptions of a finite number of nodes, we consider a lossy channel that may distort
transmitting packets. When the RTS or CTS packets are lost, we adjust the transmission power levels
of the nodes. This adjustment of transmission power levels is effective when the nodes intend to send
high priority or life-critical data and emergency event reports to the hub. We analyze the performance
of the proposed scheme using both analytical approximations and simulations. The results are derived
for different priority classes as proposed in the IEEE 802.15.6 standard in terms of throughput and
energy consumption. The results obtained in this paper may help us to understand different IEEE
802.15.6 network scenarios before deployment.

The rest of the paper is organized as follows. Section Two provides an overview of related
work on the IEEE 802.15.6, while Section Three presents the RTS/CTS scheme in the IEEE 802.15.6
CSMA/CA protocol. Section Four presents analytical approximations and performance results,
and Section Five concludes the paper.
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2. Related Work

Previous studies have generally used analytical modeling to analyze the performance of the IEEE
802.15.6 CSMA/CA protocol. These models are based on the popular Bianchi’s model, which was
proposed for the IEEE 802.11 standard [12]. Other models adapt extensive simulations to evaluate the
performance of IEEE 802.15.6 contention-free protocols under different traffic scenarios. Furthermore,
limited research work has been conducted on the utilization of the RTS/CTS scheme for this standard.
We categorize extant literature related to our study in the following two subsections.

2.1. Analysis of IEEE 802.15.6 CSMA/CA

Several research studies on performance analysis of the IEEE 802.15.6 are based on Discrete Time
Markov Chain (DTMC). Rashwand et al. proposed an early probabilistic model for this standard,
which evaluates the effects of access phase periods over network performance [13]. By considering
saturated and non-ideal channel conditions, they observed that the IEEE 802.15.6 CSMA/CA perform
poorly for high traffic loads. The authors of [14] proposed a DTMC to evaluate throughput, delay
and power consumption of IEEE 802.15.6 CSMA/CA for an error-prone channel. The proposed
DTMC considers the delay of a node by taking into account the acknowledgement time after the
packets are transmitted. Under a saturated traffic scenario, the authors analyzed the performance
for different user priorities and concluded that five user priorities are enough to satisfy the network
requirements. In another study [15], the authors proposed a Markov chain for all user priorities
defined in the standard and concluded that high priority nodes have unfair access to the channel,
thus degrading throughput of low priority nodes. The authors of [16] reached to the same conclusion
for an ideal channel. They modeled the backoff process of the IEEE 802.15.6 CSMA/CA using a
Markov chain, and analyzed the effects of traffic loads, modulation and coding, and different user
priorities on saturated throughput and access delay. The author of [17] proposed an adaptive priority
method that decreases the number of retransmission by considering the channel environment of
IEEE 802.15.6 networks. Yuan et. al. improved the IEEE 802.15.6 standard by proposing an adaptive
medium access control protocol [18]. The proposed protocol adjusts superframe and access phase
lengths according to the nodes generating traffic. By considering three user priorities, the proposed
protocol outperforms the IEEE 802.15.6 in terms of network delay and power consumption. In [19],
the authors proposed a time-saturation model for IEEE 802.15.6 CSMA/CA by considering the effects
of lost packets, which were ignored in the above-mentioned works. The authors observed that network
throughput converges according to the system values, thus changing the time-saturation model to
either saturated or non-saturation models. In [20], the authors introduced a novel and prioritized
Fibonacci backoff scheme in IEEE 802.15.6 CSMA/CA to decrease node waiting time and number
of collisions on the channel. By using a Markov chain, the authors observed that the proposed
backoff scheme performs better than that of IEEE 802.15.6 in terms of throughput, power consumption,
and head of line delay. The authors of [21] utilized a multi-beam directional antenna in the IEEE 802.15.6
CSMA/CA to extend network reliability and lifetime. In [22], the authors proposed a power-enabled
priority scheme that reduces the number of retransmissions of packets. They concluded that the
proposed scheme outperforms the IEEE 802.15.6 CSMA/CA in terms of bandwidth efficiency, energy
consumption, throughput, and delay. The random transmission delay of the IEEE 802.15.6 CSMA/CA
is analyzed in [23], where the authors used a probabilistic model for asynchronous duty-cycling
networks. The authors concluded that the proposed model achieves better performance in terms of
expectations and variance of the delay.

2.2. RTS/CTS Scheme for Previous Standards

The above studies have not considered hidden and exposed node problems that may degrade
performance of the IEEE 802.15.6 networks for all user priorities. These problems have been solved for
the previous standards including IEEE 802.11 and IEEE 802.15.4 using the RTS/CTS scheme. In [24],
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the authors studied the use of the RTS/CTS scheme to reduce the exposed node problem in IEEE 802.11
based wireless networks. By analyzing the signal strength of nodes in a 3D simulation environment,
they concluded that the proposed scheme has effective throughput performance compared with that
of the standard model. The authors of [25] improved the conventional RTS/CTS scheme proposed
for IEEE 802.11 in order to classify why some transmission fail. According to the proposed model,
the packets are immediately transmitted after failure due to noise. By adapting a four-dimensional
Markov model, the authors observed that the proposed model enhances the performance in terms
of average throughput and packet delay. As the RTS packets may collide during transmissions,
the authors of [26] proposed an RTS collision avoidance method that decreases transmission cost and
overhead of control packets compared to that of the IEEE 802.11 RTS/CTS scheme. In [27], the authors
extended the conventional RTS/CTS scheme for multi-hop IEEE 802.15.4 networks. By proposing
an adaptive RTS/CTS scheme, the authors concluded that adjusting RTS transmission according
to the number of collisions achieves better performance. In a similar study, the authors of [28]
analyzed the RTS/CTS scheme combined with packet concatenation for the non-beacon mode of IEEE
802.15.4 and concluded that the proposed scheme shows effective improvements in throughput, delay,
and bandwidth efficiency. In [29], the authors studied different types of collisions in the presence of
hidden and exposed nodes and analyzed undiscovered collisions between RTS and CTS packets for
duty-cycled WBANs.

As discussed above, the RTS/CTS scheme is the most widely adapted scheme to solve most of
the hidden node problems. However, this scheme has not been studied extensively for performance
improvement of IEEE 802.15.6 CSMA/CA. In our work, we adapt the RTS/CTS scheme for this
standard and provide a detailed analysis to validate our conclusions.

3. RTS/CTS Scheme for IEEE 802.15.6

The IEEE 802.15.6 standard organizes the nodes in a star topology network, where a single node
(called the hub) controls operation and resource allocation in the network. This standard supports
beacon and non-beacon enabled modes. In the latter, the hub may operate in (1) superframe-based
allocations, where the hub utilizes a managed access phase defined in the standard for bilink allocation
intervals, and (2) superframe-free based allocations, where the hub does not use superframe structures
and adapts unscheduled type 2 allocations to send short and a fixed number of data packets. In the
beacon-enabled mode, the hub employs multiple access protocols, such as slotted-ALOHA, CSMA/CA,
and polling according to the traffic requirements. In this mode, the communication is bounded
by superframe boundaries comprising many access phases such as random, exclusive, managed,
and contention access phases. The most common access procedure used in the random-access phase
is the IEEE 802.15.6 CSMA/CA protocol, because it supports eight priority levels according to the
traffic classification. However, as mentioned above, this protocol encounters poor performance in the
presence of hidden node problems.

3.1. Hidden Node Problem in IEEE 802.15.6

The hidden node problem occurs when some nodes are not in the wireless range of other nodes.
In single-hop IEEE 802.15.6 CSMA/CA based networks, the hidden node problem may occur when
some nodes deployed on the human body are in the range of the hub but not in the range of each other.
This is possibly due to body shadowing effects or when the nodes are not in the line of sight, e.g., nodes
deployed on the back of a human body may have a chance of becoming hidden nodes. Figure 1
shows a description of a hidden node in the IEEE 802.15.6 CSMA/CA based networks. As shown in
this figure, node A is in the wireless range of the hub H1, and the same hub is in the wireless range of
node B. However, node A and node B are not in each other’s wireless ranges and so are unable to sense
their respective transmissions. Therefore, when node A transmits data to the hub, node B cannot hear
this transmission and transmits a data packet to the same hub after sensing the channel. Since node B
is not in the transmission range of node A, the channel is perceived to be free even though node A has
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already sent data to the hub. This scenario results in collision at the hub. The hidden node problem
may also occur when multiple IEEE 802.15.6 based networks coexist with each other by sharing the
same spectrum [11].

Figure 1. Hidden node problem in a single-hop IEEE 802.15.6 Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA) based networks.

3.2. Exposed Node Problem in IEEE 802.15.6

The exposed node problem occurs when some nodes are prevented from transmitting data due
to interference with the neighboring transmission. This problem is likely to occur in inter-WBAN
communication or when multiple networks coexist with each other. Figure 2 explains one of the
possible scenarios of an exposed node problem in IEEE 802.15.6 CSMA/CA based networks. Both H1
and H2 are not in the transmission range of each other, however, the transmitting node B and node
E of two adjacent networks are in the same transmitting range. When node B is sending data to H1,
node E may defer its transmission to H2. However, node E could transmit data to H2 since both nodes
are available for transmission. Unlike the hidden node problem that increases the number of collisions,
the exposed node problem increases the delay of nodes by preventing them from transmitting data.

3.3. Proposed RTS/CTS Scheme

There are several methods to solve the above-mentioned problems in the existing literature,
such as increasing transmission power levels of nodes to increase the wireless range of a network, using
omni-directional antennas, moving the hidden nodes, and removing obstacles. As discussed above,
most researchers have focused on adapting the RTS/CTS scheme to enhance the performance of the
CSMA/CA protocol by resolving hidden and exposed node problems. The CSMA/CA defined in the
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IEEE 802.15.6 is different from the conventional CSMA/CA protocol because it adjusts the backoff
process according to eight different user priorities. Unlike previous CSMA/CA, where the contention
window size is doubled for each failure, the IEEE 802.15.6 CSMA/CA doubles the contention window
size for an even number of failed attempts, as shown in Figure 3.

Figure 2. Exposed node problem in multiple IEEE 802.15.6 CSMA/CA based networks.

Figure 3. Backoff process in IEEE 802.15.6.
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In the proposed scheme, when the data frame is available for transmission, the node senses
the channel to check ongoing activity or transmission by other nodes. When the channel is free for
the duration of Short Interframe Spacing (called pSIFS in the standard), the node chooses a random
number called a backoff counter in an interval (1, CW), where CW is the contention window. As shown
in Algorithm 1, the CW = CWi,min in the first stage, where CWi,min indicates the minimum contention
window for nodes in priority class i. The counter represented by C is decremented when the channel is
free for the duration of a CSMA slot. When the counter reaches 0, the node transmits an RTS frame to
the destination. When the CTS is received by the transmitter, the data frame is sent. Other nodes hold
their transmission for the total transmission duration, or Network Allocation Vector (NAV). Figure 4
shows a general description of the RTS/CTS scheme between two nodes. If the frame collides in the
channel due to simultaneous node transmission, the CW is doubled for an even number of failures.
The value of CW may not exceed the maximum contention window represented by CWi,max. The value
of CW is not altered when the failure occurs for odd number of times. The backoff counter is frozen
when the channel is busy or when the current time is outside the access phase lengths or when the
there is not enough time left in the superframe to accommodate frame transmission.

When the node does not receive the CTS, it assumes that the RTS packet may have been lost,
and therefore increases the transmission power level to the next level. This is shown in Algorithm 1,
which is based on our previous work in [30]. The transmission power level represented by PL
is incremented when the CTS is not received. We consider discrete power levels predefined in
the transceiver. The discrete power levels will not exceed the maximum power level represented
byPLmax. This technique extends the wireless range of nodes. It may help to solve the exposed node
problem by including exposed nodes in the wireless range of the transmitter. It may be noted that
increasing the transmission power of nodes affects overall power consumption, and therefore the
power levels are increased for high priority nodes intending to send medical data. As shown in
Algorithm 1, we consider priority class 5 where nodes send medical data to the hub. We assume that
for patients with critical health status, reporting emergency events is most crucial, and this is achieved
through an increase in the transmission power levels. This, however, does not largely affect the power
consumption of nodes compared to the overall throughput obtained through such a power increase.
The values N, Ts f , and Tf represent the backoff stage, superframe duration, and frame duration,
respectively.

Figure 4. RTS/CTS scheme between two nodes in IEEE 802.15.6 CSMA/CA based networks.
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Algorithm 1 Proposed RTS/CTS scheme with power level adjustment for IEEE 802.15.6 CSMA/CA
protocol.

Sensors 2020, xx, 5 8 of 17

Algorithm 1 Proposed RTS/CTS scheme with power level adjustment for IEEE 802.15.6
CSMA/CA protocol.

Input : CWi,min, CWi,max, N, PL

Initialization: CW = CWi,min, C=random(1,CW), N = 0

N ++

for each available frame(i) do

if channel is idle then

if Ts f > Tf and Tpl > Tf then
C - -

end

if C=0 then
Send RTS

end

if CTS received then
Send frame(i)

else

if frame(i)=5 and PL < PLmax then
PL ++

else
PL=PLmax

end

end

if transmission fails then

if C is even then
CW = min(2CW, CWi,max)

else
CW is not changed

end

end

else
Freeze counter until the channel is idle

end

end

When the node does not receive the CTS, it assumes that the RTS packet may have been lost,
and therefore increases the transmission power level to the next level. This is shown in Algorithm 1,
which is based on our previous work in [30]. The transmission power level represented by PL is
incremented when the CTS is not received. We consider discrete power levels predefined in the
transceiver. The discrete power levels will not exceed the maximum power level represented byPLmax.

4. Performance Evaluation

4.1. Numerical Model

We focus on deriving throughput and energy consumption of the proposed model. We assume
saturated and lossy channel conditions for all user priorities. As we assume a lossy channel, the control
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and data frames may be lost due to error or collisions on the channel. We assume three scenarios:
(1) the frames collide on the channel, (2) the data packet including RTS, CTS, and ACK is corrupted
due to error on the channel, and (3) the data is successfully transmitted.

Let ni be the finite number of nodes in priority class i. By following [31], the busy channel
probability pi in the priority class i is given by

pi = bi + (1− bi)pr (1)

where bi and pr represent conditional collision and error probabilities, respectively. The channel is
considered busy when other nodes transmit data. Our pi is different from [31] because it considers
nodes of different user priorities.

Let pe be the average value of BER, we have pr = 1− (1− pe)T , where T is the total length of
payload in bits and is calculated as

T = Preamble + PHY + MH + L + RTS + CTS + ACK (2)

where Preamble and PHY are the physical layer preamble and header, respectively. The MAC header is
represented by MH, and the actual data is represented by L. The control packets RTS, CTS, and ACK
indicate transmission of RTS, CTS, and acknowledgement packets, respectively.

The expression for bi is given by

bi = 1− (1− τi)
ni−1

7

∏
j=0,j 6=i

(1− τi)
nj (3)

In Equation (3), τi represents the transmission probability of a node in the priority class i.
We calculate the value of τi in the same manner as performed in our previous work in [32]. However,
while calculating this value, we assume transmission of RTS and CTS packets. Once τi is known, we
can find the probability of a successful transmission for priority class i using the following equation

si = niτi (1− τi)
ni−1

7

∏
j=0,j 6=i

(1− τi)
nj (4)

By following [12], the saturation throughput can be obtained as

S =
si(1− pidle)(1− pr)TL

pidleρ + (1− pidle)(1− ps)Tc + ps(1− pidle)(1− (1− pe)T)Ts + ps(1− pidle)(1− pe)TTs
(5)

where pidle is the probability of an idle slot time and is given by

pidle =
7

∏
i=0

(1− τi)
ni (6)

In Equation (5), the term si(1− pidle)(1− pr) represents successful transmission on a lossy channel
for priority class i, where 1 − pidle represents at least one transmission on the channel. The term
(1− pidle)(1− ps) represents collisions on the channel, while the term ps(1− pidle)(1− (1− pe)T)

represents an error in transmission. The final term ps(1 − pidle)(1 − pe)T represents successful
transmission in a slot time. The term TL is actual data transmission time. The term Tc represents data
collision or when no CTS is received due to collision. The term Ts represents successful data transmission.
To consider an error on the channel, we assume the worst scenario where the acknowledgement packet is
lost after sending all preceding packets successfully. Therefore, the term ps(1− pidle)(1− (1− pes)T)Ts

in the above equation represents that the last packet, i.e., the acknowledgement, is lost. However, since
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it has already been transmitted, its value cannot be ignored in our calculations. The values of Tc and Ts

are as follows
Tc = TRTS + 2pSIFS + ρ + ψ (7)

Ts = TH + TRTS + TCTS + 4pSIFS + TACK + ρ + ψ (8)

where ρ and ψ indicate backoff slot time and propagation delay, respectively. In Equation (7), the node
waits for the duration of two pSIFS duration, i.e., one for resuming the backoff counter and another for
sending the RTS packet.

To calculate the energy consumption, we assume that the major sources of energy wastage are
collisions, successful transmission, and error on the channel. The total energy consumption is given by

Ei = Ptx(1− pk+1
i )(TH + TRTS + TL) + Prx(4pSIFS + TACK)+

Prx
EBi

1− bi
biT1 + Prx

ps pr

(1− pidle)
T1

(9)

where the first and second terms indicate energy consumption during successful transmission after
k + 1 attempts. As the proposed scheme assumes multiple power transmission levels, we consider
the average transmitting power represented by Ptx, which is the average value of transmitting power
Ptx at different power levels. The term TH is the transmission time of physical layer preamble, header,
and MAC header. The term Prx represents power consumption in the receiving state. The value of Prx is
not incremented. The third term in Equation (9) indicates energy consumption when the channel is busy,
where E(Bi) is the mean backoff delay for nodes in the priority class i. The value of E(Bi) is determined
by following [32]. The last term indicates energy consumption owing to error on the channel.

4.2. Simulation Environment

For the performance analysis, we consider a star topology network where the nodes send data
to the hub over a lossy channel under saturated traffic scenarios. Initially, we consider 10 nodes
in the network; however, the values of throughput and energy consumption are presented against
several nodes in priority class 5, class 3, and class 1. The sizes of the minimum and maximum
contention windows are taken according to [10]. For priority class 5, class 3, and class 1, the values of
(CWi,min, CWi, max) are set to (4,8), (8, 16), and (16, 32). The different values of contention windows
allow nodes to obtain priority access to the channel depending on their traffic type. We assume a
heterogeneous network with multiple nodes priorities. The operation of the proposed protocol is
implemented in an independent C++ simulator by closely following all details and parameters of
IEEE 802.15.6. The size of the data packet is 1560 bits. The narrow band physical layer considered in
our analysis is 2400 MHz to 2483.5 MHz with 971.4 kbps data rate. The physical layer preamble and
header are transmitted at a symbol rate (600 ksps) and a header rate (91.9 kbps) in the aforementioned
physical layer, while the data packet is transmitted at 971.4 kbps. The size of RTS, CTS, and ACK
packets is 193 bits. Table 1 shows values of all parameters used to derive the results. According to
the IEEE 802.15.6, the value of ρ is calculated as ρ = CCA time + 40µs, where CCA time is given by
63/symbol rate. We assume five power levels for high priority nodes, i.e., the power is incremented
five times only. As we consider a lossy channel, the results are derived for BER = 10−5 and BER = 10−4.

Table 1. Standard parameters for 2400 MHz-2483.5 MHz.

Parameter Values Parameter Values

RTS 193 bits CTS 193 bits
Preamble 90 bits PHY 31 bits

MH 72 bits ψ 1 µs
Initial Ptx 33 mW Prx 8 mW

pSIFS 75 µs L 1560 bits
ACK 193 bits Power levels 5
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4.3. Results

4.3.1. Throughput

Figure 5 shows saturation throughput of the proposed scheme for a different number of nodes
in class 5. For BER = 10−5 and BER = 10−4, it is observed that the use of the RTS/CTS scheme
significantly increases overall throughput when compared with the basic IEEE 802.15.6 CSMA/CA
protocol. However, the throughput is decreased both for the RTS/CTS scheme and basic protocol
when we increase the value of BER. For example, for 17 nodes, the saturation throughput of the
proposed RTS/CTS scheme is 0.80 when the value of BER = 10−5; however, the same protocol achieves
0.55 saturation throughput for BER = 10−4. We also observe in the figure that the performance
of the IEEE 802.15.6 CSMA/CA decreases when the number of nodes (including hidden nodes)
contending for the medium increases. Unlike the RTS/CTS scheme, where only the RTS packet is
transmitted after winning access to the channel, the IEEE 802.15.6 CSMA/CA transmits the data packet,
which decreases channel utilization and throughput in case of collisions, or when hidden nodes are
present in the network. The throughput of the IEEE 802.15.6 CSMA/CA depends on the network size,
while the throughput achieved by the RTS/CTS scheme is less sensitive to network size. This shows
that employing RTS/CTS scheme is efficient and scalable for larger networks.

Figure 5. Saturation throughput of the RTS/CTS scheme for IEEE 802.15.6.

However, when we analyze the saturation throughput of the RTS/CTS scheme for different
priority classes, we note that high priority classes result in higher throughput due to small contention
window size. This is because the RTS packets are immediately transmitted by high priority nodes,
and hence, they achieve quick access to the channel. This is shown in Figure 6, where the proposed
scheme achieves 0.8 saturation throughput for 15 nodes in class 5 with BER = 10−5, while the same
scheme achieves 0.6 and 0.4 throughput values for class 3 and class 1, respectively. It is important
to explain that the IEEE 802.15.6 CSMA/CA also achieves the same throughput trend for different
priority classes, as explained in our previous work [32]. We found that it achieves higher throughput
for high priority classes due to small backoff duration; however, the difference is that the throughput
decreases as a function of network size, as discussed above. The effect of contention window size on
the saturation throughput is presented in Figure 7. This figure considers nodes of the same priority
with the same contention window sizes in a network. For BER = 10−5, the figure shows that overall
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throughput of the proposed scheme largely depends on the size of the contention window of the
same priority nodes, i.e., larger contention window size is able to accommodate a large number
of nodes, thus increasing the throughput. When the value CW is 16, the RTS/CTS scheme obtains 0.85
throughput compared with the basic scheme, which is 0.75. The afore-mentioned results show that
the RTS/CTS scheme achieves significant throughput when compared with the conventional IEEE
802.15.6 CSMA/CA protocol for different BER values and number of nodes.

Figure 6. Saturation throughput of the RTS/CTS scheme for different classes with BER = 10−5.

Figure 7. Saturation throughput of the RTS/CTS scheme for different contention window sizes.
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4.3.2. Energy Consumption

Figure 8 presents the energy consumption of different nodes in class 5 and class 3 with BER = 10−5.
As discussed above, high priority classes achieve higher throughput, which eventually results in higher
energy consumption as shown in the figure. The proposed scheme consumes 0.04 joules energy for five
nodes in class 5, and this consumption is increased to 0.11 joules for 40 nodes in the same class. This is
due to collisions caused by the increasing number of nodes required to send RTS packets. The nodes
in class 3 consume less energy as they stay in the backoff stage in the presence of high priority nodes.
Figure 9 compares the energy consumption of the proposed scheme with the IEEE 802.15.6 CSMA/CA
for different nodes in class 5 with BER = 10−5. As the RTS/CTS packets are exchanged in addition to
data packets, they consume extra energy due to control packet overhead, especially when the size of
packets are small. However, as reporting medical data or emergency events are extremely important in
WBANs, it is of relevance that the RTS/CTS scheme is able to achieve maximum throughput in such
situations, and therefore, the additional energy consumption is tolerable for life-critical applications.
For example, the IEEE 802.15.6 CSMA/CA consumes less energy, but it is unable to report emergency
events in the presence of hidden nodes or when the emergency events are generated at such nodes.
The proposed scheme achieves better performance and is able to report emergency events generated at
hidden nodes successfully.

Figure 8. Energy consumption of the RTS/CTS scheme for different classes.
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Figure 9. Energy consumption of the RTS/CTS scheme and IEEE 802.15.6 CSMA/CA.

5. Conclusions and Future Works

5.1. Conclusions

We proposed the RTS/CTS scheme for IEEE 802.15.6 CSMA/CA based networks that enhance
overall performance in the presence of hidden nodes. We considered different transmission power levels
to extend the transmission range of nodes in case of CTS failure. By deriving analytical expressions,
we analyzed the throughput and energy consumption of the proposed scheme for different priority
classes and BER values and concluded that the RTS/CTS scheme is able to achieve best performance
when compared with the basic IEEE 802.15.6 CSMA/CA protocol. The results presented in this paper
may provide guidelines to select optimal parameters and protocols when deploying WBANs for
different healthcare scenarios. The proposed scheme has the potential to solve exposed node problems
by extending the transmission range of exposed nodes.

5.2. Future Work

In the future, we will provide a detailed numerical and simulation-based analysis of the
non-contention based protocols proposed in the IEEE 802.15.6 standard. Other research works in this
direction are

• Research work on the development of energy efficient routing protocols over the IEEE 802.15.6
standard is required to enable communication between multiple WBANs.

• Further research at MAC layer is required to study exposed node problems when multiple
WBANs coexist.

• Performance evaluation of scheduled-based mechanisms used in the IEEE 802.15.6 standard may
be studied for different medical applications.

• The effects of adjusting transmission power levels of nodes in the RTS/CTS based IEEE 802.15.6
networks may be extensively studied in the future.
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