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DPF2, also named ubi-d4/requiem (REQU), interacts with a protein
complex containing OCT4. This paper provides data in support of the
research article entitled “DPF2 regulates OCT4 protein level and
nuclear distribution”. The highlights include: (1) Denature-
immunoprecipitation assay revealed ubiquitination of OCT4 in
pluripotent H9 cells, which was enhancedby MG132, a proteasome
inhibitor. (2) Well colocalization of ectopic OCT4 and FLAG-Ub was
found in HeLa cells, which was also increased by MG132. (3) MG132
treatment decreased DPF2 cytoplasmic expression in vivo. These data
give insights into how proteasome inhibition contributes to studying
ubiquitnation of OCT4.
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Ubiquitination of OCT4 and distribution of DPF2 and OCT4 was investigated in
H9 cells with or without the prescence of MG132. Colocalizationof ectopic OCT4
and FLAG-tag Ub was examined in HeLa cells by immunofluorescence assay.
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1.Anhui Medical University, Hefei, Anhui 230032 China2.University of Maryland,
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ata accessibility
 Data is with this article.
D
Value of the data
� Characterization of endogenous OCT4 ubiquitination was examined in H9 cells.
� Well colocalization of ectopic OCT4 and FLAG-Ub was identified in HeLa cells.
� MG132 treatment decreases cytoplasmic DPF2 in H9 cells and 293 cells.
1. Data

1.1. Ubiquitination of OCT4 in H9 cells

We examined whether UPS plays role in regulating endogenous OCT4 protein level in H9 cells. The
results showed that ubiquitinated OCT4 species, especially the high-molecular-weight ubiquitinated
OCT4 species, were detected by both anti-OCT4 and anti-Ub antibodies (Fig. 1A, lane 3). Surprisingly,
in cells treated with no MG132, OCT4 signals were not detectable in input (Fig. 1B, lane 1), although IP
revealed the consistent presence of OCT4 (Fig. 1B, lane 3). Compared to the cells treated with no
MG132 (Fig. 1B, lane 3), cells exposured to MG132 contain more ubiquitinated OCT4, especially the
high-molecular-weight ubiquitinated OCT4 species (Fig. 1B, lane 4). Moreover, proteasome inhibition
increased OCT4 protein level (Fig. 1B, lane 3 and lane 4, arrow), whereas level of the lower band below
the monomeric form of OCT4, which was also recognized by anti-OCT4 antibody, decreased with the
presence of MG132 (Fig. 1B, lane 3 and 4, arrowhead).

1.2. Well colocalization of OCT4 and FLAG-Ub in Hela cells

OCT4 ubiquitination has been addressed previously through biochemistry assay [1–3]. To inves-
tigate colocalization of OCT4 and Ub, we cotranfected HeLa cells with FLAG-Vector, and FLAG-Ub
along with OCT4 plasmids. Immunofluorescence (IF) assay was performed with or without treatment
of MG132. In cells coexpressed OCT4 and FLAG-Ub, well colocalization of Ub (Fig. 2D and F) and OCT4
(Fig. 2E and F) was identified in both cytoplasm (Fig. 2F, arrows) and nuclei (Fig. 2F, arrowheads).
Treatment of MG132 promotes formation of aggregate-like structures positive for both ubiquitin and
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OCT4 (Fig. 2G–I).
1.3. MG132 treatment affects DPF2 subcellular localization

DPF2, also named ubi-d4/requiem (REQU), interacts with OCT4 or a protein complex containing
OCT4 in vivo [4,5]. It contains double plant homeodomain (PHD) fingers, which functions in ubiqui-
tination of target proteins [6–11].Our recent work indicates DPF2 interact with and promotes ubi-
quitination of OCT4 (see Fig. 3 in [12]). Ubiquitination of proteins is also involved in regulating
localization of themselves [13]. We therefore want to check intracellular localization of DPF2 and
OCT4.H9 cells were subjected to IF assay with anti-DPF2 and anti-OCT4 antibodies with or without
the presence of MG132. While DPF2 is expressed in both cytoplasm (Fig. 3A and C, red, arrows) and
nuclei (Fig. 3A and C, red, arrowheads), OCT4 is expressed mainly in cell nuclei (Fig. 3B and C, green).
Interestingly, MG132 treatment decreased the cytoplasmic expression of DPF2 (Fig. 3E and G, red) and
induced accumulation of DPF2 in nuclei. OCT4 also colocalized with accumulatd DPF2 (Fig. 3F and G,
red, arrowheads). The cytoplasmic and nuclear distribution of OCT4 seemed not changed by MG132
(Fig. 3). However, the more accumulated nuclear OCT4 expression is different from the diffusive OCT4
expression in H9 cells without treatment of MG132 (Fig. 3B and C vs F and G).
Fig. 1. Characterization of OCT4 ubiquitination in H9 cells.
(A) With the presence of MG132 for 6 h, H9 cells were subjected to IP assay with an anti-OCT4 antibody under denaturing
conditions, followed by IB for indicated proteins. (B) With or without the presence of MG132 for 6 h, H9 cells were subjected to
IP with an anti-OCT4 antibody under denaturing conditions followed by IB for indicated proteins. An arrow indicates the
monomeric form of OCT4. An arrowhead indicates the lower band that was also recognized by the anti-OCT4 antibody. D-IP, IP
under denaturing conditions. H.M.W. – high molecular weight.



C. Liu et al. / Data in Brief 5 (2015) 599–604602
2. Experimental design, materials and methods

2.1. Cell culture

293 and HeLa cells werecultured as previously described [14, 15]. Human ESC line, H9, was
maintained on Matrigel(BD Bioscience)-coated plates or coverslips in mTeSR medium (Stem Cell
Technologies), as previously described [16,17].

2.2. Examination of OCT4 ubiquitination in H9 cells by denature IP

H9 cells maintained on Matrigel in mTeSR medium were treated with 20 μM MG132 for 6 h. Cells
were then subjected to denatured immunoprecipitation (IP) using control anti-goat antibodies and
anti-OCT4 antibodies to disrupt proteins that may associate with OCT4, followed by IB for indicated
proteins. Denatured IP was processed according to a previous protocol followed by IB assay as pre-
viously described [18].

2.3. IF assay of colocalization of ectopic OCT4 and FLAG-Ub in HeLa cells

HeLa cells were cotranfected by FLAG-Vector, and FLAG-Ub along with OCT4 plasmids. After 16 h,
the cells were treated with or without MG132 for 6 h, then the cells were fixed and subjected to
immunofluorescence assay using indicated antibodies.
Fig. 2. Coloclization of overexpressed OCT4 and FLAG-Ub in HeLa cells.
Hela cells were cotransfected with plasmids encoding FLAG-Vector (A–C) and FLAG-DPF2 along (D–I) with OCT4. IF assay with
indicated antibodies was performed 16 h after the transfection with (G–I) or without (D–F) the treatment of MG132 for 6 h.
Bar¼5 μm.



Fig. 3. MG132 increases nuclear distribution of DPF2.
(A–D) H9 cells were subjected to IF assay using anti-DPF2 (A and C, red) and anti-OCT4 (B and C, green) antibodies. Arrows
indicate the cytoplasmic DPF2. E–H, H9 cells were subjected to IF assay using anti-DPF2 (E and H, red) and anti-OCT4 (F and H,
green) antibodies in the presence of MG132. (I–J) 293 cells were cotransfected with FLAG-vector and FLAG-DPF2 (WT) along
with OCT4 plasmids. After 16 h, the cells were treated with (lane 5–8) or without (lane 1–4) 20 μM MG132 for 6 h. Then the
cells were subjected to cytoplasmic and nuclear fraction assay followed by IB using indicated antibodies.
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2.4. Cytoplasmic and nuclear fraction assay

Cytoplasmic and nuclear fraction was performed as previous described [13]. The cells were har-
vested and suspended in 5 volumes of cold HB buffer (10 mM Tris, pH 7.9, 1.5 mM MgCl2, 10 mM KCl,
protease inhibitor cocktail). After 15 min on ice, Triton X-100 was added to a final concentration of
0.2%. After vortexing for 5 s, the homogenate was spun for 10 min at 1000 g. The supernatant, con-
taining the cytoplasmic fraction, was transferred to afresh tube, and the salt concentration was
adjusted to 200 mM with 5 M NaCl. The crude nuclear pellet was suspended in RIPA-lysis buffer
containing 1% Triton X-100 and 10% glycerol, and vortexed vigorously at 4 °C for 30 min. The
homogenate was centrifuged for 15 min at 20,000 g. Nuclear and cytoplasmic factions were analyzed
by IB as described.
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