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Abstract
Purpose: Recently, the outbreak of the novel coronavirus disease 2019 (COVID-19) pandemic has seriously endangered
human health and life. In fighting against COVID-19, effective diagnosis of infected patient is critical for preventing the
spread of diseases. Due to limited availability of test kits, the need for auxiliary diagnostic approach has increased. Recent
research has shown radiography of COVID-19 patient, such as CT and X-ray, contains salient information about the COVID-
19 virus and could be used as an alternative diagnosis method. Chest X-ray (CXR) due to its faster imaging time, wide
availability, low cost, and portability gains much attention and becomes very promising. In order to reduce intra- and inter-
observer variability, during radiological assessment, computer-aided diagnostic tools have been used in order to supplement
medical decisionmaking and subsequentmanagement. Computationalmethodswith high accuracy and robustness are required
for rapid triaging of patients and aiding radiologist in the interpretation of the collected data.
Method: In this study, we design a novel multi-feature convolutional neural network (CNN) architecture for multi-class
improved classification of COVID-19 from CXR images. CXR images are enhanced using a local phase-based image
enhancement method. The enhanced images, together with the original CXR data, are used as an input to our proposed
CNN architecture. Using ablation studies, we show the effectiveness of the enhanced images in improving the diagnos-
tic accuracy. We provide quantitative evaluation on two datasets and qualitative results for visual inspection. Quantitative
evaluation is performed on data consisting of 8851 normal (healthy), 6045 pneumonia, and 3323 COVID-19 CXR scans.
Results: In Dataset-1, our model achieves 95.57% average accuracy for a three classes classification, 99% precision, recall,
and F1-scores for COVID-19 cases. For Dataset-2, we have obtained 94.44% average accuracy, and 95% precision, recall,
and F1-scores for detection of COVID-19.
Conclusions: Our proposed multi-feature-guided CNN achieves improved results compared to single-feature CNN proving
the importance of the local phase-based CXR image enhancement. Future work will involve further evaluation of the proposed
method on a larger-size COVID-19 dataset as they become available.

Keywords Chest X-ray · COVID-19 diagnosis · Image enhancement · Image phase · Multi-feature CNN

B Ilker Hacihaliloglu
ilker.hac@soe.rutgers.edu

Xiao Qi
xq53@scarletmail.rutgers.edu

Lloyd G. Brown
brownl8@njms.rutgers.edu

David J. Foran
foran@cinj.rutgers.edu

John Nosher
nosher@rwjms.rutgers.edu

1 Department of Electrical and Computer Engineering, Rutgers
University, Piscataway, NJ, USA

2 Department of Surgery, Rutgers New Jersey Medical School,
Newark, NJ, USA

3 Rutgers Cancer Institute of New Jersey, New Brunswick, NJ,
USA

4 Department of Biomedical Engineering, Rutgers University,
Piscataway, NJ, USA

5 Department of Radiology Rutgers Robert Wood Johnson
Medical School, New Brunswick, NJ, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-020-02305-w&domain=pdf
http://orcid.org/0000-0003-3232-8193


198 International Journal of Computer Assisted Radiology and Surgery (2021) 16:197–206

Introduction

Coronavirus disease 2019 (COVID-19) is an infectious
disease caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), a newly discovered coronavirus
[1,2]. InMarch 2020, theWorld Health Organization (WHO)
declared the COVID-19 outbreak a pandemic. Up to now,
more than 9.23 million cases have been reported across
188 countries and territories, resulting in more than 476,000
deaths [3]. Early and accurate screening of infected pop-
ulation and isolation from public is an effective way to
prevent and halt spreading of virus. Currently, the gold stan-
dard method used for diagnosing COVID-19 is real-time
reverse transcription polymerase chain reaction (RT-PCR)
[4]. The disadvantages of RT-PCR include its complexity
and problems associated with its sensitivity, reproducibility,
and specificity [5]. Moreover, the limited availability of test
kits makes it challenging to provide the sufficient diagnosis
for every suspected patients in the hyper-endemic regions or
countries. Therefore, a faster, reliable, and automatic screen-
ing technique is urgently required.

In clinical practice, easily accessible imaging, such as
chest X-ray (CXR), provides important assistance to clini-
cians in decision making. Compared to computed tomogra-
phy (CT), the main advantages of CXR are enabling fast
screening of patients, being portable, and easy to set up
(can be set up in isolation rooms). However, the sensitivity
and specificity (radiographic assessment accuracy) of CXR
for diagnosing COVID-19 are low compared to CT. This is
especially problematic for identifying early-stage COVID-
19 patients with mild symptoms. This causes larger intra-
and inter-observer variability in reading the collected data
by radiologists since qualitative indicators can be subtle.
Therefore, there is increased demand for computer-aided
diagnosticmethod to aid the radiologist during decisionmak-
ing for improved management of COVID-19 disease.

In view of these advantages and motivated by the need
for accurate and automatic interpretation of CXR images,
a number of studies based on deep convolutional neu-
ral networks (CNNs) have shown quite promising results.
Ozturk et al. [6] proposed a CNN architecture, termed Dark-
CovidNet, and achieved 87.02% three class classification
accuracy. The method was evaluated on 127 COVID-19, 500
healthy, and 500 pneumonia CXR scans. COVID-19 data
were obtained from 125 patients. Wang et al. [7] built a pub-
lic dataset named COVIDx, which is comprised of a total
of 13975 CXR images from 13870 patient case and devel-
oped COVID-Net, a deep learning model. Their dataset had
358 COVID-19 images obtained from 266 patients. Their
model achieved 93.3% overall accuracy in classifying nor-
mal, pneumonia, and COVID-19 scans. In [8], a ResNet-50
architecture was utilized to achieve a 96.23% overall accu-
racy in classifying four classes, where pneumonia was split

into bacterial pneumonia and viral pneumonia. However,
there were only eight COVID-19 CXR images used for
testing. In [9], 76.37% overall accuracy was reported on
a dataset including 1583 normal, 4290 pneumonia, and 76
COVID-19 scans. COVID-19 data were collected from 45
patients. In order to improve the performance of the pro-
posed method, data augmentation was performed on the
COVID-19 dataset bringing the total COVID-19 data size
to 1,536. With data augmentation, they have improved the
overall accuracy 97.2%. In [10], contrast limited adaptive
histogram equalization (CLAHE) was used to enhance the
CXR data. The authors proposed a depth-wise separable
convolutional neural network (DSCNN) architecture. Evalu-
ationwas performed on 668 normal, 619 pneumonia, and 536
COVID-19 CXR scans. Average reported multi-class accu-
racy was 96.43%. The number of patients for the COVID-19
dataset was not available. In [11], a stacked CNN architec-
ture achieved an average accuracy of 92.74%. The evaluation
dataset had 270 COVID-19 scans from 170 patients, 1139
normal scans from 1015 patients, and 1355 pneumonia scans
from 583 patients. In [12], the reported multi-class average
classification accuracy was 94.2%. The evaluation dataset
included 5000 normal, 4600 pneumonia, and 738 COVID-
19 CXR scans. The data were collected from various sources
and patient information was not specified. In [13], transfer
learning was investigated for training the CNN architecture.
The evaluation dataset included 224 COVID-19, 504 normal,
and 700 pneumonia images. 93.48% average accuracy was
reported for three-class classification. The average accuracy
increased to 94.72% if viral pneumonia was included in the
evaluation. In [14], performance of three different, previously
proposed, CNN architectures was evaluated for multi-class
classification. With 2265 COVID-19 images, the study used
the largest COVID-19 dataset reported so far. Average area
under the curve (AUC), for classification of COVID-19 from
regular pneumonia, was 0.73 [14].

Although numerous studies have shown the capability of
CNNs in effective identification of COVID-19 from CXR
images, none of these studies investigated local phase CXR
image features as multi-feature input to a CNN architecture
for improved diagnosis of COVID-19 disease. Furthermore,
except [7,14], most of the previous work was evaluated
on a limited number of COVID-19 CXR scans. In this
work, we show how local phase CXR feature-based image
enhancement improves the accuracy of CNN architectures
for COVID-19 diagnosis. Specifically, we extract three dif-
ferent CXR local phase image features which are combined
as a multi-feature image. We design a new CNN architec-
ture for processing multi-feature CXR data. We evaluate our
proposedmethods on large-scale CXR images obtained from
healthy subjects as well as subjects who are diagnosed with
community acquired pneumonia and COVID-19. Quantita-
tive results show the usefulness of local phase image features
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for improved diagnosis of COVID-19 disease from CXR
scans.

Material andmethods

Ourproposedmethod is designed for processingCXR images
and consists of two main stages as illustrated in Fig. 1:
1—We enhance the CXR images (CXR(x, y)) using local
phase-based image processing method in order to obtain a
multi-feature CXR image (MF(x, y)) and 2—we classify
CXR(x, y) by designing a deep learning approach where
multi-featureCXR images (MF(x, y)), togetherwith original
CXR data (CXR(x, y)), are used for improving the classifi-
cation performance. Next, we describe how these two major
processes are achieved.

Image enhancement

In order to enhance the collected CXR images, denoted
as CXR(x, y), we use local phase-based image analysis
[15]. Three different CXR(x, y) image phase features are
extracted: 1—local weighted mean phase angle
(LwPA(x, y)), 2—LwPA(x, y)weighted local phase energy
(LPE(x, y)), and 3—enhanced local energy attenuation
image (ELEA(x, y)). LPE(x, y) and LwPA(x, y) image fea-
tures are extracted using monogenic signal theory where the
monogenic signal image (CXRM (x,y)) is obtained by com-
bining the band-pass-filtered CXR(x, y) image, denoted as
CXRB(x, y), with the Riesz filtered components as:

CXRM (x, y) = [CXRM1,CXRM2,CXRM3]
= [CXRB(x, y),CXRB × h1(x, y),

CXRB(x, y) × h2(x, y)].

Here, h1 and h2 represent the vector valued odd filter
(Riesz filter) [16]. α-scale space derivative quadrature filters
(ASSD) are used for band-pass filtering due to their superior
edge detection [17]. The LwPA(x, y) image is calculated
using:

LwPA(x, y) = arctan⎛
⎝

∑
sc CXRM1(x, y)√∑

sc CXR
2
M1(x, y) + ∑

sc CXR
2
M2(x, y)

⎞
⎠ .

We do not employ noise compensation during the calculation
of the LwPA(x, y) image in order to preserve the impor-
tant structural details of CXR(x, y). The LPE(x, y) image is

obtained by averaging the phase sum of the response vectors
over many scales using:

LPE(x, y) = {
∑
sc

|CXRM1(x, y)|

−
√
CXR2

M2(x, y) + CXR2
M3(x, y)} × LwPA(x, y).

In the above equation, sc represents the number of scales.
LPE(x, y) image extracts the underlying tissue characteris-
tics by accumulating the local energy of the image along
several filter responses. The LPE(x, y) image is used in
order to extract the third local phase image ELEA(x, y).
This is achieved by using LPE(x, y) image feature as an
input to an L1 norm-based contextual regularization method.
The image model, denoted as CXR image transmission map
(CXRA(x, y)), enhances the visibility of lung tissue features
inside a local region and assures that themean intensity of the
local region is less than the echogenicity of the lung tissue.
The scattering and attenuation effects in the tissue are com-
bined as: LPE(x, y) = CXRA(x, y) × ELEA(x, y) + (1 −
CXRA(x, y))ρ. Here, ρ is a constant value representative of
echogenicity in the tissue. In order to calculate ELEA(x, y),
CXRA(x, y) is estimated first by minimizing the following
objective function [15]:

λ

2
‖ CXRA(x, y) − LPE(x, y) ‖22
+

∑
j∈χ

‖ Wj ◦ (Dj ∗ CXRA(x, y)) ‖1 .

In the above equation, ◦ represents element-wise multipli-
cation, χ is an index set, and ∗ is convolution operator.
Dj is calculated using a bank of high-order differen-
tial filters [18]. The filter bank enhances the CXR tis-
sue features inside a local region while attenuating the
image noise. Wj is a weighting matrix calculated using:
Wj (x, y) = exp(− | Dj (x, y) ∗ LPE(x, y) |2). In the
above equation, the first part measures the dependence
of CXRA(x, y) on LPE(x, y) and the second part mod-
els the contextual constraints of CXRA(x, y) [15]. These
two terms are balanced using a regularization param-
eter λ [15]. After estimating CXRA(x, y), ELEA(x, y)
image is obtained using: ELEA(x, y) = [(LPE(x, y) −
ρ)/[max(CXRA(x, y), ε)]δ] + ρ. δ is related to tissue atten-
uation coefficient (η) and ε is a small constant used to avoid
division by zero [15]. Combination of these three types of
local phase images as three-channel input creates a new
multi-feature image, denoted asMF(x, y). Qualitative results
corresponding to the enhanced local phase images are dis-
played in Fig. 2. Investigating Fig. 2, we can observe that the
enhanced local phase images extract new lung features that
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Fig. 1 Block diagram of the
proposed framework for
improved COVID-19 diagnosis
from CXR

Fig. 2 Local phase
enhancement of CXR(x, y)
images

Fig. 3 Our proposed
multi-feature mid-level (left)
and late-level (right) fusion
architectures

are not visible in the original CXR(x, y) images. Since local
phase image processing is intensity-invariant, the enhance-
ment results will not be affected from the intensity variations
due to patient characteristics or X-ray machine acquisition
settings. The multi-feature image MF(x, y) and the original
CXR(x, y) image are used as an input to our proposed deep
learning architecture which is explained in the next section.

Network architecture

Our proposed multi-feature CNN architecture consists of
two same convolutional network streams for processing
CXR(x, y) images and the corresponding MF(x, y), respec-

tively. Strategies for the optimal fusion of features from
multimodal images is an active area of research. Generally,
data are fused earlier when the image features are corre-
lated and later when they are less correlated [19]. Depending
on the dataset, different types of fusion strategies outper-
form the other [20]. In [21], our group has also investigated
early, mid-, and late-fusion operations in the context of bone
segmentation from ultrasound data. Late-fusion operation
has outperformed the other fusion operations. In [22], the
authors have also used late-fusion network, for segment-
ing brain tumors from MRI data, and have outperformed
other fusion operations. During this work, we design mid-
fusion and late-fusion architectures (Fig. 3). As part of this
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Table 1 Data distribution of the evaluation dataset

Normal Pneumonia COVID-19[7] (COVIDx) COVID-19 [32] (BIMCV) COVID-19 (Merged)

# images 8851 6045 400 2167 2567

# subjects 8851 6031 301 1183 1484

Table 2 Distribution of fivefold cross-validation dataset split for train-
ing, validation, and testing for COVID-19 data only. Same split was
also performed for Normal and Pneumonia datasets

k1 k2 k3 k4 k5

Training data # images 1555 1560 1541 1547 1529

# subjects 890 890 890 890 891

Validation data # images 494 504 512 511 515

# subjects 297 297 297 297 297

Test data # images 518 503 514 509 523

# subjects 297 297 297 297 296

work, we have also investigate several fusion operations:
sum fusion, max fusion, averaging fusion, concatenation
fusion, convolution fusion. Based on the performance of
the fusion operations and fusion architectures, on a prelimi-
nary experiment, we use concatenation fusion operation for
both of our architectures. We use the following network
architectures as the encoder network: pretrained AlexNet
[23], ResNet50 [24], SonoNet64 [25], XNet (Xception) [26],
InceptionV4 (Inception-Resnet-V2) [27] and EfficientNetB4
[28]. Pretrained AlexNet [23] and ResNet50 [24] have been
incorporated into various medical image analysis tasks [29].
SonoNet64 achieved excellent performance in implementa-
tion of both classification and localization tasks [25]. XNet
(Xception) [26], InceptionV4 (Inception-Resnet-V2) [27]
and EfficientNetB4 [28] were chosen due to their outstand-
ing performance on recent medical data classification tasks
as well as classification of COVID-19 from chest CT data
[30,31].

Dataset

We use the following datasets to evaluate the performance
of proposed fusion network models: BIMCV [32], COVIDx
[7], and COVID-CXNet [12]. COVID-19 CXR scans from
BIMCV [32] and COVIDx [7] datasets were combined to
generate the ‘Evaluation Dataset’ (Table 1). For Normal and
Pneumonia datasets, we have randomly selected a subset

of 2567 images (from 2567 subjects) from the evaluation
dataset (Table 1). In total, 2567 images from each class
(normal, pneumonia, COVID-19) were used during fivefold
cross-validation. Table 2 shows the data split for COVID-19
data only. Similar split was also performed for Normal and
Pneumonia datasets. In order to provide additional testing for
our proposed networks, we have designed a new test dataset
which we call ‘Test Dataset-2’ (Table 3). The images from
Normal and Pneumonia cases which were not included in the
‘Evaluation Dataset’ were part of the ‘Test Dataset-2.’ Fur-
thermore, we have included all the COVID-19 scans from
COVID-CXNet [12].

In order to show the improvements achieved using our
proposedmulti-feature CNNarchitecture, we also trained the
same CNN architectures using only MF(x, y) or CXR(x, y)
images. We refer to these architectures as mono-feature
CNNs. Quantitative performance was evaluated by calcu-
lating average accuracy, precision, recall, and F1-scores for
each class [7,9].

Results

The experiments were implemented in Python using Pytorch
framework.Allmodelswere trained using stochastic gradient
descent (SGD) optimizer, cross-entropy loss function, learn-
ing rate 0.001 for the first epoch, and a learning rate decay of
0.1 every 15 epochs with a mini-batches of size 16. For local
phase image enhancement, we have used sc = 2 and the rest
of the ASSD filter parameters were kept same as reported in
[15]. For calculating ELEA(x, y) images, we used λ = 2,
ε = 0.0001, η = 0.85, and ρ, the constant related to tis-
sue echogenicity, was chosen as the mean intensity value of
LPE(x, y). These values were determined empirically and
kept constant during qualitative and quantitative analysis.

Qualitative analysis: Gradient-weighted class activation
mapping (Grad-CAM) [33] visualization of normal, pneu-
monia, and COVID-19 are presented as qualitative results
in Fig. 4. Investigating Fig. 4, we can see the discriminative

Table 3 Data distribution of
Test Dataset-2

Normal Pneumonia COVID-19 (COVID-CXNet) [12]

# images 6284 3478 756

# subjects 6284 3464 Unknown

123



202 International Journal of Computer Assisted Radiology and Surgery (2021) 16:197–206

Fig. 4 Top row: From left to
right CXR(x, y) image of
normal, pneumonia, and
COVID-19 subjects. Bottom
row: Grad-CAM images [33]
obtained by late-fusion
ResNet50 architecture

regions of interest localized in the normal, pneumonia, and
COVID-19 data.

Quantitative analysis of Evaluation Dataset: Table 4
shows average accuracy of the fivefold cross-validation on
the ‘EvaluationDataset’ formono-featureCNNarchitectures
as well as the proposed multi-feature CNN architectures. In
most of the investigated network designs, MF(x, y)-based
mono-feature CNN architectures outperform CXR(x, y)-
based mono-feature CNN architectures. The best average
accuracy is obtained when using our proposed multi-feature
ResNet50 [24] architecture. All multi-feature CNNs with
mid- and late-fusion operation compared with mono-feature
CNNs, with original CXR(x, y) images as input, achieved
statistically significant difference in terms of classifica-
tion accuracy (p<0.05 using a paired t-test at %5 sig-
nificance level). Except SonoNet64 [25], XNet(Xception)
[26], and InceptionV4(Inception-Resnet-V2) [27], all multi-
feature CNNs with mid-fusion operation compared with
mono-feature CNNs with MF(x, y) images as input show
statistically significant difference in terms of classification
accuracy (p<0.05 using a paired t-test at %5 significance
level). We did not find any statistical significant difference
in the average accuracy results between the middle-level and
late-fusion networks (p>0.05 using a paired t-test at %5 sig-
nificance level). Figure 5 presents confusion matrix results
together with average precision, recall, and F1-scores for all
multi-feature late-fusion CNN architectures. One important
aspect observed from the presented results we can see that
almost all the investigated multi-feature networks achieved
very high precision, recall, and F1-scores for COVID-19 data
indicating very few cases were misclassified as COVID-19
from other infected types.

Quantitative analysis of Test Dataset-2: Multi-feature
ResNet50 provides the highest overall accuracy shown in
Table 5, which is consistent with the quantitative result
achieved with the ‘Evaluation Dataset.’ All multi-feature
CNNs with mid- and late-fusion operation compared with
mono-feature CNNs, with original CXR(x, y) images as
input, achieved statistically significant difference in terms
of classification accuracy (p<0.05 using a paired t-test at
%5 significance level). Except XNet(Xception) [26], all the
multi-feature CNNs with mid-fusion operation compared
withmono-featureCNNswith originalCXR(x, y) images as
input achieved statistically significant difference in terms of
classification accuracy (p<0.05 using a paired t-test at %5
significance level). Except XNet(Xception) [26], all multi-
feature CNNs with mid-fusion operation compared with
mono-feature CNNs with MF(x, y) images as input show
statistically significant difference in terms of classification
accuracy (p<0.05 using a paired t-test at %5 significance
level). Similar to ‘Evaluation Dataset’ results, there was no
statistically significant difference in the average accuracy
results between the middle-level and late-fusion networks
(p>0.05 using a paired t-test at %5 significance level) except
ResNet50 [24], and XNet(Xception) [26] architectures. Con-
fusion matrix results, together with average precision recall
and F1-score values, for all multi-feature late-fusion CNN
architectures evaluated is presented in Fig. 6. Similar to the
results presented for ‘Evaluation Dataset,’ high precision,
recall, and F1-score values are obtained for the COVID-19
data.
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Table 4 Mean overall accuracy
after fivefold cross-validation on
‘Evaluation Data’ using
mono-feature CNNs and
multi-feature CNNs. Bold
denotes the best results obtained

AlexNet ResNet50 SonoNet64

CXR(x, y) 91.9± 0.55 94.58± 0.43 93.59±0.7

MF(x, y) 93.51± 0.39 94.82±0.58 94.70±0.4

Middle fusion 94.27±0.64 95.44±0.28 95.30±0.42

Late-fusion 94.32± 0.27 95.57± 0.3 95.35±0.4

Xception InceptionV4 EfficientNetB4

CXR(x, y) 93.38±0.38 93.43±0.31 93.47±0.62

MF(x, y) 93.83±0.47 94.17±0.59 94.19±0.45

Middle fusion 94.47±0.76 94.89±0.36 95.26±0.61

Late-fusion 94.95± 0.52 94.90±0.46 95.26±0.43

Fig. 5 Confusion matrix, and average precision, recall, and F1-scores obtained from fivefold cross-validation on ‘Evaluation Data’ using all
multi-feature network models

Discussion and conclusion

Development of a new computer-aided diagnostic methods
for robust and accurate diagnosis of COVID-19 disease from
CXR scans is important for improved management of this
pandemic. In order to provide a solution to this need, in
this work, we present a multi-feature deep learning model
for classification of CXR images into three classes includ-

ing COVID-19, pneumonia, and normal healthy subjects.
Our work was motivated by the need for enhanced repre-
sentation of CXR images for achieving improved diagnostic
accuracy. To this end, we proposed a local phase-based CXR
image enhancement method. We have shown that by using
the enhanced CXR data, denoted as MF(x, y), in conjunc-
tion with the original CXR data, diagnostic accuracy of CNN
architectures can be improved. Our proposed multi-feature
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Table 5 Mean overall accuracy
after fivefold cross-validation on
‘Test Dataset-2’ using
mono-feature CNNs and
multi-feature CNNs. Bold
denotes the best results obtained

AlexNet ResNet50 SonoNet64

CXR(x, y) 90.59±0.21 93.4±0.17 91.1±0.8

MF(x, y) 91.97± 0.24 93.17±0.3 93.46±0.15

Middle fusion 92.52±0.32 94.26±0.19 93.94±0.13

Late-fusion 92.72±0.17 94.44±0.2 94.02±0.14

Xception InceptionV4 EfficientNetB4

CXR(x, y) 92.28±0.46 92.99±0.2 92.16±0.49

MF(x, y) 92.61±0.19 92.89±0.27 93.1±0.17

Middle fusion 92.89±0.12 93.8±0.27 93.54±0.29

Late-fusion 93.77±0.15 94.01±0.09 93.91±0.07

Fig. 6 Confusion matrix, and average precision, recall, and F1-scores obtained from fivefold cross-validation on ‘Test Dataset-2’ using all multi-
feature network models

CNN architectures were trained on a large dataset in terms
of the number of COVID-19 CXR scans and have achieved
improved classification accuracy across all classes. One of
the very encouraging result is the proposed models show
high precision, recall, and F1-scores on the COVID-19 class
for both testing datasets. Finally, compared to previously
reported results, our work achieves the highest three class
classification accuracy on a significantly larger COVID-19

dataset (Table 6). This will ensure few false positive cases for
the COVID-19 detected fromCXR images andwill help alle-
viate burden on the healthcare systemby reducing the amount
of CT scans performed. While the obtained results are very
promising, more evaluation studies are required specifically
for diagnosing early-stage COVID-19 from CXR images.
Our future work will involve the collection of CXR scans
from early-stage or asymptotic COVID-19 patients. We will

123



International Journal of Computer Assisted Radiology and Surgery (2021) 16:197–206 205

Table 6 Comparison of proposed method with recent state-of-the-art methods for COVID-19 detection using CXR images

Study Method Dataset Acc (%)

Wang et al. [4] COVID-Net Training data Testing data: 93.3

7966 Normal 100 Normal

5438 Pneumonia 100 Pneumonia

258 COVID-19 100 COVID-19

Ozturk et al. [6] DarkCovidNet 500 Normal 87.02

500 Pneumonia

127 COVID-19

Haghanifar et al. [12] UNet+DenseNet Training data Testing data: 87.21

3000 Normal 724 Normal

3400 Pneumonia 672 Pneumonia

400 COVID-19 144 COVID-19

Siddhartha and COVIDLite 668 Normal 96.43

Santra [10] 619 Viral Pneumonia

536 COVID-19

Apostolopoulos and Mpesiana [13] VGG19 Testing data 1 Testing data 2: 93.48 & 94.72

504 Normal 504 Normal

700 Bacterial 714 Viral &

Pneumonia Bacterial Pneumonia

224 COVID-19 224 COVID-19

Proposed Method Fus-ResNet50 Testing data 1 Testing data 2 95.57 &94.44

2567 Normal 6284 Normal

2567 Pneumonia 3478 Pneumonia

2567 COVID-19 756 COVID-19

also investigate the design of a CXR-based patient triaging
system.
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