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Abstract

Background: More extensive use of metagenomic shotgun sequencing in microbiome research relies on the development of
high-throughput, cost-effective sequencing. Here we present a comprehensive evaluation of the performance of the new
high-throughput sequencing platform BGISEQ-500 for metagenomic shotgun sequencing and compare its performance
with that of 2 Illumina platforms. Findings: Using fecal samples from 20 healthy individuals, we evaluated the
intra-platform reproducibility for metagenomic sequencing on the BGISEQ-500 platform in a setup comprising 8 library
replicates and 8 sequencing replicates. Cross-platform consistency was evaluated by comparing 20 pairwise replicates on
the BGISEQ-500 platform vs the Illumina HiSeq 2000 platform and the Illumina HiSeq 4000 platform. In addition, we
compared the performance of the 2 Illumina platforms against each other. By a newly developed overall accuracy quality
control method, an average of 82.45 million high-quality reads (96.06% of raw reads) per sample, with 90.56% of bases
scoring Q30 and above, was obtained using the BGISEQ-500 platform. Quantitative analyses revealed extremely high
reproducibility between BGISEQ-500 intra-platform replicates. Cross-platform replicates differed slightly more than
intra-platform replicates, yet a high consistency was observed. Only a low percentage (2.02%–3.25%) of genes exhibited
significant differences in relative abundance comparing the BGISEQ-500 and HiSeq platforms, with a bias toward genes
with higher GC content being enriched on the HiSeq platforms. Conclusions: Our study provides the first set of performance
metrics for human gut metagenomic sequencing data using BGISEQ-500. The high accuracy and technical reproducibility
confirm the applicability of the new platform for metagenomic studies, though caution is still warranted when combining
metagenomic data from different platforms.

Keywords: BGISEQ-500; quantitative metagenomic analyses; next-generation sequencing

Data Description

To evaluate the performance of the BGISEQ-500 platform for
metagenomic sequencing, stool samples were collected from
20 healthy adults in the Stockholm regional area. Fecal DNA
was extracted and sequenced on the BGISEQ-500 sequencer. The
quality of raw data was evaluated and filtered by an in-house
developed quality control (QC) pipeline to obtain high-quality
data (see the Methods and Additional files 2 and 3 for details).
Qualitative and quantitative analyses were conducted to evalu-
ate the intra-platform reproducibility. In addition, data obtained
by sequencing of the same fecal DNA samples on the HiSeq 2000
platform and the HiSeq 4000 platform were included for cross-
platform comparison (see Fig. 1 and the Methods for details).

Methods
Healthy subject enrollment and sampling

Twenty Swedish healthy adults living in the Stockholm regional
area were enrolled as part of a large study cohort: “Character-
ization of the intestinal microbiome in patients with IgA defi-
ciency.” The detailed inclusion and exclusion criteriawere as fol-
lows: (1) no diagnosed gastrointestinal problems (inflammatory
bowel disease, celiac disease, or lactose intolerance); (2) no an-
tibiotic treatment for at least 60 days; (3) no intake of yoghurt
products for at least 5 days prior to sampling. Feces specimens
were collected at home by each participant, immediately frozen
in the home freezer, and transferred to the laboratory on dry ice
and kept frozen at –80◦C until processed.

DNA extraction

The stool DNA was extracted in accordance with the MetaHIT
protocol as described previously [1]. The DNA concentration was
estimated by Qubit (Invitrogen).

Library preparation and sequencing

For sequencing using the BGISEQ-500 platform
Five hundred ng of input DNAwas used for library formation and
fragmented ultrasonically with Covaris E220 (Covaris, Brighton,
UK), yielding 300 to 700 bp of fragments. Sheared DNA with-

out size selection was purified with an AxygenTM AxyPrepTM

Mag PCR Clean-Up Kit. An equal volume of beads was added to
each sample, and DNA was eluted with 45 μL TE buffer. We per-
formed end-repairing and A-tailing with a 2:2:1 mixture of T4
DNApolymerase (ENZYMATICSTM P708–1500), T4 polynucleotide
kinase (ENZYMATICSTM Y904–1500), and rTaq DNA polymerase
(TAKARATM R500Z). Twenty ng of purified DNA was used, and
enzymes were heat-inactivated at 75◦C. Adaptors with specific
barcodes (Ad153 2B) were ligated to the DNA fragment by T4
DNA ligase (ENZYMATICSTM L603-HC-1500) at 23◦C. After the lig-
ation, PCR amplification was carried out. Fifty-five ng of purified
PCR products was denatured at 95◦C and ligated by T4 DNA lig-
ase (ENZYMATICSTM L603-HC-1500) at 37◦C to generate a single-
strand circular DNA library. Eight barcoded libraries were pooled
in equal amounts to make DNA Nanoballs (DNB). Each DNB was
loaded into 1 lane for sequencing.

Sequencing was performed according to the BGISEQ-500 pro-
tocol (SOP AO) employing the SE100 mode as described previ-
ously [2]. For reproducibility analyses, DNA from the same 8 sub-
jects (S01-S08) were processed twice following the same proto-
col as described above to serve as library replicates, and 1 of
the DNBs from the same 8 subjects was sequenced twice as se-
quencing replicates. As shown in Fig. 1, a total of 36 datasets
were generated using the BGISEQ-500 platform.

For sequencing using the HiSeq 2000 and 4000 platforms
One μg DNA was sheared to 350 bp using the Covaris LE220 (Co-
varis, Inc., Woburn, MA, USA), size selected using AMPure XP
beads (Beckman Coulter, Brea, CA, USA). Adapters were then lig-
ated. Twenty libraries were prepared following BGI’s protocol [3].
Five librarieswere pooled for each lane, and sequencingwas per-
formed on an Illumina HiSeq 2000 using V3 reagents for 100 bp
of paired-end reads. The base-calling was performed using Illu-
mina pipeline Real Time Analysis (RTA; version 1.13.48) to pro-
cess the raw fluorescent images and call sequences.

For both platforms, raw data containing multiple subjects
were first split into separate files based on subject-specific
barcodes. The samples of the 20 subjects sequenced by both
BGISEQ-500 and HiSeq 2000 were used to assess the compati-
bility of metagenomic data across these platforms. For compar-
ison, only the forward reads from HiSeq 2000 were used.
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Figure 1: Schematic model summarizing the study design and analysis strategy. Schematic diagram depicting the process of data generation, including collection of
fecal samples and extraction of DNA from 20 healthy subjects, library preparation, and sequencing strategy for BGISEQ-500 and HiSeq 2000. Each circle indicates 1
independent subject, with subject ID shown in the circle. For BGISEQ-500, each sample was sheared and tagged with a unique barcode to prepare libraries, then equal

amounts of DNA fragments from 8 samples were pooled together for DNB formation, loading, and sequencing. In total, 20 samples were sequenced in 3 lanes (F0,
G0, and H0). Of them, DNA from 8 subjects (S01-S08) was utilized to perform library construction and sequencing twice; the corresponding 8 paired datasets from
lane I0 (green) and lane F0 (blue) were considered library replicates. DNBs from the same 8 subjects were loaded and sequenced twice to generate 8 paired sequencing
replicates (lane F0 and lane F1). Twenty datasets fromHiSeq 2000 were also generated in this study. The detailed assessment and comparison analyses of metagenomic

datasets between intra- and inter-platforms are shown below.

Quality control of sequencing data

To evaluate the data quality from the 2 different sequenc-
ing platforms, raw FASTQ reads from BGISEQ-500 and HiSeq
2000 were converted into Sanger Phred+33 quality score for-
mat and Phred+64 quality score format, respectively [4]. Quality
assessment by base position revealed lower-quality scores in
the beginning of raw reads from the HiSeq 2000 platform com-
paredwith BGISEQ-500 and a gradually decreasing trend of qual-
ity toward the 3′-end of reads on both platforms (Additional file
1). Considering that a routinely tail-trimming QC pipeline would
not be sensitive to detection and filtering of readswith randomly
distributed low-quality bases, we developed an overall accuracy
(OA) control strategy for quality adjustment (Additional file 2). By
using this approach, 96.06% of the raw reads remained as high-
quality reads, which attained an average length of 85 bp, with
90.56% of bases scoring Q30 and above. The parameters of se-
quencing performance both before and after the QC process are
presented in Additional file 3.

Alignment and quantification of metagenome content

The high-quality reads of the BGISEQ and HiSeq platforms were
then aligned to hg19 using SOAP2.22 (identity ≥ 0.9) to remove
human reads (SOAPaligner/soap2, RRID:SCR 005503) [5]. The re-
tained clean reads were aligned to the integrated gene catalog

(IGC) by using SOAP2.22 (identity ≥ 0.95) [5]. As shown in Ad-
ditional file 4, the clean reads from BGISEQ-500 reached an av-
erage IGC mapping rate of 77.77% and an average unique map-
ping rate of 63.27%, which are comparable to the mapping rates
of reads from the HiSeq 2000 platform. The IGC mapping ratio
of subject S01 (54.58%) was significantly lower in the HiSeq 2000
dataset than in the BGISEQ-500 dataset (Additional file 4). There-
fore, we eliminated subject S01 for subsequent analysis. To elim-
inate the influence of different numbers of reads per sample in
intra- or cross-platform analyses, uniquely mapped reads were
downsized to 20 million for each subject. Gene relative abun-
dance (RA) was calculated based on the down-sized mapped
reads, as previously described [1]. Relative species abundance in
each sample was assessed using MetaPhlAn2 [6].

Intra-platform reproducibility

To estimate the probability distribution of gene occurrence in
duplicate experiments, we assessed the expected read count
fluctuations based on 20 million IGC uniquely mapped reads
(Supplementary Methods). As shown in Fig. 2A, more than 99.5%
of genes in replicate 1 (F0) exhibited the expected read count
fluctuations in the corresponding sequence replicate 2 (F1) and
library replicate 2 (I0; 99% confidence interval [CI]). This indi-

https://scicrunch.org/resolver/RRID:SCR_005503
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Figure 2: Evaluation of intra-platform reproducibility. A, Detecting mapped read count fluctuations of genes between intra-platform replicates. Unique IGC mapped
reads were downsized to 20 million for each subject, and the read count fluctuations were estimated (Supplementary Methods). The x-axis represents mapped read
counts of a gene in replicate 1 (F0), and the y-axis represents mapped read counts of that gene in replicate 2 (F1 as sequencing replicate and I0 as library replicate).
The area bordered by the red line represents the 99% confidence interval (CI) of genes showing the expected read count fluctuations in their replicates. The dashed

line indicates that, at 99% CI, genes with greater than or equal to 10 reads in replicate 1 (x-axis) could be detected (with mapped reads great than or equal to 1) in
replicate 2 (y-axis). B, Spearman’s correlation coefficient. Genes with greater than or equal to 10 mapped reads per sample were retained as highly reproducible genes
and used for Spearman correlation analysis. Both library and sequence replicates showed very high correlations at the gene levels (0.930 and 0.926) and species levels
(0.984 and 0.989).

cates a high reproducibility of gutmicrobial gene detection using
the BGISEQ-500 platform.

To assess the consistency of relative abundance identifica-
tion of gut microbial genes, we performed Spearman correlation
analysis based on highly reproducible (HR) genes and species
profiles (SupplementaryMethods). Both sequence replicates and
library replicates showed high consistency at the gene level
(Spearman’s rho > 0.91) and species level (Spearman’s rho >

0.97) (Fig. 2B). We further quantified the mean difference be-
tween replicates by using area left of the cumulative curve (ALC)
(Supplementary Methods) [7]. The cumulative distributions of
replicate differences were plotted (Additional file 5A). The mean
gene relative abundance differences between sequence repli-
cates ranged from 1.008- to 1.323-fold change (Additional file
5B). Similarly, the differences between library replicates ranged
from 1.011- to 1.340-fold change (Additional file 5B). Together,
these results suggest that very little variation was introduced by
library preparation and sequencing processes.

Furthermore, 80 453 and 80 184 HR genes detected in at least
6 pairs of replicates in sequence and library replicates were

used for statistical tests, respectively (Supplementary Methods).
Paired tests of gene abundances revealed no significant dif-
ference between BGISEQ-500 technical replicates (false discov-
ery rate [FDR] < 0.05, Benjamini-Hochberg adjustment). Collec-
tively, these findings demonstrate that the BGISEQ-500 platform,
across the entire process of library preparation and sequencing
ofmetagenomic DNA samples, provides highly reproducible and
well-controllable results.

Cross-platform consistency

Previously, shotgun metagenomic DNA sequence reads have
mostly been generated using Illumina platforms, warranting
evaluation of data consistency between the BGISEQ-500 and Illu-
mina platforms; 91.89% of the genes in the BGISEQ-500 datasets
showed expected read count fluctuations in HiSeq 2000 (99%
CI) that were less than intra-platform replicates (Fig. 3A). Spear-
man correlation of HR gene and species profile of cross-platform
samples reached 0.724 and 0.948 (Fig. 3B). Compared with
intra-platform variations, cross-platform comparison showed a
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Figure 3: Evaluation of inter-platform consistency. For 19 cross-platform replicates at 99% CI, 91.89% genes in the BGISEQ-500 datasets showed the expected mapped
read count fluctuations using HiSeq 2000 (A). The Spearman correlation analyses revealed high agreement within 19 pair of platform replicates between BGISEQ-500
and HiSeq 2000 (B) (an average Spearman’s rho of 0.724 at gene level [top] and 0.948 at species level [bottom]) and between BGISEQ-500 and HiSeq 4000 (C) (an average

Spearman’s rho of 0.859 at gene level [top] and 0.965 at species level [bottom]).

slightly greater difference. The differences in relative abundance
between cross-platform groups ranged from 1.409- to 2.015-fold
change (Additional file 5B).

Among 349 479 HR genes detected in at least 6 pairs of cross-
platform replicates, the relative abundance of 11 350 (3.25%)
genes differed significantly between these 2 platforms (FDR <

0.05, Benjamini-Hochberg adjustment). Among them, 2051 were
detected by paired t tests, and 9299 were detected by paired sign
tests (SupplementaryMethods). Additionally, these 11 350 genes
showed a bimodal distribution in GC content (Fig. 4A). AT-rich
genes were enriched in the BGISEQ-500 dataset. Conversely, the
relative abundances of GC-rich genes were higher in the HiSeq
2000 dataset (Fig. 4B). In accordance with the taxonomic anno-
tation of IGC, 25.37% of the genes that differed in relative abun-
dance were assigned to known species (Additional file 6).

Assuming that the abundance of most genes from a species
should be even and independent of their GC content, we con-
ducted robust linear regression analysis of the correlation be-
tween the abundance of genes and their GC content for each
species (Supplementary Methods). Based on the genes in the
top 20 species exhibiting the most significant differences in
abundance, the median of regression coefficient of the BGISEQ-
500 dataset was close to 0, namely –0.095 (Fig. 4C; Additional
file 7), whereas, the regression coefficient of the HiSeq 2000
dataset was 0.925, indicating a slightly positive correlation be-
tween gene abundance and their GC content. The regression co-
efficient between all tested genes from the 20 species and their
GC contents exhibited a similar tendency (Fig. 4D; Additional
file 7). Additionally, generalized linear model (GLM) regression
analysis was conducted to investigate the associations between
approximate relative species abundance and GC content across
the 2 platforms. MetaPhlAn2 [6] was utilized to generate esti-
mates of relative abundance for each species in each sample.
The GC content of each species was retrieved from NCBI. Sam-
ples were classified as either high/low abundance (above/below
median = 0.2844), either high/low GC content (above/below me-
dian = 43.8%) with respect to sequencing platform (BGISEQ-500
or Illumina) (Fig. 5). A log-linear model was used to model the
total number of species in each of the 8 categories (abundance
high/low, GC content high/low, BGI/Illumina), and a likelihood

ratio test then suggested that the association between relative
species abundances and their GC content did not vary across
the BGISEQ-500 and HiSeq 2000 sequencing platforms (P = 0.323,
chi-square test) (Supplementary Methods).

To further document the quantitative consistency and per-
formance regarding GC content observed for the BGISEQ-500 and
HiSeq 2000 platforms, the same 20 DNA samples were processed
to construct libraries and sequenced on an Illumina HiSeq
4000 platform using the HiSeq 3000/4000SBS Kit (300 cycles) for
100 bp of paired-end reads.

The raw sequencing reads were filtered as described above.
After QC and removing host reads, an average of 26.35 million
clean reads was generated for each sample. The HiSeq 4000
dataset showed comparable high-quality and IGC mapping ra-
tios close to that of the BGISEQ-500 and HiSeq2000 datasets (Ad-
ditional file 3). Because of the low number of sequencing reads
from the HiSeq 4000 platform, all IGC uniquelymapped reads for
each subject (ranging from 13.18 to 21.54 million) were used for
validation analyses without downsizing. The forward reads of
19 subjects (subject S01 removed) fromHiSeq 4000 were used for
further analyses to be consistent with the cross-platform com-
parison described above.

Interestingly, the Spearman correlation coefficients of HR
genes and species profiles between BGISEQ-500 and HiSeq 4000
samples were 0.859 and 0.965, respectively (Fig. 3C). These corre-
lation coefficients were higher than those observed comparing
the BGISEQ-500 and HiSeq 2000 datasets (Fig. 3B) and compar-
ing the HiSeq 2000 and HiSeq 4000 datasets (Additional file 8).
Statistical analysis revealed smaller quantitative differences be-
tween the BGISEQ-500 and HiSeq 4000 platforms than that be-
tween the BGISEQ-500 and HiSeq 2000 platforms, with only 6323
(2.02% of 313 020) HR genes showing significantly different rela-
tive abundances (FDR < 0.05, Benjamini-Hochberg adjustment).
The same bimodal distribution patterns in GC content were ob-
served among these 6323 HR genes, with an enrichment of GC-
rich genes in the HiSeq 4000 dataset, as well as a slight enrich-
ment of AT-rich genes in BGISEQ-500 dataset. Additionally, the
abundance fold changes of these genes were smaller than those
observed comparing the BGISEQ-500 and HiSeq 2000 datasets
(Fig. 4E and F).
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Figure 4: A, GC content distributions of genes that differed significantly in abundance between platforms. Density curves showing a comparison of GC content distri-

butions of the total 9.9 million IGC genes (blue), all 349 479 highly reproducible (HR) genes (green), and all 11 350 genes that differed significantly in abundance between
the 2 platforms (red line). B, Two-dimensional plot showing the GC content distribution of genes that differed significantly in abundance between the BGISEQ-500 and
HiSeq 2000 platforms. The x-axis indicates the GC content of genes, the y-axis indicates fold-changes of gene relative abundance (RA), which is calculated by log10
transformed mean RA in the HiSeq 2000 datasets/mean RA in the BGISEQ-500 datasets. C, D, Density histograms showing the coefficients of a robust linear model for

relative abundance of genes from the top 20 species and their GC content for genes that differed significantly in abundance between the 2 platforms (C) and for all HR
genes (D). D, E, Density curves (E) and 2-dimensional plot (F) showing the GC content distributions of HR genes that differed significantly in abundance between the
BGISEQ-500 and Hiseq 4000 platforms.

In summary, despite that the HiSeq 2000 platform showed a
slight enrichment of reads on a relatively small number of high-
GC content genes, metagenomic datasets from BGISEQ-500 and
HiSeq 2000 exhibited comparable cross-platform consistency
regarding gene detection and quantification. The high cross-
platform quantitative consistency was further documented us-
ing a HiSeq 4000 dataset, with a lower number of genes exhibit-
ing differences in abundance between the platforms, and ex-
hibiting the same bimodal distribution pattern of GC content of
these genes.

Discussion

The BGISEQ-500 platform has lately proven its robust perfor-
mance in connection with several sequencing applications in-
cluding whole-genome sequencing, RNA-seq, and small RNA-
seq [2, 8–10]. Unlike these applications, which focus on a
single organism, metagenomics deals with a complex mix-
ture of DNA from multiple organisms. One of the key chal-
lenges for metagenomics studies is the accurate identification
and quantification of taxa and functions in metagenomic sam-
ples, which could be affected by both the complexity of environ-
mental samples and the bioinformatic tools.

Though rapid updates of Illumina sequencing techniques
have provided up to 300 bp long and highly accurate reads, the
read lengths available for the BGISEQ-500 were limited to single-
end 50 bp, single-end 100 bp, and paired-end 2 × 50 bp when
this study was launched. Hence, we chose the longer mode of
single-end 100 bp sequencing for the BGISEQ-500 platform and
evaluated its performance.

For the most well-studied microbiomes, such as the hu-
man gut microbiome, read lengths of 100 bp using Illu-
mina HiSeq technology have been extensively applied, and
the performance has been well demonstrated by numerous
high-powered studies, including both reference gene catalog–
based metagenome-wide association studies and Metage-

nomic Phylogenetic Analysis–based large-scale quantitative
studies [11, 12]. On the other hand, for complex samples from
environments such as soil, in which colonizing bacteria re-
main largely unknown, no reference gene catalogs have been
established due to the inherent difficulty of assembly. In these
cases, microbial genes were thereby identified using read-based
homology searches, and thus, longer read lengths would enable
more accurate gene identification.

In this work, we have evaluated the performance and vali-
dated the performance and robustness of the BGISEQ-500 plat-
form for reference gene catalog–based human gut metagenome
studies. We have developed an overall accuracy control–based
QCmethod,which can detect randomquality dropswithin reads
and provide high-quality reads with minimal compromise of
length. As the most widely used and acknowledged platform
in the metagenomics field, datasets generated from Illumina
platforms (HiSeq 2000/4000) were used throughout the cross-
platform comparison.

By comparing metagenomic sequencing datasets from the
BGISEQ-500 platform, we demonstrated excellent stability and
reproducibility in intra-technical replications, providing evi-
dence for the robustness and applicability of this new sequenc-
ing platform for metagenomics studies. We further demon-
strated high consistency between the BGISEQ-500 and HiSeq
2000 platforms, with only a very small fraction of high–GC
content genes showing a slight enrichment using the HiSeq
2000 platform. We furthermore compared the datasets from the
HiSeq 4000 platform and BGISEQ-500 platform, and corroborated
the high cross-platform consistency and platform-dependent
GC distribution patterns.

As reported previously [13, 14], DNA extraction and library
preparation methodology may affect both qualitative analysis
and quantitative results in human microbiome research. In ad-
dition to that, even though we observed only minor differences
in relative gene abundances comparing the BGISEQ-500 and
the Illumina platform using single-end 100-bp read length, our
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Figure 5: Comparison of relative species abundance between BGISEQ-500 and HiSeq 2000. Averaged microbial abundance calculated with Metaphlan2 across BGI

replicates plotted against microbial abundance for the corresponding Illumina replicates for all samples. Species are colored by GC content.

results clearly point to the importance of using the same plat-
form and technology for metagenomics studies in order to avoid
the possible introduction of platform-dependent differences. In
cases where comparison of data generated on different plat-
forms is desirable, the possible platform-dependent confound-
ing effects should be evaluated by well-designed analyses de-
tecting possible confounding factors and biases before conclu-
sions are drawn.

Finally, the results described in this paper emphasize the
need for future use of benchmarking controls, including se-
quencing of defined microbial communities to elucidate the
nature of possible biases associated with different preparation
methodologies and sequencing platforms.

Availability of supporting data

Metagenomic sequencing data for all samples have been de-
posited in the European Bioinformatics Institute (EBI) database
under accession code PRJEB35961. Supporting data are also
available from the GigaScience repository, GigaDB [15].

Additional files

Additional file 1: Base quality assessment. Quality score
heatmap showing the distribution of base Phred scores of all raw
SE100 reads from BGISEQ-500 (A) and all forward reads from the
HiSeq 2000 platform.

Additional file 2: Quality control with overall accuracy (OA)
control strategy. A, The distribution of per base Phred score
(top, orange), per base accuracy (middle, olive), and the overall
accuracy curve of a randomly selected read from the BGISEQ-

500 platform (bottom, green) (see details on the OA-based QC
pipeline in the Supplementary Methods). B, Identify QC param-
eters based on overall accuracy and high-quality reads ratio.
Box plots showing the average OA of high-quality reads (green)
and high-quality reads ratio (grey) based on different OA frag-
ment thresholds. To balance the data accuracy and retention
rate of high-quality reads after filtering, we chose OAfragment as
0.8. Based on this cutoff, 96.06% of the raw reads were retained
as high-quality readswith an averageOA value greater than 90%.

Additional file 3: Summary of data production and quality
control.

Additional file 4: Assessment of reference coverage for
metagenomic sequencing data. After QC and removing poten-
tial human-related reads, an average of 95.98% and 97.91% of
raw reads were obtained from BGISEQ-500 (blue) and HiSeq 2000
(red), respectively, and were defined as clean reads (left panel).
For the BGISEQ-500 platform, an average of 77.77% of total clean
reads could be mapped to IGC; the averaged mapping rate on
HiSeq 2000 was 75.45% (middle panel). Additionally, the HiSeq
2000 dataset from subject S01 showed a low IGC mapping rate
of 54.58% and was subsequently marked as an outlier and re-
moved before cross-platform comparison. For both platforms,
more than 62% of total clean reads were uniquely mapped (right
panel) and used for further quantification analysis.

Additional file 5: ALC value for sequencing, library, and cross-
platform replicates. The ALC value is the area left of the cumu-
lative distribution curve: Thus, a low ALC value denotes high re-
producibility. The ALC value is determined by the relative abun-
dance differences of highly reproducible genes between repli-
cates. The x-axis represents log2-transformed difference-folds,
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and the y-axis represents the cumulative proportion of gene rel-
ative abundance difference for intra- and cross-platform (A). The
box plot shows the estimated fold-change differences in relative
gene abundance between replicates calculated byALC values (B).

Additional file 6: Summary of species annotation for the
genes that differed significantly in abundance between the
BGISEQ500 and the HiSeq 2000 platforms.

Additional file 7: Robust linear regression analysis between
gene relative abundance and GC content.

Additional file 8: Spearman’s correlation between datasets
from HiSeq 2000 and HiSeq 4000.
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IGC: integrated gene catalog; OA: overall accuracy; QC: quality
control; RA: relative abundance.
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