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Abstract

Image processing technologies are available for high-throughput acquisition and analysis of

phenotypes for crop populations, which is of great significance for crop growth monitoring,

evaluation of seedling condition, and cultivation management. However, existing methods

rely on empirical segmentation thresholds, thus can have insufficient accuracy of extracted

phenotypes. Taking maize as an example crop, we propose a phenotype extraction

approach from top-view images at the seedling stage. An end-to-end segmentation network,

named PlantU-net, which uses a small amount of training data, was explored to realize auto-

matic segmentation of top-view images of a maize population at the seedling stage. Morpho-

logical and color related phenotypes were automatic extracted, including maize shoot

coverage, circumscribed radius, aspect ratio, and plant azimuth plane angle. The results

show that the approach can segment the shoots at the seedling stage from top-view images,

obtained either from the UAV or tractor-based high-throughput phenotyping platform. The

average segmentation accuracy, recall rate, and F1 score are 0.96, 0.98, and 0.97, respec-

tively. The extracted phenotypes, including maize shoot coverage, circumscribed radius,

aspect ratio, and plant azimuth plane angle, are highly correlated with manual measure-

ments (R2 = 0.96–0.99). This approach requires less training data and thus has better

expansibility. It provides practical means for high-throughput phenotyping analysis of early

growth stage crop populations.

Introduction

Recently, plant phenotyping has become a rapidly developing data-intensive discipline [1,2].

Studying the phenotypic information of plants under different environmental conditions pro-

vides insight into plant genetics [3,4] and is important identifying and evaluating the pheno-

typic differences of different cultivars [5]. Field phenotypes are the manifestation of crop

growth under real conditions and are an important basis for genetic screening and the
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identification of mutations in field crops [6]. Therefore, it is important to conduct analyses of

crop phenotypes under field conditions with high-precision. Traditionally, field phenotypic

traits were obtained by manually measuring traits, which is work-intensive and time-consum-

ing, limiting the number of measurable phenotypic traits. The development of information

technology has made it possible to automatically acquire multi-source data of crops using

high-throughput technology, such as images, point clouds, and spectrally collected data in the

field, which can greatly reduce the manual labor and time commitment required to obtain

crop phenotypic information. The cost of point cloud and spectral data acquisition sensors are

more expensive than the image sensors; thus, image-based plant phenotyping has become a

hot topic in agricultural research in recent years [7].

Unmanned aerial vehicles (UAVs), manned ground vehicles (MGVs), and tractor-based

high-throughput phenotyping platforms (HTPPs) can rapidly obtain high-resolution top-view

images of crop canopies. Researchers can extract phenotypic parameters [8], such as plant size

[9], shape [10], and color [11], from the acquired images. For some specific phenotypic param-

eters, these approaches can be substituted for traditional manual measurements, improving

the efficiency of collecting plant phenotypic information. However, different data collection

methods and different environments can generate inconsistent image data. Thus, reliable auto-

mated methods are needed to extract accurate phenotypic information from large, complex

datasets. Recently, researchers have proposed a variety of algorithms to address the above

problems [12,13]; the basis of these algorithms is image segmentation.

Accurate and efficient field crop image segmentation methods can rapidly and accurately

obtain crop phenotypic traits. Researchers have conducted numerous studies on the image seg-

mentation of crops under field conditions [14,15]. Early field crop image segmentation meth-

ods can be roughly divided into four categories: shape constraints [16], edge detection [17],

deep information integration [18], and machine learning methods [19]. These studies can

address issues in the field, such as disease identification [20,21], environmental stress [22],

chlorophyll diagnosis [23], and phenotypic extraction [24], at the individual plant or popula-

tion scale. However, the background of the plant images in these methods was manually con-

structed or relatively simple. In addition, these methods typically have strict requirements on

the light intensity of the input images.

With its powerful feature extraction capabilities, deep learning technology is a turning

point for accurately and rapidly addressing image segmentation problems [25,26]. Fully

trained models can achieve accurate image segmentation for regions of interest (ROI). Cur-

rently, popular deep neural network processing methods use center point detection [27]. Alter-

nately, deep neural network processing methods directly perform leaf edge detection [28] to

achieve image segmentation and whole or partial segmentation of images of plants collected

under field [25] or indoor [31] conditions. Segmentation results are used to extract crop fea-

tures [30], as well as quantify [29,31], count [11], and estimate diseases [32,33]. Deep learning

has advantages in collaborative applications such as the interactions between genotype and

environment. Compared with classical methods, deep learning technology does not rely on

manual filters and feature annotations; instead, it learns the best representation of the data,

allowing it to perform better in scenarios where the amount of data is sufficient.

Researchers have applied advanced hardware facilities and intelligent data processing meth-

ods to research plant phenotypes. However, accurate extraction of fine-scale phenotypic infor-

mation of individual plants is still difficult under field conditions because of the occlusion and

crossover that occurs in the later growth stages of crops. In a field maize population, for exam-

ple, leaves of adjacent shoots appear cross-shaded after ridging, which makes it difficult to

completely and precisely extract the phenotypes of individual plants within a population.

Therefore, obtaining and resolving phenotypic traits of maize shoots at the seedling stage is a
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better way to characterize the phenotypic traits of individual plants, and can guide the struc-

tural-functional analysis of maize populations in later growth stages. For example, phenotypic

traits at the seedling stage provide reference information, such as growth position, direction,

and growth potential, for each shoot within the population.

In this paper, a full convolutional neural network based end-to-end image segmentation

approach of maize population at the seedling stage, named PlantU-net, is proposed. Using this

approach, each shoot within the population image is precisely localized and the phenotypes

are extracted. The approach is expected to provide technical support for image processing and

high-throughput phenotype extraction from the top-view images acquired by UAVs and field

phenotyping platforms.

Materials and methods

Data acquisition

Data for PlantU-net model training and inbred line population analysis were obtained at the

experimental field, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China (39˚

560 N, 116˚160 E). A population used for correlation analysis with 502 cultivars [34] was

planted in the field on May 17, 2019. The row and plant spacing were 60 and 27.8 cm, respec-

tively. The planted cultivars can be divided into four subpopulations [35]: hard stalks (SS),

non-hard stalks (NSS), tropical and subtropical (TST), and mixed inbred lines (Mixed),

with 32, 139, 221, and 110 cultivars for each subpopulation. Top-view images of shoots were

obtained 12 (V3) and 26 (V6) days after sowing. Images were acquired using an EOS5DIII dig-

ital camera with a 24–70 mm lens vertically downward mounted on a SLR tripod (height 1.7

m, as shown in Fig 1a), with each image containing approximately five to six plants. Size-

known markers are placed in the original image to provide a scale reference for later image

cropping and scaling. When acquiring the images, the experimenter faced to east, ensuring

that the left side of the captured images was oriented to the north. Image acquisition occurred

over three days (one day for V3; two days for V6): one sunny day for V3, and one sunny and

one cloudy day for V6. The incident light angle and the intensity differed over the course of

data acquisition. Drip irrigation belts were arranged to ensure adequate water and fertilizer.

Consequently, these changes in the background cause challenges for later image processing.

Top-view images of maize populations at the seedling stage were obtained using UAV and a

field phenotyping platform.

Fig 1. The set up for acquiring the photographs and examples of acquired images. This includes acquisition of top-

view images using a tripod camera system (a), tractor-based high-throughput phenotyping platform (b), and UAV

platform (c).

https://doi.org/10.1371/journal.pone.0241528.g001
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The experimental plots of the field phenotyping platform were adjacent to the plots

obtained from the above-mentioned model dataset and managed in the same manner. Thir-

teen maize hybrids were planted within the coverage of the platform on May 25, 2019; this

included one row of each hybrid, with 1.5 m long rows and 60 cm row spacing. The platform’s

image acquisition system consisted of a stable imaging chamber and a Hikari MV-CA060-

10GC color camera. The camera lens was 2.5 m above the ground, and the resolution of the

captured images was 3072 × 2048 pixels. In the process of data acquisition, the imaging cham-

ber was equipped with a lens that moved in an S-shaped trajectory above the experimental

plot, and the acquired images were stitched together to obtain a complete top-view image of

the plot. The data acquisition of the tractor-based phenotyping platform is shown in Fig 1b.

The image acquired on the 17th day after sowing was selected for subsequent phenotypic

analysis.

The experiment of top-view image data acquisition using UAV of maize populations at the

seedling stage was carried out at the Tongzhou Experimental Field, Beijing Academy of Agri-

cultural and Forestry Sciences (39˚700 N, 116˚680 E). One hybrid of maize was grown on April

28, 2019 and planted in rows 2.1 m long and 60 cm apart. A visible light sensor was mounted

on a UAV and image data was acquired 20 days after sowing. The image capture system con-

sisted of a 1-inch CMOS HD camera and an engineering-specific gimbal. The UAV flew at an

altitude of 30 m, and the resolution of the captured images was 4000 × 3000 pixels. The data

acquisition process is shown in Fig 1c.

Data preparation

Datasets with annotated images are necessary for robust image segmentation models. In prac-

tice, this dataset was constructed using the top-view images obtained at two periods, V3 and

V6 (Fig 1a). Because the soil background accounts for a large proportion of the raw images,

the images were cropped around the area containing the plants and the images were scaled to

256 × 256 pixels for further training the model. A total of 192 images, containing seedling

maize shoots, were annotated using LabelMe software. Among the total number of images,

128 images were expanded into 512 images to use as a training set after mirror symmetry,

translation, and rotation. The remaining 64 labeled images were used to form a validation set

to determine the criteria that may prevent network training. To prevent overfitting, the net-

work will train until the losses on the validation set are stable. The model designed in this

study is a small sample learning model, and data augmentation was adopted to ensure the

quality of the training set, which will be discussed later. There are 200 images in the testing set,

which were randomly selected from the four maize subpopulations described in the experi-

ment in Fig 1a. Here, images of 50 hybrids belonging to each subpopulation were randomly

selected (subpopulation SS consisted of only 32 hybrids, so there are 18 duplicated hybrid

images belonging to the SS subpopulation in the test set).

PlantU-net segmentation network

To accurately segment maize shoots at the seedling stage in field conditions from the top-view

image, the shoots were segmented as the foreground and output as a binary image. However,

top-view images of field maize are relatively complex with stochastic background and uneven

light conditions. Consequently, existing models are not satisfactory to extract pixel features.

To address this issue, we built a PlantU-net segmentation network by adjusting the model

structure and key functions of U-net [36], which improves the segmentation accuracy of

images taken under a complex environment.
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Model structure. PlantU-net is a network designed for the segmentation of top-view

images of crops grown in the field. A full convolution network is adopted to extract hierarchi-

cal features via an “end-to-end” process. As shown in Fig 2, the feature contraction path is

composed of three layer downsampling modules, each module uses a 3 × 3 convolution to

extract one row feature, and a 2 × 2 pooling operation to reduce the spatial dimensionality.

Two convolution operations are conducted after downsampling to adjust the input size of the

extended path. Corresponding to the contracted path, the extended path includes three layer

upsampling modules. In each upsampling module, a 2 × 2 up sampling convolution is first per-

formed to expand the spatial dimension. Then the upsampled results are fused with the low-

level feature maps in the corresponding contracted path to connect contextual information

across adjacent levels. Two convolution operations are performed during the upsampling pro-

cess to reduce the feature dimension and facilitate feature fusion. After upsampling, a 1 × 1

convolution is performed as the full connection layer to output the segmented image. The

same padding is filled in the samples during the convolution operations, which facilitates the

computation. The parameters used for each layer of the model are shown in Table 1.

To a certain extent, the network parameters of the model are reduced to ease the burden of

computers, and also to reduce the training time while ensuring the segmentation effect. Since

the number of training samples is small, a dropout layer is appropriately added to prevent

overfitting. In addition, to identify and utilize edge features, a maximum pooling layer is

adopted for downsampling.

Main functions. Activation Function. The activation function in deep learning incorpo-

rates nonlinear factors to solve the linear classification problem. In PlantU-net, Leaky ReLU is

used as the activation function. It still has an output when the input is negative, which elimi-

nates the neuron inactivation problem in back propagation. The expression is:

f ðxÞ ¼
x if x � 0

yx if x < 0

(

ð1Þ

For the final output layer of the model, Sigmoid is used as the activation function for biclass.

Sigmoid is capable of mapping a real number to an interval of (0, 1), and is applicable for

biclassing. Its expression is:

S xð Þ ¼
1

1þ e� x
ð2Þ

Loss Function. The loss of function in the U-net model is replaced by the binary-cross-entropy

function in the PlantU-net model. The binary-cross-entropy function is a cross-entropy of two-

Fig 2. Architecture of the PlantU-net network. The input is a 256×256×3 image. The hidden layer of the network

includes downsampling (left) and upsampling stages (right). Both stages comprise convolution (Conv), activation

(Leaky ReLU), and max pooling operations. The output is a 256 × 256 × 1 segmented image.

https://doi.org/10.1371/journal.pone.0241528.g002
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class classifications, which is a special case of the entropy function. The binary classification is a

logistic regression problem and the loss function of the logistic regression can also be applied.

Considering the output of the last layer of the sigmoid function, this function is selected as the

loss function. The mathematical expression of binary-cross-entropy function is:

L ¼ � ½ylogy0 þ ð1 � yÞlogð1 � y0Þ� ð3Þ

where y is the true value and y0 is an estimation when y = 1.

L ¼ � logy0 ð4Þ

The output of this loss of function is smaller when the estimated value is closer to 0, and the

output value of the loss of function is larger when it is closer to 1. This is suitable for the binary

classification output of the last layer in this network.

Network training

The PlantU-net was trained using the Keras framework (Fig 1) with acceleration from GPUs

(NVIDIA Quadro P6000). Five hundred and twelve images were used to train the model. Data

expansion is the key to making the network have the required invariance and robustness

because this model uses a small number of samples for training. For top-view images of maize

shoots, PlantU-net needs to meet the robustness of plant morphology changes and value

changes of gray images. Increasing the random elastic deformation of training samples is the

key to training segmentation networks with a small number of labeled images. Therefore, dur-

ing the data reading phase, PlantU-net uses a random displacement vector on the 3 × 3 grid to

Table 1. Configuration of the model structure parameters. Refer to Fig 3 for the architecture of the PlantU-net network.

Layers Input Convolution filter Output

Downsampling module 1 256×256×3 3×3×32 128×128×32

Downsampling module 2 128×128×32 3×3×64 64×64×64

Downsampling module 3 64×64×64 3×3×128 32×32×128

Convolution module 32×32×128 3×3×256, 3×3×128 32×32×128

Upsampling module 1 32×32×128 3×3×128, 3×3×64 64×64×64

Upsampling module 2 64×64×64 3×3×64, 3×3×32 128×128×32

Upsampling module 3 128×128×32 3×3×32 256×256×32

Convolution 1×1 256×256×32 3×3×1 256×256×1

https://doi.org/10.1371/journal.pone.0241528.t001

Fig 3. Illustration of phenotype extraction based on the image segmentation results of V3 and V6 growth stages,

respectively. (a) The original image. (b) Coordination of the extracted center point. (c) Outline of the plant. (d)

Minimum circumscribed circle. (e) Minimum bounding box. (f) Angle between the plant azimuth plane and the north.

The red line represents the fitted azimuth plane and the blue line indicates the north–south direction. β is the angle

between the red line and the blue line, and the value is between 0 and 180˚. The angle β between the red and blue lines

was estimated and used to represent the angle of the plant azimuthal plane (Fig 3f).

https://doi.org/10.1371/journal.pone.0241528.g003
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generate a smooth deformation, where the displacement comes from a Gaussian distribution

with a standard deviation of 10 pixels. Because the number of training samples is small, the

dropout layer is added to prevent the network from overfitting. Through these "data enhance-

ment" methods, the model performance is improved and overfitting is avoided. In each epoch,

the batch size was 1, the initial learning rate was 0.0001, and adam is used as an optimizer to

quickly converge the model. PlantU-net was trained until the model converged (the training

loss was satisfied and remained nearly unchanged).

Evaluation of segmentation accuracy

Because the segmentation of the top-view images of maize shoots using the PlantU-net model is

considered a binary classification problem, when evaluating the segmentation results, the classi-

fication results of predicted output and ground truth (GT) data can be used to perform pixel-

level comparisons. If the pixel in the leaves is marked as 1, and in the segmented image, the cor-

responding pixel is still 1, then it is judged as true positive (TP); if the pixel point is judged as 0

after segmentation, the pixel is judged as false positive (FP). Similarly, when the pixel in the

original image does not belong to the maize leaf, it is marked 0, if such pixel is judged as 1 after

segmentation, it is a false negative (FN); if such a pixel is also judged as 0, then it is a true nega-

tive (TN). Following these rules, three indicators for evaluation [37,38] were used in this study:

(1) Precision. Precision represents the proportion of true positive samples among those pre-

dicted to be positive and is defined as:

P ¼
TP

TPþ FP
ð5Þ

(2) Recall. Recall indicates how many positive samples of the total sample are correctly pre-

dicted and is defined as:

R ¼
TP

TP þ FN
ð6Þ

(3) F1-Score. After calculating the accuracy and recall, the F1-Score can be calculated, which

represents the weighted harmonic average of accuracy and recall. It is used for standardized

measurement and is defined as:

F1� Score ¼
2PR
P þ R

ð7Þ

Extraction of phenotypic parameters

The phenotypic traits concerning the shape and color characteristics of each shoot were esti-

mated using PlantU-net based on the top-view images of the segmented maize shoots. The seg-

mented images may still contain multiple maize plants. The phenotypic parameter extraction

process will start with edge detection based on the segmentation results, connective domain

markers based on the edge detection results, and finally single-plant phenotypic parameter

extraction based on these connective domain markers.
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Morphological feature extraction. The description of morphological features can be

divided into two categories. The first category is the outline-based shape description, which

focuses on describing the outline of the target area. The other category is the area-based shape

description, which describes the target by area, geometric moment, eccentricity, and region

shape. In this study, the center point Fig 3b) and contour (Fig 3c) of a maize shoot were first

extracted from the segmented image. The minimum circumscribed radius (Fig 3d) and aspect

ratio (Fig 3e) of the plant were then calculated based on the extracted contour. The coverage

and plant azimuth plane were obtained based on the target region in the segmented images as

described below.

1. The circumcircle radius (r) is half of the distance between the two pixels with the furthest

outline of the plant (Fig 3d):

r ¼
max½disðCi;CjÞ�

2
ð8Þ

where Ci, Cj represent two pixels that are the furthest apart on the outline of the plant.

2. The aspect ratio (A) is the ratio of the length to width in the minimum bounding box of the

plant (Fig 3e):

A ¼
L
H

ð9Þ

where L is the length in the x direction of the smallest bounding box and H is the length in

the y direction. The smallest bounding box refers to the smallest rectangle among the n

rectangles that can include the target plant area.

3. The segmented results are binary images; thus, the maize shoot coverage (C) is calculated

by counting the total number of pixels occupied by the target area:

C ¼
Xm� 1

x¼0

Xn� 1

y¼0
f ðx; yÞ ð10Þ

where f (x, y) represents the binary map, m is the maximum number of pixels in the x-axis

direction, and k is the maximum number of pixels in the y-axis direction. Regarding the binary

maps, pixels of the target plant are always labeled by 1, whereas the background pixels are

labeled using 0 for the output; therefore, the pixel method of calculation was used, meaning

that pixels were counted as f(x, y) = 1 pixels. Calibration objects were used in the original

image of the dataset. The length and width of the cropped image can be calculated using the

calibration objects because the image size was cropped to 256 × 256. The area of each pixel was

calculated according to the length and width of the image, and the size of the maize plant in

the image was obtained by multiplying the total number of pixels in the segmented target area.

4. Studies have shown that expanded leaves of maize shoots are distributed along a vertical

plane, which is the plant azimuth plane [39,40]. The original images for this study were

oriented eastward during the data acquisition process; thus, the left side of the image in the

dataset indicates the north. In the Fig 3f, the blue line indicates a single maize plant after

segmentation and shows a north–south orientation. A red line was fitted by clustering in

the leaf section (or tangent to it if the clustering result is a curve) as the plant azimuthal

plane. The angle between the red line and the blue line was calculated as β, which was used

as the azimuthal plane angle of the plant. The specific morphological features were

extracted as shown in Fig 3.
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Extraction of color features. Maize leaf color has a direct relationship with moisture,

nutrients, and disease, so color characteristics are an important parameter for plant phenotyp-

ing [40]. The pixels in the image are composed of red (R), green (G), and blue (B) values. By

aligning the segmentssed image as a region of interest (MASK) with the original image, the

RGB parameters of the color features of the MASK region can be extracted, which can further

be transformed into HSV color space parameters [41]. This approach was primarily used

because the HSV model is similar to the color perception by the human eye, and the HSV

model can reduce the effect of light intensity changes on color discrimination. Therefore, the

parameters of the color phenotypes in this study are represented using the mean of the RGB or

HSV parameters.

Statistical analysis

The phenotypic traits extracted from segmentation results were compared with a manually

measured value. The measured value of the circumcircle radius, aspect ratio, and plant azi-

muth plane was manually measured from the results by segmentation. Maize shoot coverage

compared the segmentation results of PlantU-net with the results of manual segmentation.

The adjusted coefficient of determination (R2) and normalization root-mean-squared error

(NRMSE) were calculated to assess the accuracy of these extracted parameters. The equations

were as follows:

R2 ¼ 1 �

PN
i¼1
ðvi � v0 iÞ

Pn
i¼1
ðvi � v̂

iÞ2 ð11Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

PN
i¼1
ðvi � v0iÞ

2
q

v̂ i ð12Þ

where n is the numbers of objects, vi is the results of manual segmentation, v0i is the value of

PlantU-net, and v̂i is the mean value of the results of manual segmentation.

In the phenotypic analysis of the four subpopulations, this study analyzed the phenotypic

trait data extracted from the test set. Box plots were drawn using Python. The extracted pheno-

typic trait data was marked in Excel and Python was used to write a program to read the data.

The data was then visualized by calling the Matplotlib development library in Python.

Results

Model segmentation effect

The PlantU-net segmented network has been trained many times. During the training process,

each epoch contained 200 batches with the size of 1, and the final training loss was shown in

Fig 4. Training losses declined quickly in the first 100 batches (Fig 4), and then became slower.

The loss for the final partition is 0.003. The model was trained on a workstation (2 Intel Xeon

(R) Gold 6148 CPU, 256 GB RAM and NVIDIA Quadro P6000 GPU) for 41 minutes.

To show the image segmentation of the PlantU-net model of a single maize plant, the

dataset and training parameters used by the PlantU-net model were imported into the U-net

model for training, and the segmentation results of the two methods were compared with the

manual segmentation results (Fig 5). The segmentation of the PlantU-net model is better than

that of the U-NET model. PlantU-net has a more complete edge detection of segmentation

results, and the precision of pixel classification of the interested regions is higher.

Table 2 compares the training time and segmentation results obtained using the PlantU-net

and U-net models. The segmentation precision of the PlantU-net model is significantly higher
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than that of the U-net model, and less training time is required. In the segmentation results of

the PlantU-net model, the values of the verification set and test set are similar. The PlantU-net

model in the test set has a good segmentation effect, with the precision (P) of the segmentation

results reaching 0.96, recall rate (R) reaching 0.98, and F1-score reaching 0.97.

Fig 4. Training loss curve within 500 epochs and prediction precision.

https://doi.org/10.1371/journal.pone.0241528.g004

Fig 5. Result of model segmentation, in which (a) is the original image, (b) is the ground truth by manual

segmentation, (c) is the result obtained using the U-NET model, and (d) is the result obtained using the

PlantU-NET model.

https://doi.org/10.1371/journal.pone.0241528.g005

Table 2. Comparisons of the segmentation results of the U-net model and the PlantU-net model using the data obtained from the validation set (V) and test set (T).

Segmentation method Training time/M Precision Recall F1-Score

V T V T V T

U-net 52 0.87 0.86 0.86 0.90 0.86 0.88

PlantU-net 41 0.95 0.96 0.98 0.98 0.96 0.97

https://doi.org/10.1371/journal.pone.0241528.t002
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To evaluate the segmentation performance of the proposed model on other plants, we com-

pared the PlantU-net with orthogonal transform and deep convolutional neural network

(OT-DCNN) [42], Mask R-CNN [43], and U-net [44] on the CVPPP benchmark datasets.

Table 3 shows the comparison results, which demonstrates that the PlantU-net model per-

forms better than the other three models, and is satisfactory for pot-grown plants.

Results of single plant scale phenotypic parameter extraction

Using the PlantU-net model and the phenotype extraction method, the coverage, circum-

scribed radius, aspect ratio, and plant azimuth plane were determined using the validation

dataset, and the measured data were compared with the extracted results for verification (Fig

6). Among them, the correlation coefficient R2 of the artificial segmentation results and the

automatic extraction results of the four morphological phenotypic parameters were all greater

than 0.96, and the NRMSE values were all less than 10%, indicative of the reliability of the

PlantU-net segmentation model and the phenotypic extraction method.

Results of population scale phenotypic parameter extraction

To evaluate the performance of the PlantU-net model in the image segmentation and pheno-

typic parameter extraction of the maize population, the field high-throughput phenotypic plat-

form and the top-view of maize seedlings obtained by UAV were selected as inputs. The top-

view images were obtained using both the field orbital phenotypic platform and UAV. Fig 7

shows the segmentation results and schematic diagram of phenotypic parameter extraction of

the PlantU-net model applied to two sample plots.

Phenotypic parameters were extracted from the segmentation results of two sample plots

using the above methods. The mean value and standard deviation of various morphological

parameters of the same cultivar of maize are shown in Table 4. The mean value can be used to

quantify the growth potential of different maize cultivars in the same growth period, while the

standard deviation can be used to evaluate the consistency of plant growth within the same

maize cultivar. Therefore, this method can provide techniques for quantitative evaluation of

plant growth potential, allowing for phenotypic analysis of the top-view of a maize population at

the seedling stage obtained using multiple high-throughput phenotyping platforms in the field.

Analysis of phenotypic differences among plant subpopulations

Phenotypic parameters were extracted from the images of the test set, and four phenotypic

parameters, including coverage, the angle of plant azimuth plane, aspect ratio and circum-

scribed radius were statistically analyzed from the perspective of subgroups. Fig 8 shows the

results from the phenotypic parameter analysis extracted from the image segmentation results

of the test set. Among the four subgroups there were no statistical differences between the azi-

muth plane of plant growth and the included angle of due north (Fig 8b), while the other three

phenotypic parameters all had differences within subgroups. In the analysis of the other three

phenotypic parameters, the extracted values of SS and NSS subgroups were similar, which was

Table 3. Segmentation comparison of PlantU-net model with three neural network-based approaches.

Precisioin Recall F1-Score

OT-DCNN [42] 0.96 0.94 0.95

MR-CNN [43] 0.88 - -

U-net [44] 0.96 0.74 0.83

PlantU-net 0.96 0.97 0.96

https://doi.org/10.1371/journal.pone.0241528.t003
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related to the temperate zone of the two groups of cultivars. The TST subgroup includes tropi-

cal and subtropical cultivars, so the extracted parameters are different from the SS and NSS

subgroups. However, the differences of the Mixed subgroup are relatively distinct. The results

of the coverage analysis (Fig 8a) shows that the coverage value of the Mixed subgroup in the

test set is low; in contrast, the results of the circumscribed radius (Fig 8d) showed a higher

extracted value for the Mixed subgroup than that of the SS and NSS subgroups. This indicates

that the leaves of the Mixed subgroup are more slender, resulting in low plant coverage and

high leaf extension during the same growth period.

In terms of color phenotype, RGB and HSV phenotypic traits were extracted from the top

image of the plant. Considering the segmented mask region is composed of many pixels, the

mean value of the color of the pixels in the region is taken as the color phenotypic parameter

of the plants. Similarly, based on the spatial color information of RGB and HSV, color traits of

maize plants of different subgroups were analyzed (Fig 9). According to the analysis of RGB

values, there was no obvious difference among the subgroups of all cultivars. In the analysis

based on HSV color information, the TST and NSS subgroups did not show evident differ-

ences in color; however, the color difference between the TST and NSS subgroups was clear

(the H and S of the cultivars in the NSS subgroup were higher than those in the TST sub-

group). Approximately 1/3 of cultivars in both the SS subgroup and the Mixed subgroup were

different from other cultivars in this subgroup (both H and S were higher than other cultivars

in this subgroup).

The above results indicated that the PlantU-net model and phenotypic trait extraction

method could be used to quantitatively analyze the morphological and color phenotypic trait dif-

ferences among subgroups, which was suitable for a correlation analysis of genotype–phenotype.

Discussion

Image segmentation

At present, the threshold segmentation method is often used to segment top-view images of

field crops. Although threshold segmentation with specific constraints can achieve very similar

segmentation results [38,45], threshold segmentation is sensitive to noise and the effect on

target segmentation is not ideal when there is little difference in gray scale. Threshold

Fig 6. Correlation analysis between phenotypic measurements and manual measurements in top-view

segmentation results of field maize. (a) Coverage, (b) the angle of plant azimuth plane, (c) aspect ratio, and (d)

circumscribed radius.

https://doi.org/10.1371/journal.pone.0241528.g006
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segmentation in different application scenarios (such as light and soil background) is relatively

dependent on the selection of an empirical threshold. Manually setting different thresholds

will greatly increase the workload of the interaction of the segmentation process, and it is diffi-

cult to achieve high-throughput in the processing of large quantities of data [46,47]. In com-

parison, this study designed the PlantU-net network model, which can implement end-to-end

seedling stage of maize and group top-view as segmentation with the average segmentation

Fig 7. Schematic diagram of the segmentation and phenotype extraction of the top-view of maize seedlings

obtained using the field orbital phenotype platform and UAV. In (a), a field track phenotypic platform was used to

obtain the top-view images. In addition to the protected rows, a total of 13 varieties of maize plants were included

(marked with a serial number in the fig). (b) For the top-view of the maize population obtained using the UAV, the

image contains 216 maize plants of the same cultivar.

https://doi.org/10.1371/journal.pone.0241528.g007
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precision of P = 0.96 and strong robustness. Under different light conditions and complex

background features (the images used in this study have different background complexity,

including weeds, drip irrigation, dry soil, and moist soil (Fig 1), different growth periods, and

complex light environments (Fig 5a), accurate segmentation results were obtained without any

human input. In addition, it only takes 0.04 s to extract various phenotypic parameters from

the overhead image of a single maize plant (Fig 3) using PlantU-net. Moreover, it is only 0.6 s

to extract phenotypic parameters from the top-view image of a population. The model can

Table 4. Morphological parameters of different maize cultivars. AD268-M751 in the table corresponds to 1–13 in

Fig 7a from top to bottom, and the bottom row of the data is obtained from the phenotypic parameters of maize plants

in the image obtained by UAV.

Cultivar Coverage (cm2) Aspect ratio Circumscribed radius

(cm)

Angle of plant azimuth

plane (˚)

AVG STD AVG STD AVG STD AVG STD

AD268 132.23 42.28 5.73 2.34 9.88 1.92 101.00 53.11

MC670 150.44 45.41 4.13 2.08 10.73 2.21 85.30 45.68

JNK2010 130.55 42.75 5.49 1.40 10.69 1.67 97.40 49.95

JNK728 120.08 34.45 3.53 1.00 10.27 2.08 99.90 37.42

NK815 117.45 50.69 5.30 2.60 9.03 1.64 87.90 55.44

JKQC516 120.28 42.96 5.58 2.26 10.58 1.75 81.20 54.08

SK567 119.87 53.66 5.54 2.58 9.23 1.29 74.90 51.28

Y968 116.10 43.79 5.08 2.38 11.05 2.48 64.00 42.44

MC141 119.04 38.42 6.07 2.01 10.79 1.71 101.90 59.28

ZD958 103.31 45.97 6.17 1.94 11.13 2.16 94.90 53.55

XY335 105.82 36.95 5.43 1.98 11.99 1.72 106.80 48.16

JK968 112.15 45.98 4.86 2.44 10.28 2.08 87.40 51.96

M751 150.84 44.48 4.77 2.69 10.63 2.42 92.30 52.82

JNK728 115.92 37.41 5.35 2.08 7.97 1.47 89.57 49.42

https://doi.org/10.1371/journal.pone.0241528.t004

Fig 8. Various phenotypic parameters were analyzed based on the differences of different subpopulations, in

which the absence of shared letters indicated that the numerical differences of phenotypic parameters among

subgroups were statistically significant (P<0.05). (a) Coverage, (b) the angle of plant azimuth plane, (c) aspect ratio,

(d) circumscribed radius.

https://doi.org/10.1371/journal.pone.0241528.g008
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achieve high-throughput phenotypic parameter extraction on the premise of ensuring segmen-

tation precision.

Compared with other algorithms that use deep learning for image segmentation, the

PlantU-net model can improve the segmentation precision by 10% compared with the U-net

model [36] (Table 2), indicating that the PlantU-net model has higher credibility in the appli-

cation of top-view images segmentation of maize plants at the seedling stage. The method pro-

posed by Orsolya Dobos et al. [48] uses U-net and 2,850 images to train the Arabidopsis image

segmentation model, while the PlantU-net model only needs 512 images for training and the

training data does not need complex pre-processing, indicating that PlantU-net achieves high-

precision segmentation with less training data. Therefore, when PlantU-net is used to solve

image segmentation problems in other crops at the seedling stage, only a small number of

annotated images are needed, indicating that the method is highly scalable. Yanan Li et al. [49]

proposed a method called DeepCotton to deal with the segmentation of cotton in the field

from coarse to fine. First, the fully convolutional neural network (FCN) was used for the end-

to-end segmentation of self-collected field images. After extraction of network features, the

"UP" algorithm is proposed to correct the defects in the image. This method sacrifices process-

ing efficiency by ensuring segmentation precision; the processing time of this method is

approximately 6 s, whereas using PlantU-net to segment a single image only requires approxi-

mately 0.6 s.

Phenotypic analysis

Crop phenotype extraction based on data from top-view images is the main way to obtain

phenotypes from high-throughput phenotyping platforms for many crops [50]. For example,

Zhou et al. [38] extracted the phenotypic parameters of maize seedlings from the gray scale

images collected by a UAV phenotyping platform through Otsu threshold segmentation and

skeleton extraction methods. This method has a good segmentation effect on the overall

image, but the extraction precision of the phenotypic traits of individual plants is limited. The

correlation between the seedling emergence rate determined using the plant-bearing plane sta-

tistics and the measured data is only R = 0.77–0.86. In contrast, the PlantU-net segmentation

network can not only segment the top-view image of a single maize plant at the seedling stage

with high precision (Fig 5), but also extract phenotypic parameters with a higher correlation

with measured data (R2>0.96). The results show that the PlantU-net method can replace artifi-

cial measurement and threshold segmentation for quantitative extraction and evaluation of

phenotypic traits.

The location and direction of the maize plant remains relatively unchanged, and the

method overcomes the problem of the plants overlapping each other when viewed from above.

Fig 9. Waterfall diagram of foreground plants in top-view images of maize plants of different subpopulations. (a)

RGB mean value analysis, (b) HSV mean value analysis.

https://doi.org/10.1371/journal.pone.0241528.g009
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Therefore, the information of plant growth and plant azimuth-plane angle extracted from the

top-view image of a maize population can provide measured data driving 3-D modeling of a

maize population [51] and light distribution calculation and analysis [52] in the later growth

stages. At present, the technology and equipment of high-throughput phenotyping platforms

[53], including UAV [54], vehicle-based [55], and track-type, are developing rapidly, allowing

for the collection of phenotypic data throughout the whole growth period. PlantU-net can also

be applied to phenotypically analyze the top-view of a crop population obtained by multiple

phenotypic platforms and can solve problems such as continuous monitoring of plant selec-

tion, analysis of plant growth difference between different plots, and analysis of plant growth

consistency within the same treatment. These collected data would provide practical technical

means for field crop breeding and cultivation research [56].

This study showed the applicability of the PlantU-net model in the extraction of phenotypic

parameters in the seedling stage of maize. However, due to a large number of cross-shading in

the top-view images caused by the overlapping of different plant leaves, this model could not

solve the problem of phenotypic extraction in the middle and late stage of maize plant growth

and development. Future work must determine how to use top-view continuity and the edge

detection ability of the PlantU-net model to achieve the phenotypic extraction of plants in the

middle and late stages of crop plants.

Conclusion

In this study, an end-to-end segmentation method named PlantU-net was proposed based on

the fully convolutional network, which improved the high-throughput segmentation perfor-

mance of a top-view image of a seedling population and realized the accurate extraction of

phenotypic data. The PlantU-net model had an average segmentation precision of 0.96 for the

aerial image of maize plants at the seedling stage, and the phenotypic parameters extracted

from the segmentation results were highly correlated with the values obtained by manual

measurement (R2 = 0.96–0.99). The model described in this manuscript is helpful for the seg-

mentation of top-view images of the maize shoot, the extraction of phenotypes, and the quanti-

tative evaluation of phenotypic traits obtained by high-throughput phenotypic platforms such

as UAV and orbit.
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