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Abstract
The b-amyloid precursor protein (APP) has been extensively
studied for its role as the precursor of the b-amyloid protein
(Ab) of Alzheimer’s disease. However, the normal function of
APP remains largely unknown. This article reviews studies on
the structure, expression and post-translational processing of
APP, as well as studies on the effects of APP in vitro and in
vivo. We conclude that the published data provide strong
evidence that APP has a trophic function. APP is likely to be

involved in neural stem cell development, neuronal survival,
neurite outgrowth and neurorepair. However, the mechanisms
by which APP exerts its actions remain to be elucidated. The
available evidence suggests that APP interacts both intracel-
lularly and extracellularly to regulate various signal transduc-
tion mechanisms.
Keywords: Alzheimer’s disease, amyloid precursor protein,
growth factor, heparin, neurotrophic, receptor.
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The b-amyloid precursor protein (APP) is a type I trans-
membrane glycoprotein that is expressed in a wide variety of
mammalian and non-mammalian cells (Muller-Hill and
Beyreuther 1989). APP is the precursor of the b-amyloid
protein (Ab), which is the major protein component of
amyloid plaques in the Alzheimer’s disease (AD) brain
(Masters et al. 1985). Ab was identified by Glenner and
Wong (1984) and the first complete cDNA sequence
encoding human APP was cloned in 1987 (Kang et al.
1987). The regulation of APP expression, the mechanisms of
APP trafficking, post-translational modification and proteo-
lytic cleavage of APP are now well understood. The
production of Ab from APP, which is generally considered
to be a key event in the pathogenesis of AD, has also been
well studied. However, despite more than two and a half
decades of APP research, the normal function of the protein
remains unclear. Circumstantial evidence points towards a
number of potential biological roles for APP, but a clearly
defined mechanism of action has been elusive. The aim of
this article is to examine the putative functions of APP in
relation to the expression, post-translational processing and
structure of APP.

Expression of APP

APP belongs to a family of evolutionarily and structurally
related proteins. The human APP cDNA sequence was first

cloned from a brain tissue library (Kang et al. 1987).
Subsequently, a number of homologous APP family mem-
bers were identified in a variety of mammalian and non-
mammalian organisms (Muller and Zheng 2012). The APP
family in mammals consists of three members: APP, the
APP-like protein-1 (APLP1) and the APP-like protein-2
(APLP2) (Wasco et al. 1992, 1993). In humans, the APP
gene is located on chromosome 21 (21q21.3), contains 18
exons and extends over a distance of approximately 240
kilobases (Yoshikai et al. 1990) (Fig. 1).
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The APP promoter sequence indicates that the APP gene
belongs to the class of housekeeping genes. The promoter
lacks typical TATA and CAAT boxes, but contains consen-
sus sequences for the binding of a number of transcription
factors including SP-1, AP-1 and AP-4 sites, a heat shock
control element and two Alu-type repetitive sequences
(Salbaum et al. 1988; Izumi et al. 1992; Quitschke and
Goldgaber 1992). The presence of SP-1, AP-1 and AP-4 sites
in the APP promoter, which regulate the expression of
proteins associated with cell proliferation and mitosis, as well
as cell differentiation, suggests that APP has a function
related to cell growth or maturation. Consistent with this
idea, the expression of APP or APP-like proteins is increased
during development and in association with neurite out-
growth and synaptogenesis (Clarris et al. 1995).
During transcription, differential splicing of APP mRNA

can result in a number of APP splice variants (Fig. 1). The
major expressed isoforms of APP have 770, 751 or 695
amino acid residues. The APP751 and APP695 isoforms are
produced as a result of splicing out of exons 7 and/or 8
(Fig. 1a) (Kang et al. 1987; Tanzi et al. 1988; Weidemann
et al. 1989). Some less common splice variants have also
been reported, such as L-APP, which lacks exon 15
(Pangalos et al. 1996) and APP639, which lacks exons 2,
7 and 8 (Tang et al. 2003).

APP mRNA is expressed in a wide variety of tissues
including the nervous system (brain, spinal cord, retina),
immune system (thymus, spleen), muscle (smooth, cardiac
and skeletal), kidney, lung, pancreas, prostate gland and
thyroid gland (Liu et al. 2008). However, the mRNA splice
variants of APP are expressed in different amounts in
different cells. APP695 is the predominant neuronal isoform
(Kang et al. 1987), but non-neuronal cells express mostly
APP770 and APP751 (Rohan de Silva et al. 1997). L-APP is
expressed in leucocytes, microglia and astrocytes (Konig
et al. 1992). APP639 is expressed widely in foetal tissue, but
only in the liver of adults (Tang et al. 2003). The widespread
expression, distribution and sequence homology of the APP
gene family members suggest that APP plays an important
role that is common to many different tissues and organisms.
Gene knock-out (KO) studies can be a powerful method

for investigating protein function. APP-KO mice are viable
and fertile, indicating that the APP gene alone does not play
an essential role in development (Zheng et al. 1995).
Similarly, KO of the Drosophila APP homologue (APPL)
does not result in a lethal phenotype (Luo et al. 1992).
However, APP-KO does result in a number of subtle
phenotypic abnormalities. APP-KO mice are slightly smaller,
with a reduced weight of 15–20% and reduced brain weight
(Zheng et al. 1995; Magara et al. 1999) and APPL-KO in
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Fig. 1 Structure of the amyloid precursor protein

(APP) gene, mRNA and protein. (a) The APP gene
is located on chromosome 21q21.3. The gene has
18 exons. Differential mRNA splicing of Exons 7,8

(dark grey) can lead to the expression of 695, 751
and 770 amino-acid isoforms. Exons 2 and 15
(light grey) are spliced out in APP639 and L-APP,
respectively. (b) Protein structure. APP has an

N-terminal signal peptide (SP). The E1 domain has
a heparin-binding domain (HBD1), and a copper-
binding domain (CuBD); the E2 domain contains a

second heparin-binding domain (HBD2). APP751
and APP770 contain a Kunitz protease inhibitor
(KPI) and an Ox-2 antigen domain. Between the

E2 and Ab region are two potential N-linked
glycosylation sites (CHO). In this region, there is
also a potential chondroitin sulphate attachment

site that is formed when exon 15 is spliced out. The
amino-acid sequence of the Ab region is shown
along with the secretase cleavage sites. The
intracellular C-terminal domain contains a YENPTY

sorting motif. TMD, transmembrane domain.
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Drosophila results in a behavioural defect (Luo et al. 1992).
Importantly, several studies suggest that APP may have a
function that is related to the function of other APP family
members. Like APP-KO mice, APLP1-KO mice and
APLP2-KO mice are both viable and fertile (Heber et al.
2000). Double KO of APLP1 and APP does not produce a
lethal phenotype; however, both APP/APLP2 double KO
mice and APLP1/APLP2 double KO mice have a postnatal
lethal phenotype (Heber et al. 2000). Furthermore, knockout
of APL-1, which is the only APP gene in C. elegans, results
in a lethal phenotype (Hornsten et al. 2007). Therefore these
studies suggest that APP has a function that is likely to be
related or overlapping with that of APLP2 in mammals.

Post-translational modification, trafficking and
processing of APP

After it has been expressed, the newly translated APP
polypeptide can undergo a number of post-translational
modifications including glycosylation, sulphation, phosphor-
ylation and palmitoylation (Selkoe 2001; Bhattacharyya
et al. 2013). After modification in the Golgi apparatus,
APP is trafficked to the cell surface (Koo et al. 1996) before
being internalised by clathrin-mediated endocytosis and
incorporated into the endosomal-lysosomal system (Yama-
zaki et al. 1996). Most APP is trafficked from the endosome
to the lysosome, where it is degraded (Haass et al. 1992).
However, a portion can be returned to the cell surface
(Yamazaki et al. 1996).
APP can be post-translationally processed by enzymes

termed secretases, which can cleave the protein to produce a
number of smaller fragments. The proteolytic processing of
APP will not be discussed in detail, as this topic has been
well reviewed elsewhere (Haass et al. 2012). APP can
initially be cleaved by two proteases, a-secretase or
b-secretase (Fig. 1b), to produce the secreted ectodomains
sAPPa and sAPPb. Following APP cleavage by a- or
b-secretase, the membrane-associated C-terminal fragments
(C83 and C99, respectively) can be cleaved by c-secretase to
yield p3 or Ab, respectively, and a short C-terminal peptide
known as the APP intracellular domain (AICD).
A number of enzymes can act as a-secretases. All of them

are members of the A disintegrin and metalloprotease
(ADAM) family (Buxbaum et al. 1998; Koike et al. 1999;
Lammich et al. 1999). The b-secretase has been identified as
a type 1 transmembrane aspartyl protease termed the b-site
APP-cleaving enzyme 1 (BACE 1) (Hussain et al. 1999;
Sinha et al. 1999; Vassar et al. 1999; Yan et al. 1999; Lin
et al. 2000). BACE1 also cleaves APP at position 11 of the
Ab sequence, although the significance of this cleavage is
unclear (Fig. 1b) (Liu et al. 2002). c-Secretase is a trans-
membrane complex consisting minimally of four protein
subunits, presenilin 1 or 2, nicastrin, anterior pharynx-
defective phenotype and presenilin enhancer 2 (De Strooper

et al. 1998; Yu et al. 2000; Francis et al. 2002; Kimberly
et al. 2003). c-Secretase cleavage is a type of regulated
intramembrane proteolysis (RIP), as cleavage occurs in the
middle of the transmembrane domain (Lichtenthaler et al.
2011). RIP of APP is thought to occur as a series of
cleavages, starting from the C terminal end of the substrate
and moving towards the N-terminal region of the trans-
membrane domain. These cleavage sites have been termed
the c- e- and f- sites (Fig. 1b) (Lichtenthaler et al. 2011).
Although the proteolytic processing of APP by b-secretase

can lead to the pathological production of Ab, b-cleavage is a
normal process. Generally, the cleavage of transmembrane
proteins by an ADAM or BACE (ectodomain shedding) is
commonly involved in the activation of a number of
functional pathways. Ectodomain shedding by ADAMs is
essential for the release of many cytokines and growth factor
ligands, such as epidermal growth factor (EGF) (Blobel
2005). Additionally, ADAMs are involved in ectodomain
shedding of growth-factor receptors, such as human epider-
mal growth factor receptor 2 (Liu et al. 2006) and Notch
(Bozkulak and Weinmaster 2009). Ectodomain shedding by
BACE is also likely to be required for the proper function of
a number of proteins (Klaver et al. 2010). For example,
neuregulin is cleaved by BACE1 and ADAM17 to release an
ectodomain fragment, which acts in a paracrine manner to
stimulate myelination (Fleck et al. 2013). Therefore,
cleavage by ADAMs or BACE can potentially facilitate
cellular signalling in a variety of ways, either by release of
growth factors or by ligand-dependent activation of cellular
receptors.
RIP by c-secretase is also a process involved in the normal

function of many proteins. RIP can serve two general
functions. First, it can remove the membrane-associated
fragment that is produced by ectodomain shedding. Second, it
can catalyse the production of intracellular signalling domains
(Lichtenthaler et al. 2011). c-Secretase has over 80 currently
known substrates (Haapasalo and Kovacs 2011). Apart from
APP, the most well known c-secretase substrate is the
developmental protein Notch, which is activated by c-secre-
tase cleavage (De Strooper et al. 1999; Struhl and Greenwald
1999). Therefore, it is also possible that c-secretase cleavage
may also be involved in the function of APP.

Structure of APP

Structurally, APP has features of an integral type I
transmembrane glycoprotein (Fig. 1b). The structure of
APP suggests that it may act as a cell-surface receptor
(Kang et al. 1987) or as a growth factor (Rossjohn et al.
1999). The encoded protein contains a large ectodomain,
which includes a cysteine-rich globular domain (E1), an
acidic domain, a helix-rich domain (E2) and part of the Ab
sequence, which extends into the transmembrane domain
(Fig. 1b). The relatively short cytoplasmic domain contains
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the C-terminus, which has some phosphorylation sites and a
YENPTY sorting motif (Fig. 1b). This section will discuss
the structure and putative interactions of these domains.

E1 domain and acidic region

The cysteine-rich E1 domain of APP shares little amino-acid
sequence similarity to non-APP family members. Cysteine-
rich globular domains are found in a number of transmem-
brane domain proteins including scavenger receptors and
hepsin, a cell-surface serine protease (Wu and Parry 2007).
The E1 domain is divided into two distinct regions, the
heparin-binding domain (HBD) and the copper/metal binding
domain (Fig. 2). The HBD is formed of a single a-helix and
an anti-parallel b-sheet, with a loop rich in basic residues
(95-110) that binds to heparin (Small et al. 1994; Rossjohn
et al. 1999) Immediately adjacent to the HBD is a hydro-
phobic pocket, which could form either a protein-binding site
or a dimerisation site (Rossjohn et al. 1999). It has been
proposed that this region may dimerise in the presence of
heparin (Gralle et al. 2006; Dahms et al. 2010). The size of
the putative binding domain at the N-terminus suggests that
APP may act as a receptor for a ligand or act as a growth
factor (Rossjohn et al. 1999), or may bind to an extracellular
matrix component (e.g. proteoglycan) (Small et al. 1994).
Adjacent to the HBD is the copper/metal binding domain,
which contains a single a-helix and a short b-sheet (Fig. 2).
This region can bind several metal ions (Bush et al. 1993).
The role of this domain is unclear, but it has been suggested
that copper (II) binding and reduction may be a principal
function (Multhaup et al. 1996). On the C-terminal side of
the E1 domain is an acidic region of unknown significance
that is rich in glutamic acid and aspartic acid residues. This
region also contains a stretch of seven threonine residues
(Kang et al. 1987).

KPI and Ox-2 antigen domains

Longer isoforms of APP (APP770 and APP751) may contain
a Kunitz-type protease inhibitor (KPI) domain and an Ox-2
antigen domain. APP isoforms containing the KPI domain
are more commonly expressed in non-neuronal cells (Rohan
de Silva et al. 1997), suggesting that they may play a role in
glial functions such as in wound repair. Clues to the function
of these isoforms comes from studies on blood coagulation.
KPI-containing forms of APP (APP751 and APP770) are
highly expressed in platelets where they can influence wound
repair by regulating blood clotting serine proteases (Van
Nostrand et al. 1991b). As serine proteases are also impli-
cated in neuronal cell growth (Wang and Reiser 2003), it is
possible that KPI-containing APP isoforms regulate cell
growth by inhibiting one or more of these proteases.
The role of the Ox-2 domain in APP770 is less clear. The

Ox-2 antigen is a lymphoid and neuronal cell-surface
glycoprotein, which has homology to Thy-1 and immuno-
globulin light chains (Clark et al. 1985). In APP, the Ox-2

domain is an insert of 19 amino-acid residues that is similar
to a region of the Ox-2 antigen. As immunoglobulin loop
domains are commonly found in cell-surface receptors and
are involved in cell-surface binding and recognition, it seems
likely that the Ox-2 domain in APP has a similar function.

E2 domain

The E2 domain is a a-helix rich region (Fig. 2) that can
readily dimerize (Xue et al. 2011) and may therefore be
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involved in APP self-association. The E2 domain has a
heparin-binding site (Multhaup 1994; Clarris et al. 1997) as
well as a number of putative metal-binding sites that may
hold the E2 domain in a rigid conformation (Dahms et al.
2012). The metal-binding site in the E2 domain has been
suggested to possess a ferroxidase activity, which may
function in cellular iron export through an interaction with
ferroportin (Duce et al. 2010). A role in metal homeostasis is
supported by the finding that levels of holo-APP can be
regulated by iron (Rogers et al. 2002), although more work
is needed in this area to support this idea.

Chondroitin sulphate attachment domain

An unusual spliced variant of APP (L-APP) is formed by
splicing out exon 15. This creates a consensus sequence for
the attachment of chondroitin sulphate (Pangalos et al.
1995). The proteoglycan form of APP (called ‘appican’),
which is formed as a consequence of this splicing event, has
been found mostly in glia rather than in neurons. Appican
contains a chondroitin sulphate E in the repeating disaccha-
ride region and a 4-O-sulphated galactose in the linkage
region (Tsuchida et al. 2001). Although the function of
appican is unclear, it may be involved in adhesion events
(Wu et al. 1997), as chondroitin sulphates are known to
inhibit cell attachment and neurite outgrowth (Cui et al.
2013). In addition, appican has been found to bind to certain
heparin-binding growth factors such as midkine and pleio-
trophin, suggesting that the protein may play some role in the
regulation of cell growth (Umehara et al. 2004).

Ab, transmembrane domain and intracellular domain
The Ab region on the C-terminal side of the E2 domain lies
partly within the ectodomain and partly within the trans-
membrane domain. A GxxxG sequence motif within the
transmembrane domain has been implicated in homodimer-
isation (Munter et al. 2007) and in cholesterol binding
(Barrett et al. 2012; Fig. 2).
From a functional standpoint, the C-terminal cytoplasmic

domain of APP is arguably the most interesting region. The
structure and possible interactions of this region have been
reviewed in detail elsewhere (Kerr and Small 2005;
Schettini et al. 2010). The intracellular domain of APP is
highly conserved among APP family members and contains
a YENPTY sorting motif located between residues 757 and
762 of the APP770 isoform. This motif is involved in the
facilitation of clathrin-mediated endocytosis and is present
in many tyrosine receptor kinases, non-receptor tyrosine
kinases, low-density lipoprotein-receptor related family
proteins and integrins (Bonifacino and Traub 2003; Lem-
mon and Schlessinger 2010). Consistent with this role,
many studies have demonstrated that the YENPTY motif in
APP is involved in the regulation of its trafficking and
endocytosis (Lai et al. 1995; Perez et al. 1999; Ring et al.
2007).

Putative functions of APP

Despite the large number of published studies on APP, there
is still no clear consensus on the protein’s function. This
section aims to summarise the major ideas relating to the
function of APP. Coverage of more specific aspects of APP
function can be found in other recent reviews (Aydin et al.
2012; Chasseigneaux and Allinquant 2012; Muller and
Zheng 2012).

Trophic actions of APP

APP has been reported to influence cell proliferation,
differentiation, neurite outgrowth, cell adhesion and syna-
ptogenesis. A number of studies suggest that the extracellular
domain can stimulate cellular growth. In vitro, sAPPa has
been reported to alter the growth of fibroblasts, keratino-
cytes, B109 cells, FRTL-5 cells, PC12 cells and neurons
(Saitoh et al. 1989; Araki et al. 1991; Milward et al. 1992;
Jin et al. 1994; Ninomiya et al. 1994; Pietrzik et al. 1998;
Hoffmann et al. 2000; Young-Pearse et al. 2008). Addition-
ally, there are some reports that infusion of sAPPa after
traumatic brain injury can improve neuronal survival and
recovery (Thornton et al. 2006). Genetic knock-in of sAPPa
into APP/APLP2 double KO mice (APPsa-DM mice)
rescues the lethal phenotype of the double KO (Weyer et al.
2011), supporting a role for sAPPa in growth. Similarly,
knock-in of the extracellular domain fragment of APL-1
from C. elegans rescues the lethal phenotype of the APL-1
KO (Hornsten et al. 2007). Collectively, these studies
provide good evidence that APP has a trophic function,
and that the extracellular region of APP is involved in this
function.

Effects on neural stem cell proliferation and differentiation

As APP is co-ordinately expressed in neuroblasts and
neurons at the time of cell proliferation and differentiation
(Fukuchi et al. 1992; Masliah et al. 1992; Salbaum and
Ruddle 1994; Clarris et al. 1995; Reinhard et al. 2005), this
has led to the idea that APP may play a role in the regulation
of stem-cell proliferation or differentiation. Indeed, APP is
processed in a manner that is very similar to the protein
Notch, which regulates neural stem cell differentiation (Ables
et al. 2011). Therefore, it is possible that APP may have a
similar or related developmental function to that of Notch
(Kimberly et al. 2001).
There is strong evidence that APP is able to stimulate the

proliferation of neural stem or progenitor cells (NSPCs). For
example, sAPPa and sAPPb can promote the proliferation
of NSPCs (Hayashi et al. 1994; Ohsawa et al. 1999;
Demars et al. 2011; Baratchi et al. 2012). Hayashi et al.
(1994) examined the effect of secreted APP770 on NSPC
proliferation and found secreted APP770 had a stronger
effect on NSPC proliferation than secreted APP695. A more
recent study reported that inhibition of a-secretase reduced
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NSPC proliferation and that sAPPa was able to rescue
this effect (Demars et al. 2011). In another study, sAPPa
infused into the ventricles of mice was found to bind to
epidermal growth factor receptor (EGFR) expressing stem
cells in the subventricular zone (Caille et al. 2004). Both the
secretion of EGF and the proliferation of the EGFR-
expressing cells were increased by sAPPa infusion (Caille
et al. 2004).
To examine the specific contribution of APP to stem cell

proliferation, our group examined the ability of NSPCs
derived from APP transgenic mice to proliferate. We found
that the expression of APP positively correlated with the
proliferation of NSPCs (Hu et al. 2013). However, surpris-
ingly, the APP-induced increase in NSPC proliferation was
not due to the secretion of sAPPa, but rather to the secretion
of cystatin C (Hu et al. 2013). Therefore, APP could
potentially influence NSPC proliferation through two differ-
ent mechanisms, i.e. either via the production of sAPPa or
via cystatin C release.
Studies on APP transgenic mice also suggest the possible

involvement of APP in NSPC proliferation. Some studies
have reported increased NSPC proliferation in APP mice, but
have also suggested the effect was due to Ab (Verret et al.
2007; Kolecki et al. 2008; Sotthibundhu et al. 2009). J20
mice, which overexpress human APP with the Swedish and
Indiana familial AD mutations, have a 2-fold increase in the
number of proliferating stem cells in the dentate gyrus and
subventricular zone at an age of 3 months (Jin et al. 2004;
Lopez-Toledano and Shelanski 2007). In contrast, a number
of studies have reported decreased NSPC proliferation in
APP mice (Haughey et al. 2002; Dong et al. 2004; Donovan
et al. 2006; Naumann et al. 2010) or no effect of APP on
NSPC proliferation in vivo (Yetman and Jankowsky 2013).
As Ab starts to accumulate in APP mice, the proliferation of
neural stem cells decreases (Lopez-Toledano and Shelanski
2007), suggesting that the build-up of Ab may reduce stem
cell proliferation.
APP may also play a role in regulating the differentiation

of NSPCs. A study using human embryonic stem cells found
that APP overexpression or addition of sAPPa enhanced
neuronal differentiation (Freude et al. 2011). We also found
that APP-overexpressing NSPCs derived from Tg2576 mice
possessed a greater potential to differentiate into neurons,
whereas cells derived from APP KO mice exhibited
decreased neuronal differentiation (Hu et al. 2013). Another
recent study has suggested that sAPPa/b may cause an
increase in glial cell differentiation (Baratchi et al. 2012).
APP expression is probably not mandatory for the initiation
of neuronal differentiation, as embryonic stem cells derived
from APP triple KO mice still form neuronal precursors
(Bergmans et al. 2010). However, the differentiation of
neuronal precursors appears to be delayed in vivo when APP/
APLP1 and APLP2 expression is reduced (Shariati et al.
2013).

Effects on neurite outgrowth, synaptogenesis and synaptic

plasticity

APP can promote neurite outgrowth in cell culture (Small
et al. 1994; Allinquant et al. 1995). Furthermore, APP
expression is upregulated rapidly in axons in response to
axonal injury, possibly as part of a repair mechanism
(Gentleman et al. 1993). One possible mechanism by which
APP promotes neurite outgrowth is by regulating cell-
substrate adhesion. APP is reported to bind to laminin,
collagen type I and heparan sulphate (Kibbey et al. 1993;
Beher et al. 1996; Clarris et al. 1997), all of which can
influence neurite outgrowth. APP may also promote cell-cell
adhesion (Soba et al. 2005). For example, in the presence of
heparin, APP can form trans-dimers that could form cell-to-
cell contacts (Gralle et al. 2006; Dahms et al. 2010). This
trans-dimerisation mode of action has also been proposed as
a mechanism for the stabilisation of synapses by APP (Wang
et al. 2009). APP may also modulate the activity of other
proteins involved in cell adhesion. APP reportedly interacts
with several cell-adhesion molecules including integrins,
fasciclin II, contactin 4, neuroglia cell adhesion molecule,
and transient axonal glycoprotein-1 (Yamazaki et al. 1997;
Ashley et al. 2005; Ma et al. 2008; Osterfield et al. 2008).
These studies suggest a number of mechanisms by which
APP may influence adhesion, although the precise mecha-
nisms still remain obscure.
APP may also be involved in the regulation of synapto-

genesis. During development, APP is expressed in both pre-
and postsynaptic sites and its level is dramatically increased
during the critical period of synaptogenesis (Loffler and
Huber 1992; Clarris et al. 1995; Wang et al. 2009). Clarris
et al. (1995) found that APP expression was increased in
mitral cells of the olfactory bulb at precisely the stage when
neurites from olfactory receptor neurons were coming in
contact with the mitral cell dendrites. In neurons, a pool of
APP is also preferentially found in the post-synapse,
suggesting a synaptic role for this protein (Shigematsu et al.
1992).
APP KO mice display a number of neurological deficien-

cies that may be explained by an effect on synaptogenesis,
such as a deficit in grip strength and locomotor activity
(Zheng et al. 1995; Ring et al. 2007). APP-KO mice also
have a number of deficits that are associated with altered
synaptic function, such as hypersensitivity to kainate-induced
seizures, alterations in dendritic spine density, and reduced
performance in tests of spatial memory (Steinbach et al.
1998; Dawson et al. 1999). APP/APLP2 double KO mice
have impaired neuromuscular junction formation, as demon-
strated by a reduced number of synaptic vesicles, excessive
terminal sprouting, incorrect apposition of pre- and post-
synaptic proteins and impaired synaptic transmission (Wang
et al. 2005). These synaptic deficits may be responsible for
the lethality of the APP/APLP2 double KO (Wang et al.
2005).
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A role for APP in regulating synaptic plasticity, learning
and memory has also been proposed. APP may alter
expression of the GluR2 subunit of the a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid receptor, which
plays an important role in regulating synaptic calcium
permeability (Lee et al. 2010). APP may also affect synaptic
calcium by altering cell-surface expression of the NMDA
receptor (Cousins et al. 2009; Hoe et al. 2009). As sAPPa is
secreted during long-term potentiation (LTP) (Fazeli et al.
1994), it may play a role in the regulation of LTP. However,
whether cognitive deficits in APP mice (Chapman et al.
1999) are due to APP-induced disruption of LTP (Weyer
et al. 2011) or whether they are due to effects of Ab, as
seems likely (Janus et al. 2000; Morgan et al. 2000),
remains to be established. Indeed, some studies suggest that
APP can directly increase LTP (Ishida et al. 1997; Seabrook
et al. 1999; Taylor et al. 2008).

Function of APP in blood coagulation

The predominant forms of APP in blood contain the KPI
domain (Bush et al. 1990; Gardella et al. 1990; Van
Nostrand et al. 1991a). These isoforms have been suggested
to have a role in the regulation of blood coagulation. In
platelets, APP, sAPP and Ab accumulate in a-granules,
which are vesicles that store a variety of clotting factors (Van
Nostrand et al. 1991b; Blair and Flaumenhaft 2009). Upon
platelet stimulation, APP, sAPP and Ab are released, along
with a number of another components of the coagulation
cascade (Bush et al. 1990; Gardella et al. 1990; Smith et al.
1990; Van Nostrand et al. 1990; Smith 1997). The KPI
domain of APP is a potent inhibitor of the coagulation factors
XIa, IXa and Xa (Smith et al. 1990; Schmaier et al. 1993;
Scandura et al. 1997). Factor XIa, for example, is strongly
inhibited (Ki = 400 pM) (Smith et al. 1990; Scandura et al.
1997). Notwithstanding the role of the KPI domain, other
regions of APP may also participate. For example, inhibition
of factor XIa by APP is enhanced in presence of heparin,
suggesting an involvement of the heparin-binding regions
of APP (Smith et al. 1990). The E1 N-terminal heparin-
binding domain of APP is also reported to inhibit the
activation of factor XII and to inhibit platelet activation,
independently of the KPI domain (Niwano et al. 1995;
Henry et al. 1998).
KPI-containing forms of APP can inhibit blood coagula-

tion in vitro, consistent with a role of APP as an inhibitor of
coagulation (Schmaier et al. 1993; Annich et al. 1999).
Genetic overexpression of APP in mice decreases cerebral
thrombosis and also increases the severity of haemorrhage
in animal models, whereas KO of APP has the opposite
effect (Xu et al. 2005, 2007). The anti-coagulant function of
APP is also conserved among APP family members (Xu
et al. 2009). Therefore in the circulatory system, other APP
family members may also have functions in the clotting
cascade.

What is the mechanism of APP signalling?

Despite the many reports of effects of APP on cell
proliferation, neurite outgrowth and synaptogenesis, the
mechanisms that underlie these effects have not been fully
elucidated. The original description of the APP gene noted
that the structure of APP resembles a cell-surface receptor
(Kang et al. 1987), however a receptor function for APP has
not been unequivocally established. A major missing piece of
information is the identity of a physiological ligand that
activates the APP ‘receptor’. F-spondin has been suggested
to be a potential APP ligand (Ho and Sudhof 2004).
However, the strongest support for the idea that APP
functions as a receptor comes from studies that suggest
APP can activate intracellular signal transduction
mechanisms.
The C-terminal domain (residues 732-751) has been

suggested to be a binding site for G-proteins (Nishimoto
et al. 1993). The binding of an extracellular antibody to the
N-terminal domain of APP may result in signal transduction
by activating the guanosine 50-triphosphate-binding protein
GaO (Okamoto et al. 1995; Murayama et al. 1996). The
significance of G-protein coupled APP signalling has yet to
be fully elucidated, but studies of the insect APP homologue
APPL suggest that an APP-G-protein interaction could be
involved in the control of neuronal migration (Ramaker et al.
2013).
Other mechanisms of signal transduction have also been

proposed. APP has been suggested to activate gene tran-
scription in a similar manner to Notch, which signals through
the c-secretase-mediated release of the Notch intracellular
domain. This domain translocates to the nucleus and
activates gene transcription. The AICD fragment of APP
has also been reported to translocate to the nucleus (Cupers
et al. 2001; Gao and Pimplikar 2001). Normally AICD is
prone to degradation (Kimberly et al. 2001). However,
AICD can be bound by Fe65, which binds to the YENPTY
motif through its phosphotyrosine-binding domain (Fiore
et al. 1995). Fe65 binding may help to stabilise AICD
(Kimberly et al. 2001). After translocating to the nucleus, the
Fe65-bound AICD has been reported to form a transcrip-
tionally active complex in combination with Tat-interactive
protein 60 (Tip60), which is a histone acetyltransferase (Cao
and Sudhof 2001; Gao and Pimplikar 2001). A number of
target genes have been reported for AICD. These genes
include KAI1 (Baek et al. 2002), APP, BACE, Tip60 (von
Rotz et al. 2004), glycogen synthase kinase-3b (Kim et al.
2003), EGFR (Zhang et al. 2007), p53 (Checler et al. 2007),
neprilysin (Belyaev et al. 2009) and low-density lipoprotein-
receptor related family proteins (Liu et al. 2007).
Despite the evidence that the AICD may be involved in the

regulation of gene transcription, some studies suggest that the
role of AICD may not be quite so straightforward. For
example, c-secretase-induced AICD release is not necessary
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for Tip60 activation (Hass and Yankner 2005). Fe65 has also
been reported to signal gene transcription independently of
APP (Yang et al. 2006). Additionally, many of the down-
stream gene targets of the proposed AICD complex have
been questioned (Chen and Selkoe 2007; Repetto et al. 2007;
Waldron et al. 2008; Aydin et al. 2011) and the mechanism
is still unclear (Chen and Selkoe 2007; Waldron et al. 2008).
APPmay also exert its physiological effects via the secreted

fragments sAPPa or sAPPb. At present, it is not clear whether
secreted APP can activate a specific signal transduction
pathway via, for example, a growth factor receptor. Binding
studies suggest that there is a high-affinity receptor for secreted
APP, which interacts with the E1 domain (Reinhard et al.
2013). However, this receptor has not yet been identified.
Some putative APP receptors include b1-integrin, lipoprotein
receptor related protein-1, class A scavenger receptor, death
receptor 6, p75 neurotrophin receptor andAPP itself (Kounnas
et al. 1995; Santiago-Garcia et al. 2001; Young-Pearse et al.
2008;Gralle et al.2009;Nikolaev et al. 2009).However,APP
may interactwithmanyother extracellular proteins aswell (Bai
et al. 2008).
To complicate matters, APP’s trophic effects may be

mediated via other growth factors. For example, sAPP is able
to potentiate the action of nerve growth factor (NGF)
(Milward et al. 1992; Wallace et al. 1997; Akar and Wallace
1998). APP can also increase the secretion and expression of
cystatin C, which positively modulates the growth of NSPCs.
(Hu et al. 2013). APP has been suggested to regulate NGF/
tyrosine receptor kinase A signalling, through an intracellular
interaction involving the C-terminal YENPTY phosphoryla-
tion site (Matrone et al. 2011). Along similar lines, NGF,
EGF, and fibroblast growth factor-2 have all been reported to
increase the expression of APP (Ohyagi and Tabira 1993;
Villa et al. 2001) and NGF, EGF and insulin have been
reported to increase the secretion of sAPP (Slack et al. 1995;
Solano et al. 2000; Ruiz-Leon and Pascual 2001; Caille
et al. 2004). The interplay between these growth factor
pathways and APP not only suggest that APP is linked to
cellular growth, but also presents a challenge for establishing
the direct signalling mechanisms undertaken by APP.
It has also been suggested that the production of Ab from

APP may represent a normal physiological function. How-
ever, this suggestion has been controversial. Ab neither
possesses a defined primary structure, nor is it produced as a
major pathway of APP processing. Nevertheless, a number of
functions for Ab have been proposed. For example, Ab has
been suggested to be involved in cholesterol transport (Yao
and Papadopoulos 2002) and Ab peptides can increase cell
adhesion and neurite outgrowth (Koo et al. 1993). Kamenetz
et al. (2003) found that synaptic activity regulated Ab
production and that Ab, in turn, selectively suppressed
excitatory neurotransmission, suggesting that synaptic activ-
ity may be regulated by a negative feedback loop involving
Ab secretion. In contrast, a more recent study by Abramov

et al. (2009) has suggested that Ab is a positive endogenous
regulator of release probability at hippocampal synapses. The
identification of Ab’s normal physiological function (if it has
one) is extremely important. As many therapeutic strategies
for the treatment of AD aim to prevent Ab production or
increase Ab clearance from the brain, it is important to
ensure that these strategies do not disrupt a normal physi-
ological function.

Summary and conclusions

There is strong evidence that APP plays an important role in
cell growth and proliferation. There is also evidence that APP
may act as a trophic factor to influence events such as neurite
outgrowth and synaptogenesis. As APP is expressed at early
stages of nervous system development, APP clearly plays a
key role in the growth and maturation of many cells.
However, the expression of APP in the mature brain and the
up-regulation of APP following traumatic brain injury argue
for an important tissue-repair function as well.
Although the role of APP as a growth-regulatory molecule

can now be stated with some confidence, the precise
mechanism by which APP regulates cell growth is still
unclear. The extracellular domain of APP may interact with a
cell-surface receptor or a component of the extracellular
matrix. The intracellular domain is also undoubtedly impor-
tant and may interact with a number of cytoplasmic adaptor
molecules to facilitate signal transduction or control APP
trafficking. However, further research is needed to under-
stand APP’s mechanism of action. In particular, future
research needs to focus on mechanisms of APP action in
which the function of APP is most clearly established. By
understanding the mechanism of APP action in well-defined
roles (e.g. NSPC proliferation), it may be possible to
generalise the findings to understand the mechanisms of
APP in relation to other less well-defined roles.
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