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From a technological point of view, Industry 4.0 evolves and operates in a smart environment in which the real and virtual
worlds come together through smart cyber-physical systems. -ese devices that control each other autonomously activate
innovative functions that enhance the production process. However, the industrial environment in which the most modern
digital automation and information technologies are integrated is an ideal target for large-scale targeted cyberattacks.
Implementing an integrated and effective security strategy in the Industrial 4.0 ecosystem presupposes a vertical inspection
process at regular intervals to address any new threats and vulnerabilities throughout the production line. -is view should
be accompanied by the deep conviction of all stakeholders that all systems of modern industrial infrastructure are a potential
target of cyberattacks and that the slightest rearrangement of mechatronic systems can lead to generalized losses. Ac-
cordingly, given that there is no panacea in designing a security strategy that fully ensures the infrastructure in question,
advanced high-level solutions should be adopted, effectively implementing security perimeters without direct dependence
on human resources. One of the most important methods of active cybersecurity in Industry 4.0 is the detection of
anomalies, i.e., the identification of objects, observations, events, or behaviors that do not conform to the expected pattern of
a process. -e theme of this work is the identification of defects in the production line resulting from cyberattacks with
advanced machine vision methods. An original variational fuzzy autoencoder (VFA) methodology is proposed. Using fuzzy
entropy and Euclidean fuzzy similarity measurement maximizes the possibility of using nonlinear transformation through
deterministic functions, thus creating an entirely realistic vision system. -e final finding is that the proposed system can
evaluate and categorize anomalies in a highly complex environment with significant accuracy.

1. Introduction

-e systems that make up the industrial environment in the
Industry 4.0 standard and those inherited from the existing
infrastructure show enormous heterogeneity resulting in a
massive number of different interfaces with different charac-
teristics and security requirements [1]. Unfortunately, modern
architectural standards do not determine the organization of
heterogeneous systems based on the essential security require-
ments, which translates into a significant increase of the attack
surface for possible cyberattacks [2]. It is important to emphasize
that cyberattacks in the industrial environment can be imple-
mented as a rearrangement of the operation of mechatronic
equipment, the configuration of different signs or alerts, the
omission of steps in the production process, and so on [1, 3].

-e current situation focuses more on the human factor,
the experience, and the opinion of experts, using assistive
technology to assess and mitigate risks and threats. -ere
should be in-depth human supervision and intervention by
highly qualified staff for best results with this approach. On
the other hand, the rapid development of computer systems
has led to artificial intelligence mechanisms to solve complex
problems without human intervention [4].

One of the critical areas of application of computational
intelligence algorithms is the recognition of anomalies in
real-time machine vision systems [5]. -e detection of ab-
normalities is wholly related to recognizing patterns in a
dataset that depicts different behaviors than expected [6].
-e goal is to detect possible deviations while maintaining
low false alarm rates. -e activity is monitored in real time
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with a regular pattern when applying anomaly detection
algorithms [7]. When a deviation is detected, the safety
management mechanism is activated to investigate the in-
cident further and take measures to deal with it.

In an industrial environment, anomaly detection is used
to intelligently identify divergent behavior that could lead to
mechanical failure or other adverse conditions. -is process
provides a robust security mechanism for industry hubs and
business network systems within Industry 4.0 [2, 8].

An additional objective of anomaly detection is the
immediate identification of irregular use, misuse, and abuse
of industrial systems by external factors and equipment
failure cases [9]. -e industrial environment consists of
scattered heterogeneous nodes that exchange information
through a common automated communication infrastruc-
ture. In this context, the complexity increases exponentially
as the number of interconnected systems expands [10].

-e main problem in the environment mentioned above
concerns the heterogeneity in detecting anomalies, which
imposes the integration of intelligent machine vision sys-
tems in many industrial systems. -e purpose of these
applications is to alert cyber-physical systems when items
outside of predetermined specifications appear on the
production line so that corrective decisions can be made
promptly to ensure product quality and productivity [3].
-ese systems are adaptive and can deal with the uncertainty
of the environment in which they are applied. Similarly, with
the integration of vision in the production process, it is
possible to detect abnormalities through visual inspection in
time, offering significant benefits, especially in construction
problems or material failures [11].

-is work aims to create a machine vision device to ensure
the quality of metal components in the automotive sector,
where Industry 4.0 standards are applied. In particular, the
VFA algorithm is proposed, which can detect poor assembly
alignment in gearboxes that may be due to cyberattacks [12].
-e process of detecting these anomalies is achieved by using
blurred entropy and Euclidean measurement of blurred sim-
ilarity between samples, thus creating an entirely realistic and
highly reliable machine vision system.

-e ability of automated visual inspection on the pro-
duction line to detect anomalies, given that it targets many
industrial products, has been a constant research demand,
thoroughly investigated by the research community, with
significant developments depicted in the relevant literature
[7, 13, 14].

-e rest of the work includes Section 2, which provides an
overview of the methods found in the literature and related to
similar technical standardization. Section 3 describes in detail
the methodology of the proposed system. In contrast, Section 4
explains the scenarios for implementing the proposed ap-
proach. Finally, Section 5 summarizes the research conducted
and presents the future objectives that can extend it.

2. Literature Review

-e concept of anomaly detection using artificial intelligence
has been approached with various methods from the re-
search community because of the numerous challenges

involved, such as the vast amount and diversity of data to be
analyzed. In recent years, we observed that the community
has been researching various autoencoder combinations to
solve complex problems effectively [15, 16]. Because of the
depth and richness of information, the universality of ap-
plications, and the difficulty of monitoring processes, this
research is becoming increasingly important.

Zimmerer et al. [17] demonstrated an anomaly detection
method for identifying and determining aberrant spots in
medical imaging. -ey used a mix of density and reconfi-
guration-based anomaly detection algorithms, which did not
require labeled data and allowed for sample-by-sample
anomaly scoring and determination. -ey showed how to
boost anomaly scores by using a context encoder and a
variational autoencoder. In a variational autoencoder for
pixel-wise anomaly localization, they added the posterior
deviations (KL divergence) from the prior latent variable
distributions. -ey also employed a variational autoencoder
to combine the previous variations with the reconversion
error to improve localization, achieving encouraging results
with the potential to improve and speed up future medical
picture review and assessment.

Lee et al. [2], in 2018, introduced a sparse representation
framework for large-scale and high-dimensional data that
builds dictionaries depending on the subspace of variational
autoencoder (VAE). -is autonomous framework injects
minimal reconstruction into VAE, which is divided into two
parts: secret data mapping and concise dictionary info gen-
eration. It can be used to uncover secret data and extract more
high-level features than hand-crafted features in large-scale
datasets by acting as a dimensionality reducer.

Carletti et al. [18] proposed a method for determining
“feature importance” in anomaly detection, with the goal of
addressing the barriers to ML adoption in Industry 4.0
scenarios. -e absence of supervised datasets makes intel-
ligent monitoring systems difficult. -e feature point im-
portance evaluation method is intended for isolation forest,
among the most widely used anomaly detection methods.

Banifakhr and Sadeghi [19] demonstrated a method for
detecting anomalies in trajectories using CCTV records of
vehicle traffic. -e method makes use of machine learning
and deep learning techniques to overcome the problems of
not having enough data to build an effective model and not
having enough anomaly data to cover all conceivable ab-
errant trajectories. -ey solved the challenge by combining
optimal convolutional neural network and adaptive neuro-
fuzzy inference system network classifiers with an autoen-
coding network to create an optimized structure for anomaly
detection at the decision level. -e classifier first categorizes
the input trajectory into one of the specified groups. -e
result is then evaluated by the trained autoencoder networks
to determine whether the route is regular or aberrant.

Tsai and Jen [14] sought to detect surface defect irreg-
ularities using an autoencoder. On the one hand, they did
not use pixel-wise flaw separation, but instead used photo
detectability. A normalization was included in the suggested
convolutional autoencoder, which enhances the character-
istic dispersion of fault examples within a small spectrum.
-is method brings all training samples’ representative
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feature vectors as nearly as possible to the average feature
vector. In the evaluation stage, a defect sample can produce a
different range from the learned center of fault samples.-ey
also added two normalization penalties that could limit the
spread of retrieved properties from a group of fault samples
to a small area. For less-regular texture backdrops, the first
regularization is learned for uniformly surface areas, while
the second could further differentiate the faulty features.

For evaluating ultrasonic testing (UT) data, Milkovic
et al. [15] suggested a variational autoencoder (VAE). In
standard UT data, the VAE was applied to characterize the
distributions. -eir strategy was to train on normal data
only, which resulted in variations in VAE output and latent
values in cases with abnormal data, which served as a
foundation for anomaly identification. -e problem of
detecting anomalies in ultrasound pictures necessitated the
use of numerous criteria. First, they rebuilt the error and
variances of the mean and standard deviation of latent
variable parameters. -en, on top of the decoder, they added
a second encoder, allowing the use of two new parameters,
which merged reconstructions and hidden descriptions as
potential anomaly signs.

Finally, in 2022, Lu et al. [7] introduced a deep learning-
based anomaly detection method for identifying lace faults
in industrial settings. Lace is unique in that it is one of the
only industrial items that is completely dependent on
manual fault control. Video preprocessing, pixel rebuilding,
and pixel categorization were the three stages of their system.
Only defect-free lace films are required during the offline
phase to train the pixel reconstruction model and determine
the detection threshold using the adaptive thresholding
method. -e proposed framework reconstructs lace videos
and conducts defect inspection utilizing reconstruction
error and a predetermined threshold in the online stage. On
holes and damaged yarn, their model worked perfectly. To
overcome the dataset deficit, they aimed to gather more
faulty samples, which is a time-consuming technique, and
analyze the lace pattern layout. -ey also aimed to explore
the pixel reconstruction model to obtain more precise re-
building findings, which can help distinguish small problems
and noises.

From the above literature, we can conclude that the
research community is primarily trying to find a practical
machine learning approach to solve complex problems with
the most effective methods.

3. Proposed Machine Vision-Based Anomaly
Detection System

In the present work, a holistic approach to anomaly rec-
ognition in machine vision systems is implemented and
proposed, based on an original VFA methodology where the
possibility of using nonlinear transformation through de-
terministic functions is maximized. -is is an innovative
model of artificial vision, for optimal decision making, re-
garding the recognition of anomalies in the industrial en-
vironment. Specifically, we present a novel methodology
using fuzzy entropy and Euclidean fuzzy similarity mea-
surement for the first time in the literature, in order to

maximize the possibility of using nonlinear transformation
through deterministic functions, thus creating an entirely
realistic and highly reliable machine vision detection system
for Industry 4.0 based on variational fuzzy autoencoder
[15, 20].

-e evaluation of the methods was carried out in a highly
complex cybersecurity scenario, where cybercriminals could
modify the assembly parameters of the production mech-
anisms. -is fact is not perceived by the other sensors
connected to the production system. Utilizing the most
advanced machine vision techniques and fuzzy logic
methodologies, the proposed method has achieved very high
success rates, creating serious expectations for additional
cybersecurity applications [20, 21]. A depiction of the
autoencoder architecture is presented in Figure 1.

-e VFA architecture layout contains a hidden layer
consisting of D neurons. -e encoder encodes the input
vector x into the vector h. Each hi coordinate corresponds to
the output of a hidden layer neuron so that

hi � fi w
T
eix + bei􏼐 􏼑, (1)

where fi is the activation function and wei and bei are the
parameters of the ith neuron of the encoder. -e decoder
then decodes the representation by producing

􏽥xi � gi w
T
dih + bdi􏼐 􏼑, (2)

at output i, where gi is the activation function and wdi and
bdi are the parameters of the ith neuron of the decoder. -e
training is done by minimizing the loss function:

J(x, g(f(x))). (3)

An easy way for the encoder to learn valuable features is
through the D<N constraint, i.e., the dimensionality of the
hidden representation is less than the dimensionality of the
data. In this case, the encoder encrypts any incoming in-
formation, and then the decoder tries to reconstruct the
input. Because D<N is valid, some of the information
contained in the attribute space is lost. -e decoder attempts
to recover the lost data through h. -e network, therefore,
tries to trap as much information as possible in vector h,
neglecting potentially useless information contained within
the attribute space. If each xi comes from an independent
and identically distributed (iid) distribution independent of
the others, then h rarely contains any helpful information.
However, if there is any structure between the data, the
autoencoder can detect it.

Another way to export useful features is by applying
sparse restrictions to the network. For this purpose,
additional constraints are introduced in the loss function
that forces the network’s neurons to be activated less
frequently so that the hi are as detachable as possible.
Typical limitations concern the matrix of network
weights, such as the norm L1 or L2. -e parameter λ
corresponds to a hyperparameter of the network, which is
determined during its training. High values of the pa-
rameter give further power to the constraint by reducing
the values of the network weights:
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J(x, g(f(x))) + λΩ(h). (4)

-e proposed VFA methodology assumes some un-
known distribution on the data to determine the distribution
parameters. More specifically, let the dataset X � x(i)􏼈 􏼉

N

i�1,
consisting of N iid samples. Each sample x(i) comes from a
random process of an unobservable random variable h
which comes from some prior distribution p∗θ(h) so that
from this distribution, a sample h(i) is obtained, respectively,
and a sample x(i) is obtained from the bounded distribution
p∗θ(x|h).

-e process of giving birth to the samples comes from its
separate latent variable, which it does not share with any
other sample, i.e., there are no global latent variables. Based
on the above hypothesis, the goal of the proposed system is
to determine p∗θ(x|h). Because the random variables and the

distribution parameters are unknown, according to Bayes
theorem, the requested probability is the following:

pθ∗(h|x) �
pθ∗(x|h)p(h)

pθ∗(x)
,

pθ∗(x) � 􏽚 pθ∗(x|h)pθ∗(h)dh.

(5)

According to the above, the requested posterior is
approached through a family of distributions. It is calculated
based on the Kullback–Leibler divergence metric estimate,
which quantifies the similarity between different distribu-
tions. Using the product of the logarithm to the common
probability p(h, x) of the above equation, a parametric so-
lution can take the following form:

J(λ) � 􏽘
N

i�1
Ji(λ) � 􏽘

N

i�1
Eqλ h ∣ xi( ) log p hi|xi( 􏼁( 􏼁􏼈 􏼉 − KL qλ h|xi( 􏼁p(h)􏼈 􏼉. (6)

Expressing the maximization problem as a minimization
problem, the loss function of the proposed system can be
described:
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Figure 1: Autoencoder.
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J(X, θ, ϕ) � 􏽘
N

i�1
Ji xi, θ, ϕ( 􏼁, Ji xi, θ, ϕ( 􏼁 � − Ehi ∼ qθ hi ∣ xi( ) log pϕ xi|hi( 􏼁􏼐 􏼑􏽮 􏽯 + KL qθ hi|xi( 􏼁p hi( 􏼁􏼈 􏼉. (7)

An issue that arises is the sampling process so that this
selected version of the sample is as close as possible to the
original. On the other hand, it is also required that the
sampling requires computational time to be used in real
applications. Our proposal for smoothing purposes is for
selection to take place at a particular time for each new scale
parameter and the required sample number. With this
sampling policy, we avoid the repetition of a computa-
tionally demanding operation several times in each step
since the samples are reused for different values of x. On the
other hand, we guarantee the consistency of the property of
triangular inequality that satisfies every norm, which can be
applied as follows:

􏽢g(x) �
1
n

􏽘

n

i�1
J x − vi( 􏼁, vi ∼ Ν 0, σ2kI􏼐 􏼑,

􏽢g(y) �
1
n

􏽘

n

i�1
J x − vi( 􏼁, vi ∼ Ν 0, σ2kI􏼐 􏼑.

(8)

-e difference between the two equations is

􏽢g(y) − 􏽢g(x) �
1
n

􏽘

n

i�1
J y − vi( 􏼁 − 􏽘

n

i�1
J x − vj􏼐 􏼑⎛⎝ ⎞⎠

�
1
n

􏽘

n

i�1
J y − vi( 􏼁 − J x − vi( 􏼁⎛⎝ ⎞⎠, i � j⇒vi � vj􏼐 􏼑,

(9)

so it applies to the norm:

‖􏽢g(y) − 􏽢g(x)‖ �
1
n

􏽘

n

i�1
J y − vi( 􏼁 − J x − vi( 􏼁

≤
1
n

􏽘

n

i�1
J y − vi( 􏼁 − J x − vi( 􏼁

≤
1
n

􏽘

n

i�1
L‖y − x‖

‖􏽢g(y) − 􏽢g(x)‖

‖y − x‖
≤ L.

(10)

It is evident that if we selected new samples for each
point, the algorithm might have failed to find the total
minimum, primarily if it used first-order methods like slope
descent, as the function is not smooth.-is case substantially
limits the acceptable cost functions that we can consider for
optimization, as it requires the values of the function to be
constrained. So, essentially, for a given required approach
accuracy, the probability of adhering to it improves expo-
nentially by increasing the number of samples.

Accordingly, given that uncertainty is directly related to
the number of data samples, the amount of data about a state
expresses the complete possible information. So, reducing
the uncertainty since we have similarities between different
distributions indicates an equal gain in the amount of data.
-e degree of similarity, in this case, expresses the degree of
proximity of an element of p∗θ(h) compared to the original
elements of the bounded distribution p∗θ(x|h). -is inter-
pretation is used to extract an abstract representation from a
dataset, taking advantage of the proximity between different
amounts of data. Furthermore, the above interpretation is
used in the vague control. -e degrees of similarity between
the current and the reference situations in the rules form the
basis for the interpolation mechanism between the
conclusions.

Fuzzy entropy was used as a measure of the ambiguity of
the whole, which results from the inherent ambiguity and
vagueness of the whole itself due to the inability to separate
the whole from its complement, that is, the abnormal ele-
ments from the normal. In this sense, the measures that
assess uncertainty in the context of fuzzy set theory, namely,
the entropy measures and the ambiguity indices, were
adopted to implement a fully functional and realistic system
for detecting anomalies in machine vision systems.-e fuzzy
entropy equation used is shown below:

E
FS
LT(A) � −

1
n

􏽘

n

i�1
μA(x)log2μA

(x) + 1 − μ
A

(x)􏼐 􏼑log2 1 − μA(x)( 􏼁􏽨 􏽩. (11)

To measure the distance between normal and abnormal
cases, the ambiguity index was used using the Euclidean
distance:

f(Å) � 􏽘

n

i�1
μ

A
(x) − μ􏽥Ac

(x)􏼐 􏼑
2⎛⎝ ⎞⎠

1/2

. (12)
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-us, the final shape of the proposed architecture takes
an intermediate level at which fuzzy logic is applied to the
investigation of anomalies. -e proposed architecture is
schematically presented in Figure 2.

4. Scenarios

-e reliability of steel industry applications is an important
growth factor in the shipping industry, aviation, defense
systems development, renewable energy sources, etc. A
typical example is the durability and accuracy of the op-
eration of gearboxes, where the reliability of the assembly
ensures their smooth and long-lasting operation. For a
gearbox to work correctly, it must be precisely aligned with
the power units, axles (e.g., driveshaft), and other compo-
nents (e.g., differential) involved. When the other compo-
nent and the gearbox are not connected properly, the
gearbox is not aligned. Poor alignment puts a lot of pressure
on the gearbox parts, such as the axles and the coupling, and
can deplete the device enough to cause severe wear and even
drive failure. When misaligned, one end of a gear can crack
or open earlier than it should, and similar damage can occur
to bearings.

Poor alignment can occur due to static factors such as
manufacturing defects or user error. Dynamic causes in-
clude heavy loads stretching the gearbox components and
thermal expansion. Also, other factors can cause poor
alignments, such as tilt error or oscillation and centrifugal
forces. A particular cause that can create misalignment is the
improper configuration of SCADA control systems that
control the production process through cyberattack.

During regular operation, the control unit operator
monitors the standard operation variables of the assembly
system on the production line provided by the corre-
sponding sensor. Abnormal behavior occurs when some
assembly parameters are not within the normal range.
During assembly, a laser shaft alignment system canmeasure
the misalignment of the gears and rotate them to take the

correct position. -is process is activated after a specific
notification of the control system. A cyberattack could
deactivate if the cybercriminals could modify the assembly
parameters outside of the normal operating range. -e
proposed mechanical vision system augmented by the VFA
algorithm is used to deal with this type of cyberattack, not
connected to the production line system operating auton-
omously as an independent security mechanism.

For the implementation of the experiments, a dataset
including snapshots with the operating condition of a
component was used, where the primary anomaly is related
to a specific type of error related to the alignment of the
gearbox gears.

To address the problem of image matching, a heuristic
algorithm was used to calculate the digital variation and then
apply methods to repeat and optimize these values while
calculating the fuzzy sample entropy and Euclidean fuzzy
similarity. -is method essentially captures pixel layout and
smoothness, which minimizes pixel mismatches. Specifi-
cally, the calculation of the digital variation is done by
minimizing an energy function E(d) as follows:

D � argmin E d dp􏼐 􏼑􏼐 􏼑. (13)

-e energy function consists of two terms.-e first refers
to the data and measures how well the variation function d
matches the pair of images. -e second term refers to the
assumptions made by the algorithm:

E(d) � Edata(d) + λEsmooth(d). (14)

-e term Edata is equal to the sum of each pixel of the
matching costs C of the disparity space image table:

Edata(d) � 􏽘
(x,y)

C(x, y, d(x, y)).
(15)

-e term Εsmooth is equal to the sum of the depreciation
of the variation differences between adjacent pixels:

Esmooth(d) � 􏽘
(x,y)

p(d(x, y) − d(x + 1, y)) + p(d(x, y) − d(x, y + 1)),
(16)

where x is the scan column and y is the scan bar.-e variable
p is a function of the difference of the digital variant,
genuinely increasing. -e term Esmooth(d) can be trans-
formed to accommodate volume differences. -is has the
effect of reducing the smoothness of the image when the
intensity gradient is high. -e term λ is the relative weight of
the normality term, and its value depends on the calculation
method of the correlation cost.

Also, for the calculation of the correlation cost be-
tween two pixels using linear interpolations in the
neighboring pixels, we used a parametric method which is
more efficient and less sensitive to the effect of image
signal sampling in case the brightness of the pixels
changes abruptly, for example, in-depth discontinuities
and repetitive patterns. -e calculation was based on the
following function:
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CBT(p, d) � min(A, B),

A � max
0, IL(p) − I

max
R (p − d),

I
min
R (p − d) − IL(p)

⎛⎜⎝ ⎞⎟⎠,

B � max
0, IR(p − d) − I

max
L (p),

I
min
L (p) − IR(p − d)

⎛⎜⎝ ⎞⎟⎠,

I
min

(p) � min I
−

(p), I(p), I
+
(p)( 􏼁,

I
max

(p) � max I
−

(p), I(p), I
+
(p)( 􏼁,

I
−

(p) �
I p − [10]

T
􏼐 􏼑 + I(p)􏼐 􏼑

2
,

I
+
(p) �

I p +[10]
T

􏼐 􏼑 + I(p)􏼐 􏼑

2
.

(17)

Finally, we used the normalized correlation coefficient,
which is the normalized expression of the variability of the
reference windows and the search of the contrasted images.
-is coefficient is calculated using the average and the
standard deviation of the values of the intensity of the
brightness in the window. In this work, the correlation
coefficient remains unchanged in uniform and linear
changes of the brightness and contrast of the window:

CNCC(p, d) �
􏽐

n
i�1 􏽐

m
j�1 IL(p) − IL( 􏼁 IR(p − d) − IR( 􏼁( 􏼁

�������������������������������������������

􏽐
n
i�1 􏽐

m
j�1 IL(p) − IL( 􏼁

2
􏽐

n
i�1 􏽐

m
j�1 IR(p − d) − IR( 􏼁

2
􏽱 . (18)

Figure 3 shows a schematic representation of the relative
entropy differentiation in the applied sample.

-e concept of entropy is mainly based on the difficulty
of distinguishing between a set and its complement, so the
less the set differs from its complement, the vaguer it is.
-erefore, there is a specific reason for the percentage of
anomaly that characterizes it. In this sense, each probabilistic
set is generated by randomizing the degree of participation
of each element of its definition field separately. For this
purpose, a probabilistic space is introduced and a random
variable is assigned to each element with values between the
space of the measure of similarity of the factors under
consideration [7, 22, 23].

Figure 4 presents the methodology of accurate geometric
determination of the fuzzy anomaly of the samples, utilizing
the measurement of their Euclidean vague similarity [24].
-e distance between two fuzzy sets is defined to be the
regular Euclidean distance between the two corresponding
vectors.

-e general differences that can identify local or global
anomalies were also investigated based on the proposed
architecture and the characteristics of the data under con-
sideration, as shown in Figure 5.

Finally, Table 1 presents typical snapshots of the process
of using the VFA algorithm and the success rates we
achieved.
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Figure 2: Variational fuzzy autoencoder.
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Figure 3: Fuzzy entropy comparison.
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When the increase or decrease of the anomaly is not
abrupt, the extra time points included in the control in-
tervals have a relatively high probability of redefinition with
higher accuracy. However, if we have a sharp increase or
decrease in probability, the intervals may include times when
the activity may show less categorization accuracy. -is
observation is related to the inherent noise in the dataset,
resulting in the fluctuation of the algorithm tendency. In
general, however, the finding is that the proposed system can
evaluate and categorize with significant accuracy anomalies
in a highly complex environment.

-e computational complexity is linearly dependent on
the sequence length, which means inference is fast and
scalable to very large files. All experiments were performed
in the Google Colab environment using a GPU processor. To
avoid high overhead and achieve timely model convergence,
it was necessary to train the proposed system using a rel-
atively small but at the same time satisfactory batch size. Due
to the overuse of memory, the heuristic algorithm was used
to calculate the digital variation and optimize these values
while calculating the fuzzy sample entropy and Euclidean
fuzzy similarity. It turns out that these methods are suited to
perform the computation of extremely complex processes.

5. Conclusions

-e detection and timely evaluation of abnormalities in
machine vision systems allow the industrial sector to make
innovative leaps. -is logic is in line with Industry 4.0 and the
vision for innovative approaches in modern industry. In this
work, we presented a machine vision system that contributes
to the efficiency of the new ecosystem of Industry 4.0. It is an
intelligent system for identifying anomalies in advanced
gearbox assembly systems. Specifically, we presented the VFA
methodology whereby using fuzzy entropy and Euclidean
fuzzy similarity measurement, we maximized the possibility
of using nonlinear transformation through deterministic
functions, thus creating an entirely realistic and highly reliable
machine vision detection system.

-e evaluation of the methods was carried out in a highly
complex cybersecurity scenario, where cybercriminals could
modify the assembly parameters of the production mech-
anisms. -is fact is not perceived by the other sensors
connected to the production system. Utilizing the most

advanced machine vision techniques and fuzzy logic
methodologies, the proposed method has achieved very high
success rates, creating serious expectations for additional
cybersecurity applications.

Significant progress could be made in hardening the
system with methods of intuitive fuzzy logic. In addition to
similarity measures between samples, dissimilarity measures
could also be measured, thus making the system even more
sensitive and realistic. Also, an extension of the proposed
method could study the system’s operation in an inversely
proportional manner, where two VFAs would operate as
opposed to the parallel detection of anomalies.
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