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The immune system has a remarkable capacity to maintain a state of equilibrium even as it
responds to a diverse array of foreign proteins and despite its contact exposure to self-anti-
gens. Apoptosis is one of the mechanisms aimed at preserving the homeostasis after the com-
pletion of an immune response, thus returning the immune system to a basal state and
warranting the elimination of autoagressive cells in both central and peripheral lymphoid
organs. Targeted deletions in critical genes involved in the apoptotic death machinery
together with natural spontaneous mutations have clearly shown the importance of apoptosis
in the regulation of the immune response. This complex scenario of stimulatory and inhibi-
tory genes has been enriched with the finding that galectin-1, a 14.5 kDa [3-galactoside-bind-
ing protein, is able to induce apoptosis of immature cortical thymocytes and mature T cells by
cross-linking cell surface glycoconjugates. Galectin-1 is present not only in central and
peripheral lymphoid organs, but also at sites of immune privilege. In the present article we
will discuss the implications of galectin-1-induced apoptosis in T-cell physiopathology in an
attempt to validate its therapeutic potential in autoimmune and inflammatory diseases.
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INTRODUCTION

Death, along with growth and differentiation, is a crit-
ical part of the life cycle of the cell. Homeostasis con-

trol of cell number is thought to be the result of the

dynamic balance between cell proliferation and cell
death. It is only in the past ten years, that the attention

has been focused on the physiological occurrence of
cell death and its role in the homeostasis.

Apoptosis or programmed cell death, is a phenome-
non that plays a crucial role in a myriad of physiolog-
ical and pathological processes. This review will

briefly cover some relevant aspects of programmed
cell death in the immune system in an attempt to pro-
vide valuable information about new molecules
responsible for triggering death signals, such as galec-
tin-1. The implications of this protein will be dis-

cussed in the context of T cell physiology and the

regulation of central and peripheral tolerance. Finally,
novel and intriguing findings will also be discussed

implicating the use of this carbohydrate-binding pro-
tein in the treatment of autoimmune and inflamma-

tory diseases.
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APOPTOSIS: A PHYSIOLOGICAL
MECHANISM OF HOMEOSTASIS
AND SELF-TOLERANCE IN THE IMMUNE
SYSTEM

Physiological cell death by activation of intrinsic cell
suicide program, provides an efficient and critical
control point for eliminating unwanted cells. This

type of regulation allows the elimination of cells that
have been produced in excess, have developed
improperly, or have sustained genetic damage
(Schwartzman and Cidlowski, 1993, Thompson,
1995). As to the initiation of the death program, the
decision of a cell to undergo apoptosis can be influ-

enced by a wide variety of extrinsic and intrinsic reg-
ulatory stimuli (Thompson, 1995). On the other hand,
the effector stage takes place after triggering a

number of evolutionarilly conserved genes that regu-
late a final common cell death pathway, that is pre-
served from invertebrates to humans (Vaux el al.,
1994; Raft, 1992).
Programmed cell death is an important physiologi-

cal process acting both during development and
homeostasis. Aberrations in this process are impli-
cated in a broad range of diseases. While loss of apop-
totic response can lead to cancer or autoimmune

diseases, an increased apoptotic rate is implicated in

neurodegenerative diseases, brain ischaemia and
myocardial infarction. In this context, the immune

system offers an excellent scenario for the discussion
of the relevance of apoptosis in the development and
maintenance of homeostasis. Immunologists have
focussed largely on defining the stimuli that induce

growth, differentiation and effector functions of lym-
phocytes and over the last two decades, the essential

feature of lymphocyte activation and immune

responses have been defined in considerable detail.
Less is known, however, about the mechanisms that
terminate immune responses. Mechanisms such as

apoptosis are important after a productive immune

response to a foreign antigen, when the immune sys-
tem is returned to a state of rest (van Parijs and
Abbas, 1998). This process allows the immune sys-
tem to respond effectively to a new antigenic chal-
lenge. Moreover, apoptosis is crucial for achieving

self-tolerance avoiding the development of receptors
capable of recognizing self-antigens. Elucidating the
nature of these homeostatic mechanisms may lead to

better strategies for suppressing harmful immune

responses and for augmenting and sustaining benefi-

cial responses to microbial vaccines and tumors.

Death Signals in T-lymphocytes Development

The development of T cells is governed by the micro-

environment of the thymus. A large number of pre-
cursor cells migrate into the thymus daily, where they
are subjected to selection in a critical process of
thymic education. Distinct stages of the T cell differ-

entiation and maturation within the thymus have been
identified and associated with the cells surface

expression of molecules such as CD4, CD8 and the
TCR/CD3 complex. In the subset of CD4+ CD8+
double-positive (DP) lymphocytes, more than 95% of
cells are destined to die by positive and negative
selection. The majority of DP thymocytes fail to gen-
erate a functional TCR that successfully interacts with

major histocompatibility complex proteins (MCH)
and consequently die by a process called death by
neglect. Those cells bearing TCR that recognize
MHC with intermediated affinity are positively
selected. Moreover, a subset of DP cells recognizing
MHC molecules with high affinity are subjected to

negative selection and consequently deleted by apop-
tosis (Surh and Sprent, 1994). A high percentage of
the thymocytes generated daily die within the thymus.
Hence, massive cell death is a crucial part of T-cell
development, as reflected by the fact that each new T
cell undergoes for self-MHC restriction and self-toler-
ance. Thymocytes that success fully pass through pos-
itive and negative selections down-regulated the

expression of either CD4 or CD8 and differentiate
into functional single-positive cells and go out as

mature T cells to the periphery.
Apoptosis in DP thymocytes is also triggered by

glucocorticoids (Surh and Sprent, 1994). The induc-
tion of cell death in thymocytes by glucocorticoids
was one of the first systems studied by Wyllie (1980)
and Cohen et al. (1992). This work provides an early
model of cell death by a specific signaling molecule
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and was fundamental to the development of the con-

cept of active cell death as a cellular response rather
than a passive act of overwhelming cell damage. Thy-
mocytes, in addition to T-cells lines, are highly sensi-
tive to apoptosis induced by exposure to endogenous
glucocorticoids (Sprent et al., 1988) in an active proc-
ess, requiring de novo gene expression (Wyllie,
1980). In this sense, Ashwell and colleagues per-
formed in vivo experiments Vacchio et al., 1994,
King et al., 1995) demonstrating that a subset of
thymic epithelial cells are steroidogenic and that inhi-
bition of steroid synthesis modified the profile of
lymphoid thymic populations. Furthermore, data
obtained by the creation of transgenic lines of mice
carrying a glucocorticoid receptor antisense (King et

al., 1995), indicated that thymocytes that do not bind
to MHC are deleted by endogenous steroids.

Elimination of autorreactive lymphocytes may
occur via activation-induced cell death: the same sig-
nals that trigger activation of peripheral mature T cells
induce apoptosis of thymocytes (Takayama and Sitko-

vsky, 1989). The difference between positive selection
of normally functional immature T cells and elimina-
tion of autorreactive cells may lie in the affinity of their
TCRs for self antigens and increasing evidence suggest
that co-stimulatory signals could play an important role
in this process Takayama and Sitkovsky, 1989, Iwatw
et al., 1992, Migliorati et al., 1992).

In the network of intrathymic signals, the positive
selection might also result from antagonism between
glucocorticoid and activation-induced death. This
model clearly demonstrates that thymocytes unable to
bind to the MHC are eliminated via glucocorticoid
signals, those cells that engage T cell receptor com-

plex with moderate avidity are protected via the ster-
oid/ TCR antagonism, whereas thymocytes able to
transduce TCR signals of sufficient strength, are elim-
inated via activation-induced cell death.

The Fas Death Factor: "Turning Mature
Lymphocytes Off"

Among the most important molecules involved in
triggering apoptosis appears the cell surface receptor
Fas, also called APO-1 or CD95, which induced

apoptosis upon binding to its natural ligand FasL,
APO-1L, or CD95L, or specific agonist antibodies

(Nagata, 1997). This death receptor is a member of
the tumor necrosis factor (TNF) and nerve growth
factor (NGF) receptor superfamily, which among oth-
ers, also includes TNF-R1, TNF-R2, low-affinity
NGFR, CD40 and CD30. While family members are
defined by the presence of cysteine-rich repeats in
their extracellular domains, CD95 and TNF-R1 also
share an intracellular region of homology, designated
the "death domain", which is required to signal apop-
tosis.

Fas, a 36 kDa type I membrane protein, is

expressed on a wide variety of cell types including
hematopoietic and epithelial cells. Expression of Fas
on T and B-lymphocytes increases after antigen
receptor-mediated activation (Nishimura et al., 1995).
This molecule is also expressed in cells transformed
with human T-cell leukaemia virus (HTLV-1), human
immunodeficiency virus (HIV) or Epstein-Barr virus

(EBV). Many nonlymphoid tissues, such as liver, also
express Fas (Nagata, 1997; Galle et al., 1995).

Fas-L is a 40 kDa type II transmembrane protein
that mediates apoptosis by crosslinking of Fas in sen-

sitive target cells and in contrast to the widespread
distribution of Fas, its ligand exhibits a highly
restricted pattern of expression. FasL is induced on

mature CD4+ and CD8+ T lymphocytes following
activation, but it is not expressed by other hematopoi-
etic cells (Tanaka et al., 1995; Suda et al., 1995). This
molecule has been shown to play a role in the mainte-
nance of peripheral T- and B-cell homeostasis. Note-
worthy, in some circumstances FasL can be
proteolitically cleaved from the membrane by a met-

alloproteinase, occuring in a soluble form that can act

as a cytotoxic effector molecule or an inhibitor of
apoptosis (Strand and Galle, 1998).
The Fas-mediated apoptotic cascade is initiated by

the direct association of the death receptor Fas with
the adapter molecule FADD (Fas-associated protein
with death domain) and the effector protease FLICE
(FADD homologous ICE/ CED-3-1ike prtease,
FADD-like ICE), a member of the ICE/Ced-3/cas-

pase family (Henkart, 1996). The assembly of this

signalling complex triggers the caspase cascade. The
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FIGURE Galectin-1, characteristic and particular expression

activated caspase members can cleave various sub-
strates resulting in characteristic apoptotic morphol-
ogy of cytoplasm and nuclei.

Activated T-cells express Fas as well as FasL.
Although they use FasL to kill their targets, they can

also use this molecular weapon against each other to

limit their own number protecting activated mature T
cells from continued secretion of potentially harmful
levels of cytokines. These cells are eliminated from
the circulation by activation of the cell death program
(Russel et al., 1993; Singer and Abbas, 1994).
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Role of Fas-mediated cell death in the suppression
of immune response, self-tolerance
and autoimmunity

Activation-induced apoptosis of mature T cells occurs

via Fas and Fas ligand (FasL) interactions. A set of in

vitro experiences using cell lines or T-cells hybrids
provided successful information about the relevance
of Fas death signals (Bruner et al., 1995; Dhein et al.,
1995; Ju et al., 1995). In the recent years, much work
has focused on the molecular mechanisms by which

these molecules regulate apoptosis specially the rela-

tionship of Fas-FasL interaction with members of the
Bcl-2 family in the context of peripheral immune tol-
erance (van Parijs et al., 1998).

van Parijs and colleagues clearly demonstrated that
Bcl-2 protects T cells from apoptosis caused by the
absence of growth factors and activation stimuli, a

process called passive cell death and prolongs the

response of T cells to a model of foreign antigen in

vivo. In contrast, Fas induces apoptosis in autorreac-

tive T cells or in activated T cells that are restimulated
with high concentrations of antigen by a process
called activation-induced cell death. In vivo,

Fas-mediated apoptosis is responsible for eliminating
T cells responding to a model systemic self-antigen
and for preventing autorreactive helper T cells from

activating self-reactive B cells.

Genetic defects that predispose to autoimmunity
are providing valuable information about the mecha-
nisms responsible for terminating T-cell responses to

self-antigens. In this sense, the importance of Fas/

FasL interaction in peripheral tolerance, has been

highlighted by the MRL-lpr/lpr or C3H-gld/gld mice

strains which carry spontaneous mutations in Fas and
FasL genes respectively. These mice exhibit multiple
autoimmune systemic disorders characterized by the

presence of autoantibodies, hypergammaglobuline-
mia and immune complex nephritis, all features of a

lupus-like syndrome (Russell et al., 1993; Russell and
Wang, 1993). Nagata and colleagues (Adachi et al.,
1995) created a Fas-/- mice by targeted deletion of the
Fas gene. These mice displayed enhanced and accel-
erated lymphoproliferation in comparison to lpr/lpr
mice (Adachi et al., 1995).

Recently, a human syndrome of autoimmunity
associated lymphadenophathy has been described,

carrying various inherited abnormalities in Fas-medi-

ated killing. These abnormalities include the inherit-

ance of two mutant Fas alleles and unknown

signalling defects (Fisher et al., 1995; Rieux-Laucat

et al., 1995). It is likely that other alteration in Fas or

downstream signalling intermediates will be identi-

fied as cause of autoimmune syndromes. Recently, an

inhereted human caspase 10 mutation has been

described showing defective lymphocyte and den-
dritic cell apoptosis in autoimmune lymphoprolifera-
tive syndrome (type II) (Wang et al., 1999).
The elucidation of the mechanisms involved in T

cell survival in vivo will lead to rational approaches
for controlling autorreactivity, while enhancing
immunological memory.

Role of Fas-mediated cell death in immunological
privileges tissues

The immune privileged tissues are vulnerable sites in

the body where even minor cellular immune reactions

and their associated inflammatory response can cause

irreversible damage. Therefore, protective mecha-
nisms are required to avoid unwanted immune reac-

tions that could result in impaired organ functions.

Interestingly, not only are these "immune privileged
sites" protected against overwhelming inflammatory
responses, but they can also support allogenic or

xenogenic tissue grafts. Some explanation about how
immune privileged is maintained, involve physical
barriers and cytokines profiles (Streilin, 1993).

FasL has been also reported to be constitutively
expressed in two immunologically privileged tissues,
such as the eye and the testis. Griffith et al. (1995)
showed that the constitutive expression of FasL on

parenchymal cells within the anterior chamber of the

eyes can maintain the integrity of this immune-privi-
leged site. It can be reported that Fas+ lymphoma
cells can be induced to undergo apoptosis when

exposed in vitro to explants of cornea and iris-ciliary
body from eyes of normal mice, but not when

exposed to eyes of gld mice, which do not express
FasL. Interestingly, FasL has been found to be
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expressed in Sertoli cells of the testis (Bellgrau,
1995).

Taken together, these finding unequivocally sug-
gest that FasL plays a crucial role by avoiding the

damage inflicted by activated T cells to these tissues.

The expression of high levels of FasL represents a

defensive mechanism to prevent damage caused by
inflammation through an induction of apoptosis of
activated cells expressing elevated levels of Fas anti-

gen (Osborne, 1996).

Recent data confirm that expression of functional

FasL might confer the status of immune privilege to

tumor cells, representing an active defense mecha-
nism resulting in the elimination of immune compe-
tent anti-tumor lymphocytes (O’Connell et al., 1999).
In this sense, FasL expression could be associated
with the later tumor recurrence which is commonly
observed in several tumors such as melanomas. These
tumors often recur after 20 years or more, and this can

be explained by a loss of immunosurveillance. Hence,
FasL expression might contribute to tumor progres-
sion, invasion or metastasis.

GALECTINS: A FAMILY OF
CARBOHYDRATE-BINDING PROTEINS
WITH IMMUNOREGULATORY PROPERTIES

Definition and Background

Galectins are a growing family of animal I-galactos-
ide binding proteins, defined by two common charac-
teristics: (a) affinity for poly-N-acetyllactosamine-
enriched glycoconjugates and (b) significant
sequence homology in the carbohydrate binding site

(Barondes et al., 1994a; Barondes et al., 1994b). In
the past few years, there has been progress in identify-
ing new galectins in mammals and other species,
cloning them and ascertaining the structural features
that determine carbohydrate binding. Ten mammalian

galectins have been well characterized and studied

(Leffier, 1997). Structural analyses of various

galectins indicate the presence of homodimers of car-

bohydrate-binding domains in galectin-1 and galec-

tin-2, a monomer of the carbohydrate-binding domain
in galectin-5 and a single polypeptide chain with two

carbohydrate-binding domains joined by a link pep-
tide in galectins-4,-6,-8 and-9. Galectin-3 has a

carbohydrate-binding domain, a short N-terminal seg-
ment, consisting of PGAYPG (X) repeats and an

intervening stretch of amino acids, enriched with pro-
line, glycine and tyrosine. Expression analysis have
revealed that certain galectins display a restricted dis-

tribution, e.g. galectin-2 in hepatoma, galectin-4 in
small intestine, galectin-5 in erythrocytes and galec-
tin-7 in keratinocytes. Galectins with a broad tissue

distribution include galectin-1, expressed in cardiac,
smooth and skeletal muscle, macrophages, neurons,
thymus, kidney and placenta, galectin-3 present in
blood cells such as monocytes, mast cells, and tumor

Cells and galectin-8 expressed in liver, kidney, cardiac

muscle, lung and brain (Rabinovich, 1999). Exten-
sively studied among them is galectin-1, an

homodimer with an Mr of approximately 14,500 Da.
It has been postulated that this protein recognizes a

wide variety of extracellular receptors such as

fibronectin (Ozeki et al., 1995) and laminin (Zhou
and Cummings, 1993) and cell surface glycoproteins
such as CD45 and CD43 (Baum et al., 1995a, Perillo

et al., 1995) through deciphering specific glycocodes
(Kasai and Hirabayashi, 1996).
By virtue of this specific recognition, this evolu-

tionarily conserved family of animal lectins have
been implicated in a variety of functions that include

cell growth regulation (Sandford and Harris-Hooker,
1990; Wells and Mallucci, 1991), cell adhesion

(Cooper et al., 1991; Zhou and Cummings, 1993;
Rabinovich et al., 1999a), neoplastic transformation

(Akahani et al., 1997a), immune responses (Ofner et

al., 1990; Levy et al., 1983) and T-cell apoptosis (Per-
illo et al., 1995; Rabinovich et al., 1998; Iglesias et

al., 1998a). However, the widespread expression of

multiple members of the galectin family and pre-
sumed overlaps in carbohydrate-binding specificities
have made it difficult to establish the in vivo function

of individual members of this class of proteins (Poir-
rier and Robertson, 1993).

All known members of this family lack a signal
peptide (Barondes et al.,1994a), are found in the
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cytosol and are isolated as soluble proteins. However,
there is evidence that some members are externalized

by an atypical secretory mechanism (Cooper and Bar-
ondes, 1990).
The expression pattern of different galectins

changes during development (Colnot et al., 1997) and
this pattern is also altered at sites of inflammation and
in breast, colon, prostate and thyroid carcinomas

(Akahani, et al. 1997b). The level of expression of
some galectins by tumor cells has been show to be
correlated with metastatic potential. Although
galectins exert their effects through recognition of a

spectrum of appropriately glycosylated proteins on
the surface of a variety of cells, the precise mecha-
nism and signal transduction pathways involved in
these functions remain largely unknown.

GALECTIN-I: EXPRESSION WITHIN
THE IMMUNE SYSTEM AND IMPLICATIONS
IN T-CELL PHYSIOLOGY

Participation of Galectin-I as a Gear of the
Central and Peripheral Cell Death Machinery

Galectin-1 has been shown to be expressed in sites
where T-cell apoptosis takes places including the thy-
mus (Baum et al., 1995a), spleen (Rabinovich et al.,
1996) and lymph nodes (Baum, et al., 1995b). It has
been particularly found in thymic epithelial cells
(Baum et al., 1995a), activated macrophages (Rab-
inovich, et al., 1998) and effector T cells (Blaser, et

al., 1998) (Figure 1).
The first evidence suggesting that galectin-1 could

be involved in central immune tolerance was first
suggested by Goldstone and Lavin (1991), who
reported an increase in the levels of galectin-1 mRNA
during apoptosis induced by glucocorticoids. As
clearly stated, the interplay between thymic steroids
and TCR signals modulate cell death within the thy-
mus (Wyllie, 1980). It is well known that thymocyte
maturation also requires the participation thymic epi-
thelial cells and extracellular matrix components
(Anderson et al., 1994; Anderson et al., 1996). In this

sense, Baum et al. (1995a) demonstrated that human

thymic epithelial (TE) cells produced high levels of

galectin-1 which bound specifically to the surface of
cortical thymocytes. This endogenous lectin mediated
the adhesion of thymocytes to TE cells. Sensitivity of
T cells to galectin-1 was found to be modulated by the
expression of glycosiltransferase enzymes that might
modify the availability of oligosaccharide ligands for
galectin-1. Perillo et al (1997) provided then conclud-
ing evidence that galectin-1 induced apoptosis of two
distinct subpopulations of non-selected and nega-
tively-selected CD41ow, CD81ow immature cortical

thymocytes (Perillo et al., 1997). Null mutant mice in

galectin-1 gene will be useful to confirm whether
galectin-1 plays a critical role in the central cell death
machinery for postive and negative selection of
developing thymocytes.

Activation-induced cell death of mature T cells is
one of the mechanisms aimed at turning off the
immune response and preventing the expansion of
autoagresive clones. In addition to its role in central
tolerance, Perillo et al. (1995) clearly showed that
galectin-1 induced apoptosis also in activated mature

T cells. Recently, Blaser et al. (1998) found that
galectin-1 expression was strongly up-regulated in
effector T cells and inhibited antigen-induced prolif-
eration of naive and memory CD8+ T cells. This
mechanism was mediated by an arrest in cell cycle
progression at the level of S and G2/M stages
(Allione et al., 1998).

Moreover, we have recently shown the presence of
a galectin-l-like protein, which was differentially reg-
ulated in resident, inflammatory and activated macro-

phages (Rabinovich et al., 1996). Total and surface
expression of this carbohydrate-binding protein,
called RMGal (for rat macrophage galectin-1) were
found to be up-regulated when these cells were acti-
vated with protein kinase C activators such as phorbol
esters (PMA) and chemotactic peptides (fMLP).
When this protein was purified by affinity chromatog-
raphy and its biochemical properties and amino acid

sequence were determined, a definitive conclusion
was reached concerning its pertenence to the galec-
tin-1 subfamily Rabinovich et al., 1998).

Macrophages play an important role in several
steps of innate and adaptive immune response. While
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they have great phagocytic ability and a large reper-
toire of lytic enzymes and secretory products, they
also express a wide array of cytokines, surface recep-
tors able to recognize specific antigen epitopes. Acti-
vated macrophages are more efficient in their ability
to process and present antigens in the initiation of an
immune response by virtue of the higher levels of
major histocompatibility complex molecules (Adams
and Hamilton, 1984; Adams et al. 1996). Moreover,
they are also key immunoregulatory cells able to turn
off an established immune response (Aliprantis et al.,
1996). We determined that by using current tech-
niques to evaluate apoptosis, such as DNA fragmenta-
tion, TUNEL assay and transmission electron
microscopy that galectin-1 produced by activated

macrophages is able to induce apoptosis of mature T
cells in a carbohydrate-dependent manner (Rabinov-
ich et al., 1998). The results were comparatively
stronger to those found in an heterologous system
using CLL-I, the 16 kDa chicken isolectin (Rabinov-
ich et al., 1997).
RMGal protein was found to be secreted only when

macrophages were activated with potent biochemical

agents and pro-inflammatory cytokines (Rabinovich
et al., 1999c).

Galectin-1 Expression in Immune Privileged Sites"
a Novel Mechanism of Protection?

Galectin-1 is also present in sites of immune privi-
lege, such as placenta (Hirabayashi and Kasai, 1988;
Iglesias et al., 1998a), cornea (Ogden et al., 1998) and
prostate (Allen et al., 1991; Hirabayashi and Kasai,
1993). The presence of this protein in these vulnera-
ble sites might contribute to mantain a state of toler-
ance by inducing apoptosis of inflammatory and
activated T cells that could provoke injury, autoim-
mune damage or infection. Accordingly, galectin-1
could also be proposed as an alternative regulatory
signal to regulate immune privilege. Expression of
this protein in first term gestation placenta would pre-
vent inflammatory T cells from harming the fetus
(Iglesias et al., 1998a). In agreement, a protein related
to the galectin family called GRIFIN
(galected-related interfiber protein) has been recently

identified in lens, cellular structures of the optical sys-
tem (Ogden et al. 1998). Furthermore, recent results
reported by Maldonado et al. (1999) have clearly
shown by using immunogold techniques, that galec-
tin-1 is expressed in Mller cells in post-natal chicken
retina and in mitochondria localized in the inner seg-
ments of cone cells. Expression of this protein in
these glial cells suggests a potential role in metabolic
and immunomodulatory processes between Mtller
and other retinal cells.

This pro-apoptotic protein was found to be up-reg-
ulated by metastatic in comparison to non-invasive
tumors. In certain way, tumors might be considered as
immune privileged sites and several mechanisms for
tumor evasion of immune recognition have been pro-
posed, such as decreased expression of MHC class I
0r B7.1 co-stimulatory signal, TGF- secretion, endo-
cytosis of tumor antigens and FasL expression
(O’Connell et al., 1999). In this sense, one should sus-

pect that galectins in tumor cells can trigger apoptosis
of tumor-infiltrating lymphocytes (TILs), thus allow-
ing the tumor to escape immune attack.

Death Signals in the Periphery

Despite striking similarities in their localization, criti-
cal differences should be distinguished between FasL
and galectin-1. FasL induces apoptosis by a interac-
tion with its counterpart Fas/APO-1/CD95 within the
same cell (suicide) or a neighbour cell (fraticide),
while galectin-1 is secreted and binds to cell surface
glycoconjugates (Perillo et al., 1997) on cortical thy-
mocytes and T cells. Besides, galectin-1 and FasL
apparently use different signal transduction pathways
to engage the apoptotic program of the cell. Recently,
Su et al. (1996) and Perillo et al. (1995) showed that
the T lymphoblastoid cell line MOLT-4 that was unsen-

sitive to FasL-induced apoptosis, was susceptible to

galectin-1. In contrast, the T lymphoblastoid cell line

CEM, which was sensitive to FasL was resistant to

galectin-l-induced apoptosis. These data strongly sug-
gest that galectin-l-induced apoptosis are clearly dis-
tinct from those triggered by Fas engagement.

About the apoptotic signal trigger by cross-linking
the T-cell receptor complex, experiments performed
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whit galectin-1 and T lymphoblastoid cell line that
not express CD3, demonstrate that the lectin is capa-
ble to activated the death cell program (Pace and
Baum, 1997). These results suggest that the mecha-
nism by which galectin-1 can induced apoptosis
appears to be distinct from T cell receptor trigger
apoptosis.

Death vs proliferation: Galectin-1 vs Galectin-3

While galectin-1 has been shown to trigger T cell
apoptosis (Perillo et a1.,1995; Rabinovich et al., 1998;
Iglesias et al., 1998a), galectin-3 has been shown to
stimulate proliferation (Yang et al., 1996; Iglesias et
al., 1998b; Inohara et al., 1998). Similarly to members
of the Bcl-2 family, galectins-1 and -3 belong to an
additional family of proteins with high sequence
homologies but opposite effects on cell survival. The
balance between the competing activities of
pro-apoptotic proteins such as Bax, Bad and Bak and
on the other hand anti-apoptotic proteins such as
Bcl-2 and Bcl-xL, determines cell fate (Adams and
Cory, 1998). Proteins most similar to Bcl-2 promote
cell survival by inhibiti,ng adapters needed for activa-
tion of the proteases (caspases) that dismantle the cell,
while more distant relatives instead promote apopto-
sis apparently through mechanisms that include dis-

placing the adapters from the pro-survival proteins. In
this sense, the family of Bcl-2 related proteins consti-
tute one of the most relevant apoptotic regulatory
gene products acting at the effector stage of apoptosis
(Kr6emmer, 1997). Hence, it seems meaningful that
the interplay between galectins-1 and-3 could also
represent an alternative pathway in the normal control
of cell homeostasis. To support this hypothesis a strik-

ing homology has been found between galectin-3 and
Bcl-2 particularly localized in the NWGR domain
(Yang, 1996; Akahani et al., 1997).

Galectin-1 in T cell Adhesion to Extracellular
Matrix

Despite the lack of a secretion signal sequence, galec-
tin-1 is secreted into the extracellular millieu, where it

recognizes poly-N-acetyl-lactosamine chains on

major ECM components, such as laminin (Zho and
Cummings, 1993) and fibronectin (Ozeki et al.,
1995). By virtue of this recognition, this carbohydrate
binding protein has been suggested to act as a modu-
lator of cell-cell and cell-ECM interactions. In collab-
oration with the laboratory of Dr. Ofer Lider in the
Weizmann Institute of Science, Israel, Rabinovich et

al. (1999a) has recently shown that galectin-1 (at con-
centrations below its apoptotic threshold) inhibited
the adhesion of human T cells to ECM glycoproteins
in a dose and carbohydrate-dependent manner. The
inhibition of T-cell adhesion correlated with the abil-

ity of this protein to block the re-organization of cell’s
actin cytoskeleton. Finally, the production of
pro-inflammatory cytokines in the context of the
ECM was markedly reduced in the presence of this

carbohydrate-binding protein. This is the first report
as to the role of galectin-1 in T cell adhesion. How-
ever, this protein has been shown to promote cell
attachment or dettachment on other cell systems such
as myoblasts (Cooper et al., 1991), melanocytes (van
den Brulle et al., 1995), olfactory neurons (Mahanta-
happa et al 1994), rhabdomyosarcoma cells (Ozeki et

al, 1995) and fibroblasts (Zhou and Cummings,
1993).

GALECTIN-1 IN T-CELL
IMMUNOPATHOLOGY

Galectin-l, Programmed Cell Death and
Autoimmunity: an Attractive Association

Autoimmune disease challenges clinical immunol-

ogy to set the system right. An autoimmune disease is
caused, according to the clonal selection paradigm by
aberrant activation of the immune response and loss
of central-and/or peripheral immune tolerance to

self-antigens (Cohen, 1995). The rational answer for
harmful activation is to find a way to deactivate the
pathogenic lymphocytes. As aforementioned, obser-
vations in murine models of systemic autoimmunity
and in Canale-Smith syndrome suggest that regula-
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tion of lymphocyte apoptosis is crucial to the mainte-
nance of peripheral tolerance (Singer et al., 1994;
Fisher et al., 1995). In this context, one should expect
that knock out mice for galectin-1 would evidence
autoimmune manifestations, such as lupus-like disor-
ders or arthritis, as observed for spontaneous muta-

tions in Fas and FasL in lpr/lpr or gld/gld mice

respectively. However, no important phenotypic
changes could be detected in null-mutant mice as

regards galectin-1 gene (Poirrier and Robertson,
1993). An exhaustive examination of the immunolog-
ical system is imperative in these genetically modi-
fied mice not only at the central level but also at the
periphery to search for potentially harmfull autoag-
gressive clones and signs of disregulated apoptosis.

Implications of galectin-1 in central and peripheral
immune tolerance prompted us to investigate its ther-
apeutic potential in collagen-type II-induced arthritis

(CIA) in DBA/1 mice, an experimental model of
rheumatoid arthritis (Durie et al., 1994). In collabora-
tion with the laboratory of Dr. Chernajovsky in Lon-
don, Rabinovich et al. demonstrated by using gene
and protein therapy strategies that galectin-1 sup-
pressed arthritis via T cell apoptosis (Rabinovich et
al., 1999b). A single injection of syngenic DBA/1

fibroblast engineered to secrete galectin-1 at the day
of the disease onset, as well as daily administration of
recombinant galectin-1, were both able to abrogate
clinical and histopathological manifestations of
arthritis. Both treatments resulted in the inhibition of
anti-collagen type II (C-II) antibody levels, inhibition
of the pro-inflammatory response and a shift towards
a Th2-mediated immune response, as judged by the
anti-CII IgG isotypes in mice sera at the end of the
treatment and the cytokine profile in draining lymph
node cells. Finally, clear-cut evidence was provided to
show that mice engaged in the gene therapy protocol
with galectin-1 increased their susceptibility to anti-

gen-induced apoptosis, providing the first correlation
between the apoptotic properties of galectin-1 and its

therapeutic potential in vivo.

Rheumatoid arthritis (RA) is a common chronic
autoimmune disease for which there is not effective

therapy capable of preventing long-term progression
and joint damage (Feldmann et al., 1996; Chernajo-

vsky et al., 1995). Therefore, effective treatment of
arthritis will require the elimination of arthritogenic
lymphocytes that initiate and perpetuate joint inflam-
mation, as well as the induction of tissue repair.
Hence galectin-1-induced apoptosis could provide for
an ideal mechanism using a naturally occurring pro-
tein to terminate the autoimmune T-cell attack, pre-
venting the expansion of dominant autoaggressive
clones (Vaishnaw et al., 1997). It has been clearly
suggested that the extent of apoptosis in RA is inade-

quate to counteract ongoing proliferation. This imbal-
ance may be explained by the production of cytokines
such as IL-I, which favor synoviocyte and T-cell
proliferation and inhibit susceptibility to apoptosis,
possibly associated with increased expression of the
Bcl-2 family of proteins (Tsuboi et al., 1996). TNF-
Which acts as a potent pro-inflammatory molecule in
RA, signals predominantly through the nuclear factor
kappa B (NFkB) pathway, promoting the expression
of adhesion molecules and recruiting additional

cytokines such as GM-CSF and IL-6 in the inflamed

joint. Signaling through NF-kB has been suggested to

inhibit apoptosis (Fujisawa et al., 1996). Finally, an

increase in soluble truncated Fas has been detected in
RA synovial fluid thus inhibiting the functional inter-
action between Fas and FasL (Hasunuma et al., 1997).
Altogether, these findings suggest that a disregulated
activation of programmed cell death is a critical com-

ponent of the ethiopathogeny of RA.
Results concerning the role of galectin-1 in sup-

pressing an autoimmune inflammatory process are in

agreement with those raised by Levy et al. (1983) in a

model experimental autoimmune myasthenia gravis
in rabbits and those raised by Offner et al. (1990) in
experimental autoimmune encephalomyelitis in
Lewis rats.

CONCLUDING REMARKS

The elucidation of the biochemical pathways and spe-
cific proteins that regulate programmed cell death
provide a remarkable opportunity to manipulate the
life-and death decisions of the cells. The basic under-
standing and therapeutic manipulation of pro-
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grammed cell death will have far-reaching
implications for the future health of autoimmune dis-
ease patients. In this sense, galectins represent an
attractive target for biomedical research and clinical
intervention. Experimental evidence is now emerging
to support the use of galectin-1 not only in the treat-

ment of autoimmune disease, but also in medical

strategies aimed at targeting T-cell physiopathology
such as the inhibition of transplant rejection, control
of graft versus host disease and inhibition of chronic

inflammatory processes.
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