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Abstract

We develop the free and open-source model Multi-tissue Splicing (MTSplice) to predict
the effects of genetic variants on splicing of cassette exons in 56 human tissues.
MTSplice combines MMSplice, which models constitutive regulatory sequences, with a
new neural network that models tissue-specific regulatory sequences. MTSplice
outperforms MMSplice on predicting tissue-specific variations associated with genetic
variants in most tissues of the GTEx dataset, with largest improvements on brain
tissues. Furthermore, MTSplice predicts that autism-associated de novo mutations are
enriched for variants affecting splicing specifically in the brain. We foresee that
MTSplice will aid interpreting variants associated with tissue-specific disorders.

Introduction
Splicing is a fundamental biological process in which introns are cut out from precur-
sor RNAs and exons are joined together. Alternative splicing refers to alternative usage
of exons. It is estimated that approximately 95% of human multi-exon genes undergo
alternative splicing [1]. Exon skipping (of so-called cassette exons) is the most com-
mon alternative splicing pattern [2]. Skipping level of an exon is commonly quantified
with the percent spliced-in (PSI or �) [3]. Percent spliced-in can be estimated from
RNA-sequencing (RNA-Seq) data as the number of split RNA-Seq reads supporting the
inclusion of the exon divided by the total number of split reads supporting the skipping
or the inclusion of the exon. Splicing is a complex process which involves regulation by
sequence elements in the exons and flanking introns [4, 5]. Moreover, alternative splic-
ing is often tissue-specific [2, 3, 6, 7]. This means that certain splicing isoforms are only
present in certain tissues or that the relative abundances of splice isoforms differ across
tissues. Alternative splicing plays an important role in tissue development and shaping
tissue identity [8, 9]. Analyzing the protein-coding roles of tissue-specific exons revealed
their critical role in rewiring protein interaction networks in different tissues [10]. Tissue-
specific splicing patterns are associated with short RNA motifs [2, 11–14]. These short
RNA motifs encode tissue-specific splicing regulatory elements, typically intronic or
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exonic binding sites for splicing factors with a tissue-specific activity. Mammalian tissue-
specific splicing factors include Nova1, Nova2, PTB/nPTB, and RBFOX1 for nervous
tissues, and MBNL1 for muscles, among others. For a review, see Chen and Manley [15].
Splicing defects account for an important fraction of the genetic basis of human dis-

eases [16–18]. Some of these splicing defects are specific to disease-relevant tissues. For
instance, individuals affected by autism spectrum disorder (ASD) frequently present mis-
splicing of brain-specific exons [19–21] as well as an enrichment of de novo mutations in
brain-specific exons [22]. Hence, computational tools that can predict the tissue-specific
effects of genetic variants on splicing would be relevant for understanding the genetic
basis of tissue-specific diseases such as ASD.
Many computational tools have been developed to predict splice sites or splicing

strength from sequence [23–33]. However, tools are lacking for predicting tissue-specific
effects of human genetic variants on splicing. Barash et al. developed the first sequence-
based model predicting tissue-specific splicing in mouse cells [34]. The model integrates
regulatory sequence elements to qualitatively predict whether the inclusion of a cassette
exon increases, decreases, or remains at a similar level from one tissue to another tissue.
This model was further improved to predict directional changes between tissues along
with discretized � categories (low, medium, and high) within a tissue by using a Bayesian
neural network with hidden variables [35]. In a subsequent study, a similar Bayesian neu-
ral network (SPANR) was trained on human data [29]. However, SPANR was evaluated
only for predicting the largest effect across all investigated tissues. Hence, the perfor-
mance of SPANR on any given tissue is unclear. Moreover, the publicly available SPANR
does not allow performing tissue-specific predictions.
We previously developed MMSplice, a neural network with a modular design that pre-

dicts the effect of variants on splicing [30, 31]. Unlike SPANR, which has been trained
on natural endogenous genomic sequence, MMSplice leverages perturbation data from
a recently published massively parallel reporter assay [28]. MMSplice outperformed
SPANR and many other splicing predictors in predicting � variations associated with
naturally occurring genetic variants as well as effects of variants on percent spliced-in
measured on reporter assays [30, 36]. MMSplice models the odds ratio of a cassette exon
to be spliced-in when comparing an alternative sequence to a reference sequence. The
predicted odds ratios are the same for all tissues because MMSplice has been trained
in a tissue-agnostic fashion and therefore does not capture effects of variants affecting
tissue-specific regulatory elements.
Deep learning models of tissue-specific regulatory elements have been developed for

other biological processes. These models include DeepSEA for chromatin-profiles [37],
Basset for DNase I hypersensitivity [38], ExPecto for tissue-specific gene expression
[39], FactorNet for transcription factor binding [40], and ChromDragoNN for chromatin
accessibility [41]. A common denominator of these models is that they are trained by
multi-task learning, i.e., themodelsmake joint predictions for all tissues or cell types using
a common set of underlying predictive features. This strategy allows models to efficiently
pool information about regulatory elements that are shared across cell types or tissues.
Here, we developed MTSplice (Multi-tissue Splicing), a model that predicts tissue-

specific splicing effects of human genetic variants. MTSplice adjusts the MMSplice
predictions with the predictions of TSplice (Tissue-specific Splicing), a novel deep neural
network predicting tissue-specific variations of � from sequence which we trained on 56
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human tissues using multi-task learning. Performance of MTSplice is demonstrated by
predicting tissue-specific variations of� associated with naturally occurring genetic vari-
ants of the GTEx dataset as well as investigating brain-specific splicing effect predictions
for autism-associated variants. MTSplice is open-source and freely available at the model
repository Kipoi [42].

Results
Tissue-specific alternatively spliced exons

To train a tissue-specific model of splicing, we considered the alternative splicing catalog
of the transcriptome ASCOT [43]. Because the ASCOT annotation and quantification
pipeline is annotation-free, it also covers non-annotated exons. Altogether, ASCOT pro-
vides � values for 61,823 cassette exons across 56 tissues including 53 tissues from
the GTEx dataset [44] and additional RNA-Seq data from peripheral retina. Of note,
these tissue-specific values are flagged as missing when the corresponding gene is not
expressed [43].
Overall, � of 17,991 exons (29%) of the ASCOT dataset deviate by at least 10% in at

least one tissue from its exon-specific average across tissues. These deviations from the
exon-specific average � by 10% often occurred in a single tissue (5658 exons, 31%) and in
at least 10 tissues for 4398 exons (25%, Fig. 1a). We investigated co-variations between tis-
sues using these 4398 exons (Fig. 1b). This revealed that samples from the central nervous
system (brain, spinal cord, and retina) have very distinct splicing patterns compared to
other tissues, in agreement with previous reports [24]. Moreover, skeletal muscle and the
two heart tissues (left ventrial and artial appendage) also clustered together with shared
splicing patterns. Altogether, this analysis indicates that the ASCOT dataset provides
thousands of tissue-specific splicing events that could be used to train a sequence-based
predictive model. Also, the ASCOT dataset provides the possibility for a multi-taskmodel
to exploit shared splicing regulation of tissues of the central nervous system and, to a
lower extent, between skeletal muscle and cardiac tissues.

Differential splicing associated with genetic variants show little tissue-specific variations

The ASCOT dataset consists of data aggregated per tissue. In principle, the genetic vari-
ations between donors of the original GTEx dataset provide further information that a
sequence-based model could exploit. We therefore next asked how much genetic varia-
tion among individuals in GTEx associated with tissue-specific splicing variations. To this
end, we computed �� , the difference between � averaged across individuals homozy-
gous for the alternative allele and � averaged across individuals homozygous for the
reference allele for exons with a single variant within the exon body and 300 nucleotides
flanking the exon either side (“Materials and methods” section). We estimated � using
the software for estimating splice isoform abundances MISO [45], which only takes anno-
tated and alternatively spliced exons into account. Over all these 1767 single-nucleotide
variants, little tissue-specific deviation of �� compared to its average across tissues
was observed (Fig. 2a). Specifically, less than 1476 instances (3.4% of exon-variant-tissue
pairs) of tissue-specific �� deviated by 20% from the tissue-averaged �� (Fig. 2b). This
observation is consistent with the fact that only a limited fraction (between 7 and 21%)
of splicing QTLs are tissue-specific [46]. Since GTEx samples are derived from healthy
donors, this observation, however, does not rule out the possibility that some disease-
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Fig. 1 Differential splicing of alternatively spliced exons across tissues. a Histogram of the number of tissues
with differential splicing (� deviating by at least 10% from the exon-average �). Overall, 4398 exons (light
blue) are differentially spliced in at least 10 tissues. b. Heatmap of � for the 4398 exons that are differentially
spliced in at least 10 tissues with exons (columns) and tissues (rows) sorted by hierarchical clustering. � is
color-coded by a gradient from blue (0) to red (1) via white (0.5). Gray entries are missing values and occur in
tissues for which the corresponding gene is not expressed. Hierarchical clustering was applied after imputing
missing values with row means

causing variants do alter splicing in a tissue-specific way. Due to the small amount of
tissue-specific splicing variation associated with genetic variants in GTEx, we decided
to train a sequence-based model solely based on the variations between exons using the
ASCOT aggregated data and to keep the genetic variations between donors of the GTEx
dataset to independently assess the model afterward.

TSplice predicts tissue-specific�

We next developed a neural network, TSplice, to predict tissue-specific � values from
sequence and tissue-averaged� (“Materials and methods” section). TSplice considers the
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Fig. 2 Tissue-specific variations of differential splicing associated with genetic variants in the GTEx dataset.
a Tissue-specific differential � associated with a genetic variant (y-axis) against differential � associated with
a genetic variant averaged across tissues (x-axis). Effects were estimated using homozygous donors (b).
Proportion of data points shown in a (y-axis) for every cutoff on the deviation from the averaged � across
tissues (x-axis, decreasing)

300 nt flanking either side of the exon and the first and last 100 nt of the exon body.
TSplice is a convolutional neural network (Fig. 3) in which positional effects of sequence
elements relative to splice sites are modeled using spline transformations [47]. TSplice
was trained on the ASCOT dataset using all chromosomes except for chromosome 2, 3,
and 5. We report our model prediction performances on these held-out chromosomes.
The performance of TSplice was first assessed on test data by comparing the observed

against the predicted log odds ratios of tissue-specific� for 1621 exons (“variable exons”)
with � deviating from the tissue-averaged � by at least 0.2 in at least one tissue and for
which the gene is expressed in at least 10 tissues (Fig. 4a for the retina eye as an exam-
ple, Spearman ρ = 0.27). The predictions positively correlated with the measurements in
all tissues and showed a median Spearman correlation of 0.22 (Fig. 4b, Additional file 1:
Fig. S1). The performance was higher for tissues of the central nervous system (Fig. 4c),
possibly because central nervous system tissues harbor similar splicing patterns and
because they are well represented in the ASCOT dataset.
We had first assessed log odds ratio predictions because these are the actual quanti-

ties the model was trained for. However, percent spliced-ins on the natural scale often
matter more for biological and medical applications. We hence next evaluated how well
TSplice performs on predicting tissue-specific � on test exons. A successful example is
the 9th exon of the gene ABI2, which is included in brain, heart, muscle, and retina tissues
and for which TSplice predicts well the order of the tissues (Fig. 5a, Spearman ρ = 0.8)
and the absolute values of tissue-specific � per-tissue (root-mean-square error, short
RMSE, 0.11). For the majority of the variable exons (73.9%, 1198 out of 1621), TSplice
ranked tissue-specific � in the right direction (median ρ = 0.25, Fig. 5b). We bench-
marked TSplice against a L2 regularized linear model based on known splice-regulating
motifs and splice site sequences (“Materials and methods” section). Although the perfor-
mance (Spearman correlation of predicted versus measured �e,t) of the alternative model
correlates (R = 0.373) with TSplice across tissues, TSplice outperforms the alternative
model for all 56 tissues (Additional file 1: Fig. S2A). Furthermore, when evaluated per
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Fig. 3 Model architecture to predict tissue-specific percent spliced-in. The model TSplice consists of one
convolution layer with 64 length-9 filters capturing sequence elements from one-hot encoded input
sequences. This is followed by two spline transformation layers modulating the effect of sequence elements
depending on their position relative to the acceptor splice sites (leftmost layer) and the donor (rightmost
layer). The outputs of the two spline transformation layers are concatenated, and global average pooling is
applied along the sequence dimension. This is then followed by feeding two consecutive fully connected
layers. The last fully connected layer outputs a 56-dimension vector which are the predicted log odds ratios
of tissue-specific � versus tissue-averaged � for the 56 tissues of the ASCOT dataset. Natural scale
tissue-specific � are obtained by adding predicted odds ratios with measured tissue-averaged � on the
logit scale. Batch normalization was used after all layers with trainable parameters except the last fully
connected layer. In total, the model has 8024 trainable parameters

Fig. 4 Evaluating TSplice on predicting tissue-associated differential splicing. a Predicted versus measured
tissue-associated differential splicing for the retina eye tissue, representative of the typical performance of
our model. b Spearman correlation between predicted and measured tissue-associated differential splicing
for all tissues. c Distribution of Spearman correlations between predicted and measured tissue-associated
differential splicing for brain tissues and non-brain tissues
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Fig. 5 Evaluating TSplice on predicting tissue-specific � . a. Predicted (x-axis) versus measured (y-axis) � for
the 9th exon of gene ABI2 across 56 tissues. b. Histogram of the Spearman correlation of the predicted versus
measured � for 1621 test exons across 56 tissues. c Root-mean-square error decreases between the TSplice
model and the baseline model (predicted with the mean � across tissues)

exon, TSplice had higher Spearman correlation than the alternative model for 63.5% of
the exons (P < 2.2 × 10−16, paired Wilcoxon test, Additional file 1: Fig. S2B).
Visualization of the positional weights learned by the splines of TSplice showed that

some filters were important for the 5′ half of the model, others for the 3′ half, while about
a third of them were important for both halves. Moreover, positional effects were particu-
larly marked near the splice sites (Additional file 1: Fig. S3). Visualizing themodel gradient
with respect to the input sequence indicated that the model activates at sequences
matching binding site motifs of the splicing factors PTBP1/2, NOVA1/2, and MBNL1
(Additional file 1: Fig. S4 for examples, “Materials andmethods” section). To study the role
of these motifs systematically, we next generated in silico mutated sequences by injecting
the consensus sequences of these splicing factor binding sites at various positions along
1000 randomly selected sequences of the test set. We then computed the TSplice score
difference between eachmutated sequence and its original counterpart. TSplice predicted
that cassette exons with a NOVA1/2 binding site consensus sequence in the upstream
intron are less spliced-in (i.e., more skipped) in the brain compared to other tissues on
average (Additional file 1: Fig. S5). Since the RNA-binding protein NOVA1 is neuron-
specifically expressed, these TSplice predictions are consistent with a NOVA1 repressive
role when binding in the upstream intron [11]. Moreover, exons with an MBNL1 bind-
ing site consensus sequence in the upstream intron are predicted to be more spliced-in
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in the brain and muscle than in other tissues on average (Additional file 1: Fig. S5). This
is consistent with the repressive role of MBNL1 when binding to upstream introns and
with MBNL1 being less expressed in the brain and muscle than in other tissues [48]. The
interpretation of the effects of PTBP1/2 binding site consensus sequence is more complex
since it is recognized by two competing factors with anti-correlated expression during
neuronal differentiation [49].
Altogether, these results show that TSplice captured sequence features predictive of �

changes across tissues.

Tissue-specific variant effect prediction

We next considered combining MMSplice, which models tissue-independent effects
together with TSplice, which models differential effects between tissues, to predict the
effects associated with genetic variants for any GTEx tissue (“Materials and methods”
section). We name this combined model MTSplice. For amygdala, taken as a represen-
tative tissue, the MTSplice predictions correlate well (ρ = 0.42, Fig. 6a) with differences
of � observed between homozygous donors (“Materials and methods” section). This is
consistent with the observation that most variants have similar effects across tissues. Nev-
ertheless, MTSplice further improved the prediction accuracy when evaluated on 1030
variants with�� varying by at least 0.2 in at least one tissue (RMSE= 0.140 forMMSplice
alone, RMSE = 0.138 for MTSplice, RMSE = 0.141 versus 0.139 when evaluated on all
variant, Fig. 6).When evaluated on the 51 tissues with at least 10measured variant effects,
MTSplice outperformed MMSplice for 39 out of 51 tissues in terms of root-mean-square
error (P = 1.76 × 10−5, paired Wilcoxon test, Fig. 6c). Notably, MTSplice outperformed
MMSplice in 10 out of 12 brain tissues (Additional file 1: Fig. S6A). Although the improve-
ment of MTSplice over MMSplice are significant, the relative decrease of RMSE remains
modest. The relative increases were more pronounced when restricting the analysis to
those measurements harboring large tissue-specific effects (Additional file 1: Fig. S6B).

Fig. 6 ComparingMMSplice andMTSplice on predicting variant-associated differential splicing. a, b Predicted
(x-axis) versus measured (y-axis) �� in amygdala between alternative and reference alleles for variants with
between-tissue splicing variation (orange) and other variants (cyan) for MMSplice (a) and MTSplice (b). c
Root-mean-square error of MTSplice predictions (y-axis) against MMSplice predictions (x-axis) for exons with
between-tissue splicing variations (the cyan dots in a). Each dot represents one of the 51 GTEx tissues with at
least 10 measured variant effects. MTSplice improves for 39 tissues, yet mildly, over MMSplice. Tissues for
which the RMSE differences larger than 0.002 are labeled with text
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MTSplice predicts brain-specific signals for autism patients

To assess the potential of MTSplice on scoring tissue-specific disease variants, we con-
sidered de novo mutations that were reported for 1790 autism spectrum disorder (ASD)
simplex families from the Simons Simplex Collection [50–54] and as provided by Zhou
et al. [55]. The data consists of 127,140 de novo mutations, with 65,147 from the proband
group and 61,993 from the unaffected siblings. Of those, we further considered the 3884
mutations lying in exons or in their 300-nt flanking intronic regions and predicted with
MMSplice with a �logit(�) magnitude greater than 0.05. Overall, MMSplice predicted
that variants of the proband group would disrupt splicing more strongly than variants of
the control siblings (negative MMSplice scores, Fig. 7a, P = 0.042, Wilcoxon rank-sum
test). The effect was even stronger for the 1081 loss-of-function (LoF) intolerant genes
(Fig. 7a, P = 0.0035, Wilcoxon rank-sum test, “Materials and methods” section). This
result is consistent with the report that LoF-intolerant genes are vulnerable to noncoding
disruptive mutations in ASD [55] and points to an important contribution of splicing.
We then asked whether MTSplice was able to identify tissue-specific effects of ASD-

associated de novo mutations. Consistent with the MMSplice results, the de novo
mutations of the proband group were predicted by MTSplice to more severely disrupt
splicing than the de novo mutations of the control group for all tissues (Fig. 7b). The
effect size was larger for the brain tissues (Fig. 7b). Since autism is a neurological dis-
order, these results indicate that MTSplice may be used to prioritize variants that could
play a tissue-specific pathogenic role. Besides the brain tissues, the tissues with most pro-
nounced differences were the retina, which is also part of the central nervous systems
and muscle, which has been associated with autism as well [56]. These differences were

Fig. 7 Brain-specific mutational burden on splicing in ASD. a Tissue-agnostic variant effect prediction with
MMSplice. Splice-region de novo mutations (n = 3884, “Materials and methods” section) of the proband
group (gray) have significantly lower predicted �logit� according to MMSplice compared to those of the
unaffected sibling group (orange). The effect size is larger for variants in LoF-intolerant genes (n = 1081).
Shown are the means and standard 95% confidence intervals. P values from one-sided Wilcoxon test.
b. Tissue-specific variant effect prediction with MTSplice. Distribution of effect size (difference of average
�logit� for proband versus control siblings de novo mutations) for brain tissues (right boxes) and other
tissues (left boxes), and for all de novo mutations (left panel) or de novo mutations in LoF-intolerant genes
(right panel) with MTSplice. Individual tissue plots are shown Additional file 1: Fig. S8. The predicted effect
sizes are more pronounced for brain tissues
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further amplified when restricting the analysis to the de novomutations in LoF-intolerant
genes (Fig. 7b).
We next asked whether MTSplice could capture tissue-specific disease signal that

would otherwise be missed by MMSplice. Among the mutations predicted to have small
effects by MMSplice (�logit(�) magnitude smaller than 0.05), the predicted effect for
the proband group is indeed no severe than the control sibling group (Additional file 1:
Fig. S7A). Moreover, when considering the tissue-specific effect predicted by MTSplice,
the de novo mutations from the proband group were predicted to disrupt more severely
splicing in the frontal cortex (Additional file 1: Fig. S7A, P = 0.036, one-sided Wilcoxon
test). Furthermore, these ASD-associated signals were generally found in the brain, heart,
muscle, and retina but not in other tissues (Additional file 1: Fig. S7B). This shows that
MTSplice is able to capture tissue-specific disease signals that would have been missed by
MMSplice.
Altogether, these analyses demonstrate the value of MTSplice on predicting tissue-

specific effects of potentially disease-causing mutations.

Discussion
We introduced the model MTSplice which quantitatively predicts effects of human
genetic variants on RNA splicing in 56 tissues. MTSplice has two components. One
component, MMSplice, models constitutive splicing regulatory sequences. The other
component, TSplice, models tissue-specific splicing regulatory sequences. The combined
model MTSplice outperforms MMSplice on predicting tissue-specific variations in per-
cent spliced-in associated with naturally occurring genetic variants in most tissues of the
GTEx dataset. Applying MTSplice to de novo mutations from autism spectrum disor-
der simplex families [55], we found a significantly higher burden for the proband group
compared to the control siblings, particularly in brain tissues. These results suggest that
MTSplice could be applied for scoring variants with a tissue-specific pathogenic role.
Various lines of evidence indicated that our model performed best for brain tissues.

This may reflect the fact that brain tissues are well represented in GTEx but also that
tissue-specific alternative splicing is particularly strong in brain tissues, giving more use-
ful sequences to train on. Supportive of this, model interpretation revealed that sequence
elements known to be bound by brain-specific splicing factors contributed to TSplice pre-
dictions. For other tissues, the improvements were more moderate yet consistent. One
exceptional tissue is the testis, for which MMSplice still has a substantially better RMSE
than MTSplice for variant effect predictions. We could not rationalize that observation.
Perhaps, this could be due to the unique transcriptional state of the testis whichmay affect
splicing in a way that the model failed to learn [57].
The TSplice component was trained from tissue-specific alternative splicing observed

in the ASCOT dataset. This approach has two main limitations. First, only less than
ten thousand exons show tissue-specific alternative splicing in the ASCOT dataset. This
amount of data prohibits training of more complex models. In comparison, MMSplice
was trained using over 2 million sequences of a massively parallel reporter assay and
over half a million naturally occurring splice sites. To overcome this limitation, one could
leverage complementary data notably tissue-specific expression of splicing-related RNA-
binding proteins (RBPs) combined with transcriptome-wide RBP binding profiles [58].
One example of a transfer learning approach in this context is given by Jha et al. [59],
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who showed the benefits of integrating CLIP-Seq data to predict splicing. The second
limitation is that the ASCOT dataset is an observational dataset. Models trained from
observational data with genomic sequences may learn sequence features that are correla-
tive but not causal, preventing the models from correctly predicting the effect of genetic
variants. This could lead to limited predictive performances of our current model.
One approach to overcome the issue of observational data is to perform massively par-

allel reporter assays (MPRA) for different cell types. MPRA for human splicing have been
performed in HEK293 cells [26, 28, 60–62], K562 cells [63, 64], HepG2 cells [63], and
HELA andMCF7 cells [65]. These data provide powerful resources to train complexmod-
els on splicing, but tissue and cell-type diversity is still lacking. Tissue-specificMPRA data
would also be of prime importance for benchmarking models. Here we had to rely on nat-
urally occurring variants in GTEx for benchmarking. Tissue-specific alteration of splicing
can be the outcome of genetic variation affecting either (i) constitutive splicing regulatory
elements of tissue-specific exons or (ii) tissue-specific splicing regulatory elements. Very
few GTEx variants were from the latter class. Hence, the mean square error differences
in GTEx between MTSplice and MMSplice could only be very mild. Previous two-cell-
line splicing MPRA experiment did not find tissue-specific variant effects between K562
and HepG2 cells [63], maybe also because the variants tested were selected randomly. A
designed MPRA, however, could specifically engineer variations of tissue-specific splic-
ing regulatory elements by using prior knowledge in order to more deeply probe the
effect of variants on tissue-specific splicing regulation. The generation of large-scale tis-
sue or cell-type-specific perturbation data could therefore be instrumental for probing
tissue-specific regulatory elements and could yield more sensitive benchmarks of pre-
dictive models. Other than improvement on the training data side, future models might
be able design better architecture and data augmentation techniques to further improve
performance. Finally, because the approach to predict tissue-specific variant effects by
combining MMSplice with a tissue splicing-level prediction model is general, any model
that outputs tissue-specific logit(�e,t) could substitute to TSplice and be combined with
MMSplice to predict tissue-specific variant effect on splicing.

Materials andmethods
Dataset

We split the 61,823 cassette exons fromASCOT into a training, a validation, and a test set.
The training set consisted of 38,028 exons from chromosome 4, 6, 8, 10-23, and the sex
chromosomes. The 11,955 exons from chromosome 1, 7, and 9 were used as the validation
set, and the remaining 11,840 exons were used as the test set (chromosomes 2, 3, and 5).
Models are evaluated based on their performance on the test set.

Variant effect estimation

To compute variant effect, we first computed � with MISO for all annotated alternatively
spliced exons (MISO annotation v2.0, http://genes.mit.edu/burgelab/miso/annotations/
ver2/miso_annotations_hg19_v2.zip) in all GTEx RNA-Seq samples. This led to � esti-
mates for 4686 samples from 53 tissues. Second, for each exon, we estimated variant
effects using only those samples with a single variant within the exon body and 300 nt
flanking of the exon. Third, we estimated the effect associated with the variants as the
difference between � averaged across samples homozygous for the alternative allele and

http://genes.mit.edu/burgelab/miso/annotations/ver2/miso_annotations_hg19_v2.zip
http://genes.mit.edu/burgelab/miso/annotations/ver2/miso_annotations_hg19_v2.zip
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� averaged across samples homozygous for the reference allele. We required at least 2
samples in each of these two groups. For simplicity, we did not consider heterozygous
samples for estimating the effects because � of heterozygous samples is confounded by
allele-specific RNA expression. Also, we did not consider indels.

The TSplice model

We denote �e,t the percent spliced-in value of the cassette exon e in tissue t. The goal
of the multi-tissue splicing model is to predict tissue-specific �e,t from the nucleotide
sequence of the given exon Se. We train the tissue-specific splicing model with multi-task
learning, where each task corresponds to a tissue. The model has two input branches.
The first input branch consists of the sequence 300 nt upstream of the acceptor and 100
nt downstream of the acceptor (Fig. 3). In a symmetric fashion, the second input branch
consists of the sequence from the donor side, with 100 nt upstream of the donor and
300 nt downstream of the donor. All input sequences are one-hot encoded. The input
layer is followed by a 1D convolution layer with 64 filters of length 9. Parameters of the
convolution layer are shared by the two input branches, based on the assumption that
many sequence motifs are presented both upstream and downstream of the exons. To
model the positional effects of splicing motifs, spline transformations [47] are fitted for
each of the convolution filters to weight the convolution activations based on the relative
input position to donor and acceptor sites. The spline transformations are fitted differ-
ently for the two input branches to account for potential different positional effects of the
upstream and downstream introns. The weighted activations are then concatenated along
the sequence dimension. Two fully connected layers are followed after the concatenated
outputs. The last fully connected layer output number of predictions equals the number
of tissues (T), corresponding to predictions for each tissue. These are the predictions of
the TSplice model mentioned in the manuscript. During training, logit of the mean � per
exon (logit(�e)) was added to these prediction outputs followed by a sigmoid function.
This encourages the model to learn sequence features associated with differential splicing
across tissues.
Formally, for each exon, TSplice predicts for each tissue its�e,t deviation from themean

�e across tissues on logit level. Specifically, we define the tissue-associated differential
splicing as �tissuelogit(�e,t)

�tissuelogit(�e,t) := logit(�e,t) − logit(�e) (1)

as the logit � deviation for tissue t and exon e from the logit of �e := 1
T

T∑

t=1
�e,t , the

mean � across tissues.
For exon e with input sequence Se, TSplice predicts the target in R

T : TSplice(Se) :=
(
�tissuelogit(�e,1), ...,�tissuelogit(�e,T )

)
corresponding to T tissues.

The tissue-specific�e,t can be predicted with TSplice and the given logit(�e) computed
from the data as:

�̂e,t = σ
(
TSplice(Se)t + logit(�e)

)
(2)

where TSplice(Se)t is the TSplice predicted �tissuelogit(�e,t), and σ is the sigmoid func-
tion: σ(x) = 1

1+e−x . Note that in Eq. 1 and elsewhere the average was computed before
and not after logit-transformation because it gave more robust results.
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Model training and selection

The model was implemented with keras (version 2.2.4). The Kullback–Leibler (KL) diver-
gence between the predicted and measured � distribution was used as the loss function
(Eq. 3), by considering the percent spliced-in as the probability of the cassette exon to be
included in any given transcript.

Loss = 1
T · E

T∑

t=1

E∑

e=1
γe,t

(

�e,t log(
�e,t

�̂e,t
) + (1 − �e,t) log(

1 − �e,t

1 − �̂e,t
)

)

, (3)

where

γe,t =
{
1, if �e,t observed
0, otherwise

(4)

Missing values, which typically correspond to tissues in which the gene is not expressed,
were masked out in the loss function. � values were clipped to be between [ 10−5, 1 −
10−5]. Adam optimizer [66] with default parameters was used to optimize the model.
Network weights were initialized with the He Normal initialization [67]. Hyperparameter
search was performed with hyperopt [68] with the Tree Parzen Estimators method along
with the package kopt (https://github.com/Avsecz/kopt). Hyperparameters were selected
based on the loss on the validation set.
After finding the best hyperparameter combination, 20 models were trained with the

best hyperparameters but different random initialization. A forward model selection
strategy was used to select a set of models whose average predictions gives the smallest
loss on the validation set. To this end, models were first sorted based on their perfor-
mance on the validation set. Next, models were successively added to an ensemble model,
defined as the average over the selected models, until the validation set performance no
longer improved. This procedure yielded an ensemble model composed of 8 individual
models. TSplice predictions are made by this ensemble model.

Alternative tissue-specific�e,t prediction model

The following model was considered as alternative model to predict tissue-specific �̂e,t :
For each tissue t, we train a L2 regularized linear regression model (ridge regression):

logit(�e,t) = β0,t +
∑

i
βi,tXi + logit(�e,average) + εt , (5)

where Xi are the sequence features shared for all tissues. Sequence features from five
regions were considered separately: upstream intron, exon, downstream intron, donor
and acceptor. For upstream and downstream introns, we considered TCAT (NOVA1/2),
TGCATG (RBFOX1), GCTTGC (MBNLl), and all 6-mers with A/T (PTBP1/2) [69–72].
For exons, we considered NOVA1/2, RBFOX1 and MBNL1 motifs and 2272 exonic splic-
ing regulators identify by [26]. For all motifs,Xi are the vectors of counts ofmotif instances
in the considered region. Acceptor and donor splice site contexts were also considered as
for MaxEntScan [24]. On the acceptor side, 20 nt in the intron and 3 nt in the exon were
considered. On the donor side, 6 nt in the intron and 3 nt in the exon were considered.
The alternative model was trained on the training and evaluation set, with hyperparam-

eters chosen by cross-validation on the training and evaluation set. The performances
were assessed for the same test than TSplice.

https://github.com/Avsecz/kopt
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Splicing motif analysis

Splicing motif logos were visualized with contribution scores computed with gradient
times input. Examples of motifs were manually selected. Systematic motif discovery with
contribution scores was unsuccessful. Motif instances were picked by manually inspect-
ing the activation scores on the input sequences. Motif binding protein was determined
by searching motif instances in the ATtRACT database [73]. Position weight matrix
(PWM) for PTBP1/2 and MBNL1 were downloaded from RNACompete [74]. PWM for
NOVA1/2 which is missing from RNACompete was downloaded from the RBPDB [75].
P values formotif matching were computed with TOMTOM [76] andmotif database from
RNACompete [74].
To visualize the predicted effects of motifs across tissues, sequencemotifs were inserted

into the native sequences of 1000 randomly selected exons. Scores were computed by
subtracting the TSplice predictions with the inserted motifs and without the motifs.
Scores were computed for all tissues and all positions. The heatmaps visualize the scores
averaged across 1000 exons by tissues and positions.

Tissue-specific variant effect prediction

Tissue-specific variant effect ��e,t is predicted as follows (we considered in this study
only homozygous cases as described in the “Variant effect estimation” section in the
“Materials and methods” section):

��e,t = �alt
e,t − �ref

e,t (6)

where �ref
e,t is the measured � for exon e and tissue t with the reference sequence, and

�alt
e,t is the tissue-specific� with the alternative sequence. Wemodel the logit level of�alt

e,t
with the following linear model:

logit(�alt
e,t ) = β0 + βtissue + βalt + βalt×tissue + ε, (7)

where β0 is intercept, βtissue is the tissue effect, βalt is the effect of the variant on an average
tissue, βalt×tissue is the interaction term which we model the interaction of the variant
effect and the given tissue. We model each of the terms as follows:

β0 = logit(�ref
e,average)

βtissue = TSplice(Sref, tissue)

βalt = MMSplice(Sref, Salt)

βalt×tissue = TSplice(Salt, tissue) − TSplice(Sref, tissue)

(8)

When we plug Eq. 8 into Eq. 7, we obtain the MTSplice model which combines
MMSplice and TSplice to model tissue-specific variant effect:

logit(�alt
e,t ) = logit(�ref

e,average) + MMSplice(Sref, Salt) + TSplice(Salt, tissue) + ε (9)

Finally, the tissue-specific ��e,t is predicted as follows:

��e,t =σ
(
logit(�ref

e,average) + MMSplice(Sref, Salt) + TSplice(Salt, tissue)
)

− �ref
e,t

(10)

While the prediction with MMSplice is as follows:

��e,t = σ
(
logit(�ref

e,average) + MMSplice(Sref, Salt)
)

− �ref
e,t (11)
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Benchmark variant effect prediction on GTEx

On the benchmark of tissue-specific variant effect prediction, we further applied four
filters. First, we selected variants that have |��e,t − ��e,average| > 0.2 in at least one
tissue. Second, �� can be computed for at least 3 tissues. Third, we only considered
tissues withmore than 10 variants satisfying the above criteria. Altogether, these filters led
to 1030 variant-exon pairs and 51 tissues used for benchmarking tissue-specific variant
effect predictions.
To benchmark variants only in tissues where their effects are tissue-specific, we selected

for each variant only the tissues where |��e,t − ��e,average| > 0.2. Only tissues with at
least 10 valid variants are considered. In total, 48 tissues were considered for this analysis.

Autism variants

The processed de novo mutations were downloaded from the link provided by Zhou et al.
[55] (https://hb.flatironinstitute.org/asdbrowser/). The original whole genome sequenc-
ing data were accessed through the Simons Foundation Autism Research Initiative
(SFARI) [50–54]. The data provides 127,140 single-nucleotide variants (SNVs) from non-
repeat-region. The variants were derived from 7097 whole genomes from the Simons
Simplex Collection (SSC) cohort, which consists of whole-genome sequencing data from
1790 families (with probands and matched unaffected siblings).
To predict variant effect on splicing, variants were mapped to exons if they are within

the annotated (ensembl gene annotation v75) exon body or within 300 nt flanking. If a
variant was mapped to multiple exons, the largest effect size was reported as the effect of
the variant. A total of 13,415 variants were mapped to known exons and therefore were
predicted by our models. Among those variants, 3884 have predicted |�logit(�)| > 0.05.
We classified the variants into loss-of-function (LoF) group and loss tolerant group based
on the loss-of-function observed/expected (oe) upper bound fraction (LOEUF) scores
[77]. We used the suggested cutoff of 0.35 on the upper bound of the oe confidence
interval to group the variants.
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