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The nucleus accumbens (NAc) plays an important role in the reward circuit, and abnormal 
regional activities of the reward circuit have been reported in various psychiatric disorders 
including somatization disorder (SD). However, few researches are designed to analyze 
the NAc connectivity in SD. This study was designed to explore the NAc connectivity 
in first-episode, drug-naive patients with SD using the bilateral NAc as seeds. Twenty-
five first-episode, drug-naive patients with SD and 28 healthy controls were recruited. 
Functional connectivity (FC) was designed to analyze the images. LIBSVM (a library for 
support vector machines) was used to identify whether abnormal FC could be utilized to 
discriminate the patients from the controls. The patients showed significantly increased FC 
between the left NAc and the right gyrus rectus and left medial prefrontal cortex/anterior 
cingulate cortex (MPFC/ACC), and between the right NAc and the left gyrus rectus and 
left MPFC/ACC compared with the controls. The patients could be separated from the 
controls through increased FC between the left NAc and the right gyrus rectus with a 
sensitivity of 88.00% and a specificity of 82.14%. The findings reveal that patients with SD 
have increased NAc connectivity with the frontal regions of the reward circuit. Increased 
left NAc-right gyrus rectus connectivity can be used as a potential marker to discriminate 
patients with SD from healthy controls. The study thus highlights the importance of the 
reward circuit in the neuropathology of SD.

Keywords: somatization disorder, functional connectivity, reward circuit, functional magnetic resonance imaging, 
support vector machine

INTRODUCTION

Somatization disorder (SD) is a psychiatric disorder characterized by multiple, recurrent, 
and clinically significant complaints of somatic symptoms. Patients with SD usually undergo 
numerous medical examinations without an accurate diagnosis. Consequently, their medical cost 
increases dramatically (1).

In recent years, neuroimaging techniques provide us with new ways to analyze changes of brain 
function and structure in psychiatric patients (2). Anatomical alterations and connectivities have 
been revealed in patients with SD using structural imaging techniques. For example, patients with 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00585
https://www.frontiersin.org/journals/psychiatry#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00585&domain=pdf&date_stamp=2019-08-16
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry
https://creativecommons.org/licenses/by/4.0/
mailto:guowenbin76@csu.edu.cn
https://doi.org/10.3389/fpsyt.2019.00585
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00585/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00585/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00585/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00585/full
https://loop.frontiersin.org/people/552318
https://loop.frontiersin.org/people/253832
https://loop.frontiersin.org/people/552320
https://loop.frontiersin.org/people/497003


Nucleus Accumbens ConnectivityOu et al.

2 August 2019 | Volume 10 | Article 585Frontiers in Psychiatry | www.frontiersin.org

SD showed decreased fractional anisotropy in the right cingulum 
and right inferior fronto-occipital fasciculus (3). Atmaca et al. 
found that patients with SD had significantly small amygdala 
relative to controls (4). By contrast, increased bilateral caudate 
nuclei volumes have been detected in patients with SD compared 
with controls (5).

Previously, abnormal brain regional activities have been found 
in SD using functional neuroimaging methods. For example, 
patients with SD showed increased coherence-based regional 
homogeneity (Cohe-ReHo) in the left medial prefrontal cortex/
anterior cingulate cortex (MPFC/ACC) (6), and increased regional 
activity in the bilateral MPFC has been detected in patients 
with SD (7). Patients with SD also showed abnormal functional 
connectivity (FC) between the cingulate-insular network and 
sensorimotor network (SMN)/anterior default-mode network 
(DMN), between the posterior DMN and SMN, and between 
the anterior DMN and posterior DMN/SMN compared with 
healthy controls (8). Increased FC strength in the right inferior 
temporal gyrus (ITG) has been found in patients with SD (9). 
Moreover, patients with SD exhibited increased cerebellar-DMN 
connectivity, which was correlated to the somatization severity 
and personality (10). However, little attention has been focused 
on the dysconnectivity of the reward circuit in SD.

The reward circuit is a group of neural structures related to 
associative learning, incentive salience, and positive emotions 
(11). The mesolimbic reward circuit comprises the NAc, ventral 
tegmental area (VTA), prefrontal cortex (PFC), and hippocampus 
(12, 13). Located in the ventral striatum, the NAc is an important 
brain reward region that integrates different inhibitory and 
excitatory inputs to salience signal of rewarding stimuli (14). In 
a previous study, patients with SD presented hypoperfusion in 
the frontal and prefrontal areas using the single-photon emission 
computed tomography (SPECT) scan (15). Moreover, Hakala 
et al. revealed regional cerebral hypometabolism in the caudate 
nuclei, right precentral gyrus, and left putamen in patients with 
SD (16). These findings suggest that reward circuit is involved in 
the pathophysiology of SD.

SVM (support vector machine) is a supervised learning 
model with correlated learning algorithms that analyzes data 
used for regression and classification analysis (17). Given a pieces 
of training examples, an SVM training algorithm creates a model 
that deals new examples to one sort or the other, making it a non-
probabilistic binary linear classifier. SVM structures a hyperplane 
or set of hyperplanes in a high- or infinite-dimensional space, 
which can be applied for regression, classification, or other roles 
like outlier detection. In particular, SVM utilizes a training 
dataset to get differences between the patients and the controls, 
and a testing dataset is used to assess classification performance 
on uncharted data. The classifier algorithm is applied with a 
leave-pair-out cross-validation (LPO-CV) method to acquire 
the highest specificity and sensitivity (18). SVM has been widely 
performed in medical disease. For example, SVM was applied to 
identify patients with coronary heart disease (CHD) from non-
CHD individuals (19). Wang et al. revealed that SVM model 
could diagnose lymph node metastasis better than preoperative 
short axis size of largest lymph node on computed tomography 
(20). In our previous study, SVM analysis could be used to 

discriminate patients with SD from healthy controls with proper 
sensitivity and specificity (6). In this study, SVM was used to 
examine whether abnormal NAc connectivity could be applied 
to distinguish the patients from the controls.

So far, few studies have analyzed abnormal FC of the 
reward circuit in SD using the seed-based FC method, which 
is conducted by calculating the correlations between the 
preselected brain regions (seeds) and the rest brain regions. This 
method has been used in subjects with high social anhedonia, 
and the cortico-striatal abnormalities in the reward-related 
symptomatology have been revealed (21). In this study, we 
employed bilateral NAc (from the Harvard Oxford Atlases) as 
seeds. Then, the seed-based FC method was used to identify 
abnormal connectivity between the seeds and other regions 
of brain. Based on abovementioned findings, we hypothesized 
that increased NAc connectivity would be detected in SD, 
particularly within the reward circuit, which could be used to 
discriminate the patients from the controls. We also expected 
there were some correlations between abnormal FCs and 
clinical variables in the patients.

MATERIALS AND METHODS

Participants
Twenty-five right-handed patients with first-episode and 
drug-naive SD were recruited from the First Affiliated 
Hospital of Guangxi Medical University. Twenty-eight healthy 
controls were recruited from the community. The controls 
were screened by using the Structured Clinical Interview of 
the Diagnostic and Statistical Manual of Mental Disorders-IV 
(SCID), non-patient edition (22), and no neuropsychiatric 
disorders in their first-degree relatives. Patients with SD 
should meet the criteria of the SCID, patient edition (22). 
Somatic symptoms of patients with SD should originate from 
several specific origins (i.e., at least four pain symptoms, 
two gastro-intestinal symptoms, one sexual symptom, and 
one pseudo-neurological symptom), and the symptoms were 
in the absence of a medical explanation, factitious disorder, 
or malingering (23). Participants were excluded according 
to the following criteria: other psychiatric disorders (e.g., 
bipolar disorders, schizophrenia, or personality disorders), 
severe medical diseases, substance abuse disorders, mental 
retardation, and any limits for MRI.

The Hamilton Anxiety Scale (HAMA) (24), Hamilton 
Depression Scale (HAMD, 17 items) (25), and somatization 
subscale of Symptom Checklist-90 (SCL-90) (26) were used 
to assess the symptomatic severity of anxiety, depression, and 
somatization. Eysenck Personality Questionnaire (EPQ) (27) 
was used to evaluate personality dimensions. Wisconsin Card 
Sorting Test (WCST) (28) and digit symbol coding of Wechsler 
Adult Intelligence Scale (WAIS) were applied to identify 
cognitive functions.

After given detailed knowledge of the contents, all the 
participants signed a written informed consent. The local ethics 
committee of the First Affiliated Hospital of Guangxi Medical 
University approved this study.
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MRI Acquisition
Functional MRI scans were obtained with a Siemens 3T scanner. 
During the procedures, the participants were asked to remain 
motionless and awake with their eye closed. Soft earplugs and 
foam pads were used to reduce scanner noise and head motion. 
Resting-state functional scans were obtained with a gradient-
echo echo-planar imaging sequence using the following 
parameters: repetition time/echo time = 2,000/30 ms, 30 slices, 
64 × 64 matrix, 90° flip angle, 24-cm FOV, 4-mm slice thickness, 
0.4-mm gap, and 250 volumes (500 s).

Data Preprocessing
We preprocessed the imaging data with Data Processing & 
Analysis for (resting-state) Brain Imaging (29) in MATLAB. 
Slice timing and head movement were first corrected, and no 
participant had more than 2  mm of maximal displacement 
in any direction of x, y, and z and more than 2° in any angular 
dimension. After that, the images were normalized in the standard 
Montreal Neurological Institute (MNI) EPI space and resampled 
with 3×3×3-mm3 resolution. The obtained images were then 
smoothed with a 4-mm full width at half-maximum Gaussian 
kernel, bandpass filtered (0.01–0.08 Hz), and linearly detrended. 
In addition, framewise displacement (FD) was computed as 
described in a previous study (30). The mean FD is a covariate of 
no interest to handle the residual effects caused by head motion. 
We removed time points with FD > 0.2mm to control aggressive 
head motion. We did not regress out the global signal since it was 
suggested to be saved in processing the FC data (31).

FC Processing
Bilateral NAc from the Harvard Oxford Atlases were selected 
as seeds for the whole-brain FC processing with the software 
REST (32). For each participant, seed-based FC was computed 
as Pearson correlation coefficients between the seeds and other 
voxels of the whole brain. The correlation coefficients were then 
z-transformed for standard purpose, and seed-based FC maps 
were generated.

Statistical Analysis
Two-sample t tests were performed to compare the distribution 
of age, years of education, and clinical scales between patients 
with SD and healthy controls. A chi-square test was used to judge 
sex distributions.

Group differences were compared using voxel-wise two sample 
t-tests. Age and the mean FD values were used as covariates to 
minimize the potential effects of these variables. The significance 
level was set at p < 0.05 for multiple comparisons corrected 
by Gaussian random field (GRF) theory (voxel significance: 
p < 0.001, cluster significance: p < 0.05).

LIBSVM (33) was performed to examine whether abnormal 
FC between bilateral NAc and other brain regions could 
distinguish patients with SD from healthy controls.

To explore the correlations between abnormal FC values and 
clinical variables, voxel-based correlations were conducted. The 
correlation results were Bonferroni corrected at p < 0.05.

RESULTS

Characteristics of the Participants
General information of the participants is shown in Table 1, and 
no difference was observed regarding age, sex ratio, education 
level, EPQ extraversion/lie scores, digit symbol coding of WAIS, 
and WCST between the two groups. The scores of HAMA, 
HAMD, EPQ psychoticism/neuroticism, and somatization 
subscale of SCL-90 of the patients were higher than those of the 
controls (Table 1).

Group Differences in Seed-Based FC 
Analyses
The patients showed significantly increased FC between the left 
NAc and the right gyrus rectus (t = 4.2239, p < 0.001) and left 
MPFC/ACC (t = 3.9208, p < 0.001), and between the right NAc 
and the left gyrus rectus (t = 5.7374, p < 0.001) and left MPFC/
ACC (t = 4.3168, p < 0.001) compared with the controls (Figure 1 
and Table 2).

Correlations Between Abnormal FC 
and Clinical or Personality or Cognitive 
Variables in the Patients
No correlations were detected between increased FC between 
the left NAc and the right gyrus rectus and left MPFC/ACC, and 
between the right NAc and the left gyrus rectus and left MPFC/
ACC and clinical or personality or cognitive variables (WCST 
and digit symbol coding of WAIS) in the patients.

TABLE 1 | Characteristics of participants.

Variables Patients 
(n = 25)

Controls 
(n = 28)

p value

Age (years) 41.00 ± 10.76 38.71 ± 9.59 0.42b

Sex (male/female) 4/21 6/22 0.73a

Years of education (years) 7.72 ± 4.39 7.82 ± 2.59 0.92b

FD (mm) 0.08 ± 0.03 0.10 ± 0.05 0.02b

Illness duration (months) 59.12 ± 62.22
Somatization subscale of 
SCL-90

28.48 ± 10.37 14.32 ± 3.44  <0.001b

HAMD 18.84 ± 7.31 2.60 ± 1.83  <0.001b

HAMA 22.96 ± 10.95 0.53 ± 0.99  <0.001b

Digit symbol coding of WAIS 8.28 ± 2.87 9.64 ± 2.15 0.06b

EPQ
Extraversion 46.84 ± 11.02 49.75 ± 9.65 0.31b

Psychoticism 50.52 ± 9.01 45.00 ± 8.54 0.03b

Neuroticism 57.36 ± 9.18 46.78 ± 10.24  <0.001b

Lie 49.44 ± 12.31 47.96 ± 11.01 0.65b

WCST
Number of categories achieved 3.52 ± 1.76 3.89 ± 1.66 0.43b

Number of errors 22.84 ± 9.12 24.71 ± 8.91 0.45b

Number of perseverative errors 20.04 ± 9.48 22.82 ± 8.72 0.27b

aThe p value for sex distribution was obtained by a chi-square test.
bThe p values were obtained by two samples t-tests.
FD, Framewise displacement; HAMD, Hamilton depression scale; HAMA, Hamilton 
Anxiety Scale; SCL-90, Symptom Checklist-90; EPQ, Eysenck Personality 
Questionnaire; WAIS, Wechsler Adult Intelligence Scale; WCST, Wisconsin Card 
Sorting Test.
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LIBSVM Analysis
As shown in Figure 2, the FC values between the left NAc and the 
right gyrus rectus could correctly classify 22 of 25 patients and 23 
of the 28 controls, resulting in an optimal sensitivity of 88.00% 
and an optimal specificity of 82.14% (Figure 2).

DISCUSSION

In this study, we used bilateral NAc as seeds to analyze the 
seed-based FC in first-episode and drug-naive SD. The primary 
finding is that patients showed significantly increased FC values 
between the left NAc and the right gyrus rectus and left MPFC/
ACC, and between the right NAc and the left gyrus rectus and left 
MPFC/ACC compared with the controls. Increased connectivity 

between the left NAc and the right gyrus rectus can be used as a 
potential marker to discriminate patients with SD from healthy 
controls with optimal sensitivity and specificity. There are no 
correlations between abnormal FC values and clinical variables 
in the patients.

Increased NAc connectivity with other brains have been 
found in this study. The NAc receives heterogeneous 
gamma-aminobutyric acid (GABAergic) and dopaminergic 
projections from the VTA (34, 35) as well as glutamatergic 
afferents from the PFC (36), hippocampus (37, 38), thalamus 
(39), and amygdala (40). The NAc is a complex, integral 
hub in the reward circuit (41). For example, patients with 
SD commonly have pain symptoms, and the NAc plays an 
important role in reward-aversion processing during pain 
perception (42). Baliki et al. found that the NAc showed 
abnormal activities when patients were in the presence of 
chronic pain, and the NAc activity could anticipate analgesic 
potential on chronic pain (43).

The MPFC/ACC plays an important role in the reward 
circuit, which generates emotional and cognitive information 
(44), and abnormal activity within the MPFC areas may 
be related to augment pain perception in patients with SD 
(45). Furthermore, a study showed that negative emotional 
stimuli could activate the MPFC/ACC, which revealed that the 
MPFC/ACC might be involved in appraisal and expression of 
negative emotion (46).

The gyrus rectus, also named straight gyrus, is located 
at the medial most margin of the inferior surface of frontal 
lobe and is continuous with the superior frontal gyrus on the 
medial surface. Up to now, the function of the gyrus rectus 

FIGURE 1 | Statistical maps showing seed-based functional connectivity differences between subject groups. The patients showed significantly increased FC 
between the left NAc and the right gyrus rectus and left MPFC/ACC, and between the right NAc and the left gyrus rectus and left MPFC/ACC compared with the 
controls. Red denotes high FC values in the patients, and the color bar indicates the T values from two-sample t-tests. FC, functional connectivity; NAc, nucleus 
accumbens; MPFC/ACC, medial prefrontal cortex/anterior cingulate cortex.

TABLE 2 | Regions with increased functional connectivity with the accumbens 
in patients.

Cluster location Peak (MNI) Number 

of voxels
T value

x y z

Seed: Left Accumbens
Right Gyrus Rectus 12 45 −24 38 4.2239
Left MPFC/ACC −12 36 −9 25 3.9208
Seed: Right 
Accumbens
Left Gyrus Rectus −6 63 −21 38 5.7374
Left MPFC/ACC −12 36 −9 39 4.3168

MNI, Montreal Neurological Institute; MPFC, medial prefrontal cortex; ACC, anterior 
cingulate cortex.
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is unclear. However, a research suggested that patients with 
obsessive-compulsive disorder have decreased prefrontal 
hemodynamic response (47). In our study, patients with SD 
showed significantly increased FC values between the left NAc 
and the right gyrus rectus and left MPFC/ACC, and between 
the right NAc and the left gyrus rectus and left MPFC/ACC 
compared with the controls.

Increased FC is usually considered as compensatory 
reallocation or dedifferentiation to functional deficits in the 
brain regions (48, 49). Patients with SD may have deficits in 
emotional processing, and the MPFC/ACC is related to the 
negative emotion (46). Du et al. found that the stimulated 
dorsolateral PFC-NAc FC can predict the anti-depressant 
and anti-anxiety effects of repeated transcranial magnetic 
stimulation (rTMS) (50). Furthermore, deep brain stimulation 
(DBS) targeting the NAc and rTMS about the left dorsolateral 
PFC also exhibited antidepressant and antianxiety effects 
(51–53). Therefore, increased NAc connectivity in the present 
study may be a compensatory effort to functional deficits in 
these regions.

In a previous study, a significantly positive correlation 
has been found between increased activity in the bilateral 
superior MPFC and the somatization subscale scores of SCL-
90 in patients with SD (7). We hypothesized that correlations 
would be detected between increased NAc connectivity and 
clinical parameters. Therefore, no correlation in the present 
study is somewhat surprised. There are several possibilities 
account for this issue. First, sample size of this research may 
be small to establish a correlation. Second, increased NAc 
connectivity may be an internal alteration for patients with 
SD independent of symptomatic severity. Third, the clinical 
parameters are concentrated, such as the scores of the digit 
symbol coding of WAIS of the patients with SD are centered 
at 8.28 points.

SVM analysis suggests that the increased FC values 
between the left NAc and the right gyrus rectus could be used 

to discriminate patients with SD from healthy controls with 
a sensitivity of 88.00% and a specificity of 82.14%. A highly 
credible research is characterized by specificity and sensitivity 
above 70% in the medical domain (54). Interpretation of 
the high discriminative power result must think about the 
multivariate nature of the SVM method. SVM, a multivariate 
method, has been additionally based on inter-regional 
correlations, while standard quality univariate techniques 
regard each voxel as a spatially independent unit (55). 
Therefore, increased FC values may be used as a potential 
marker to discriminate patients with SD from healthy controls.

Our study has several limitations. First, this research is a 
cross-sectional one, and it is unclear how the NAc connectivity 
will alter after treatment. A longitudinal study is needed to 
clarify this issue. Second, some studies showed that abnormal 
FC was correlated to anhedonia (56). However, psychological 
tests about anhedonia were not assessed in this study. The 
relationship between abnormal FC and anhedonia remains 
unknown. Third, the sample size in our study is relatively 
small, which may minimize the translational value of our 
findings. Fourth, the HAMA scores and HAMD scores were 
significantly different between the SD group and HC group. 
Therefore, there is a possibility that the present findings 
may be affected by the HAMA scores and HAMD scores. To 
clarify this issue, we reanalyzed the data with age, mean FD 
values, HAMA scores, and HAMD scores as covariates and 
obtained similar results as previously reported. Therefore, the 
present findings seemed impossible to be affected by HAMA 
scores and HAMD scores. Finally, the confounding effects of 
scans, such as respiratory and cardiac rhythm, could not be 
completely eliminated.

Despite the limitations, the current research first examines 
the NAc connectivity in resting-state patients with first-episode, 
drug-naive SD. The findings reveal that patients with SD have 
increased NAc connectivity with some regions of the reward 
circuit. Increased NAc connectivity can be used as a potential 

FIGURE 2 | Visualization of the SVM results for identifying patients from controls using the FC values between the left NAc and the right gyrus rectus. Left: 3D view 
of the classified accuracy with the best parameters; right: classified map of the FC values between the left NAc and the right gyrus rectus. SVM, Support vector 
machine; FC, functional connectivity; NAc, nucleus accumbens.
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marker to discriminate patients with SD from healthy controls. 
This study thus highlights the importance of the reward circuit in 
the neuropathology of SD.
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