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Abstract

Gene Ontology (GO) is widely used in the biological domain. It is the most comprehensive ontology providing formal representation of
gene functions (GO concepts) and relations between them. However, unintentional quality defects (e.g. missing or erroneous relations)
in GO may exist due to the large size of GO concepts and complexity of GO structures. Such quality defects would impact the results of
GO-based analyses and applications. In this work, we introduce a novel evidence-based lexical pattern approach for quality assurance
of GO relations. We leverage two layers of evidence to suggest potentially missing relations in GO as follows. We first utilize related
concept pairs (i.e. existing relations) in GO to extract relationship-specific lexical patterns, which serve as the first layer evidence to
automatically suggest potentially missing relations between unrelated concept pairs. For each suggested missing relation, we further
identify two other existing relations as the second layer of evidence that resemble the difference between the missing relation and
the existing relation based on which the missing relation is suggested. Applied to the 15 December 2021 release of GO, this approach
suggested a total of 866 potentially missing relations. Local domain experts evaluated the entire set of potentially missing relations,
and identified 821 as missing relations and 45 indicate erroneous existing relations. We submitted these findings to the GO consortium
for further validation and received encouraging feedback. These indicate that our evidence-based approach can be utilized to uncover
missing relations and erroneous existing relations in GO.
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Introduction
Ontologies are artifacts used to provide common con-
trolled knowledge representation enabling knowledge
sharing and reasoning in a particular domain. An
ontology contains a set of classes (or concepts) that
represent entities in a domain and a set of relations that
define the semantic relations between the classes [1].
Ontologies have been extensively used in biomedical and
health-related research and applications.

Gene Ontology (GO) is one such resource providing a
computational representation of the current scientific
knowledge on gene functions of different organisms [2].
The GO resource offers GO itself as well as GO anno-
tations. The GO itself is the logical structure compris-
ing terms for biological processes, molecular functions
and cellular components as well as different types of
relations that denote how each term is related to other

terms (note that ‘class’, ‘concept’ and ‘term’ are inter-
changeably used in the context of GO). GO annotations
link a specific gene product with a GO concept to describe
its normal biological role [3, 4]. The 15 December 2021
release of GO, which is used in this paper, contains over
50 000 concepts. GO relationships include is-a, part of, has
part, regulates, negatively regulates and positively regulates
that link concepts with each other [5].

Modern biomedical ontologies such as GO can be large
and complex. Although extreme care is always taken
by human curators to make an ontology as accurate as
possible, due to the size and complexity, introduction
of unintentional errors or defects is difficult to avoid.
Some identified defects are fixed as part of the ontology
management life-cycle. However, systematic methods to
uncover and fix quality defects in biomedical ontolo-
gies are still scarce. Manual efforts to audit biomedi-
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cal ontologies are not really sustainable. Hence, auto-
mated or semi-automated auditing algorithms for ontol-
ogy quality assurance are highly desirable.

Various approaches have been investigated to assess
qualities of biomedical ontologies such as concept ori-
entation, consistency, non-redundancy, soundness and
comprehensive coverage [6, 7]. Amith et al. have cat-
egorized recent ontology quality assurance approaches
to 10 categories including structure-based, lexical-based,
semantic-based, abstraction-network-based and big data
approaches [8].

Many lexical-based approaches leverage the ‘lexically
suggest, logically define’ principle which states that
the knowledge represented lexically in concept labels
should be represented as axioms in the ontology [9]. For
instance, van Damme et al. have proposed a method
which clusters concepts by lexical regularities that their
concept labels contain and extracts information from
each cluster to suggest logical axioms for concepts
in SNOMED CT [10]. Agrawal et al. have extensively
investigated approaches where lexically similar concept
sets are identified where inconsistent modeling may be
prevalent [11–14]. Bodenreider has introduced a method
to identify missing hierarchical relations in SNOMED
CT by reasoning on logical definitions constructed by
leveraging lexical features of concept labels [15].

With respect to GO, most of the quality assurance
efforts have focused on enriching the ontology [16–18].
Other studies have tried to audit GO from different points
of view. For instance, Ochs et al. have investigated two
types of abstraction networks, called area taxonomy and
partial-area taxonomy, to identify groups of anomalous
concepts in the biological process subhierarchy of GO
[19]. Abstraction networks are a form of compact sum-
marizations of ontologies that have been extensively
explored for ontology quality assurance [20–21]. Mou-
gin has explored reasoning over relationships to detect
redundant relations in GO, and identified missing nec-
essary and sufficient conditions based on compositional
structure of GO concept names [22]. Xing et al. developed
a scalable approach combining the algorithmic ideas of
dynamic programming and topological sort to exhaus-
tively identify redundant hierarchical is-a relations in
large ontologies including GO [23]. In previous works, we
investigated a lexical-based inference approach [24] and
a subsumption-based sub-term inference framework [25]
to identify missing and erroneous hierarchical is-a rela-
tions in GO.

Relational defects such as missing or erroneous is-a
relations in GO directly affect the quality of downstream
research and applications that rely on the relational
structure of GO. For instance, when retrieving genes
and gene products annotated with a given GO concept,
if the concept has a missing subtype, then the genes
and gene products associated with this subtype will be
excluded from the result; and if the concept has an
erroneous subtype, then the genes and gene products
associated with the subtype will be wrongly included

in the result. More specifically, suppose we want to
find all the genes and gene products associated with
the GO concept ‘epithelial cell differentiation’ (with ID
GO:0030855) using QuickGO [26]. Currently, QuickGO
returns 45714 distinct gene products associated with
GO:0030855. However, the current version (15 December
2021 release) of GO does not list the concept ‘melanocyte
differentiation’ (GO:0030318), which is associated with
2357 distinct gene products, as a subtype of GO:0030855
(i.e. a missing is-a relation). Excluding the overlapping
158 gene products, the remaining 2199 gene products
associated with ‘melanocyte differentiation’ (GO:0030318)
will be missing from the search result. Therefore, it
is imperative to ensure the quality of GO relations.
In this paper, we introduce a novel evidence-based
approach to uncovering missing relations and erroneous
existing relations in GO (including but not limited to is-a
relations).

Methods
The basic idea of our evidence-based approach is leverag-
ing lexical patterns exhibited in related concept pairs (i.e.
existing relations) in GO to identify potentially missing
relations between unrelated concept pairs. We represent
each GO concept’s name with a sequence of words along
with part-of-speech tags. Such representation enables us
to automatically generate lexical patterns from related
concept pairs, serving as the first layer evidence to
suggest potentially missing relations between unrelated
concept pairs. For each suggested missing relation,
we further identify a concept quadruple consisting of
concepts in two existing relations as the second layer
of evidence, which resembles the difference among the
concept quadruple consisting of concepts in the missing
relation and the existing relation based on which the
missing relation is suggested.

Concept name representation
Given a concept C in GO, we represent its concept name as
a sequence of words W(C) = [w1, w2, w3, ..., wn] along with
a sequence of part-of-speech tags T(C) = [t1, t2, t3, ..., tn]
corresponding to each word, where n is the number of
words in the concept name, wi(1 ≤ i ≤ n) is the i-th word
in the concept name and ti(1 ≤ i ≤ n) is the part-of-
speech tag of wi. For instance, GO concept C = ‘nitric oxide
biosynthetic process’ (GO:0006809) can be represented as

W(C) = [‘nitric′, ‘oxide′, ‘biosynthetic′, ‘process′],

T(C) = [ADJ, NOUN, ADJ, NOUN].

For the part-of-speech tagging, we used the English trans-
former pipeline of the open-source natural language pro-
cessing library spaCy [27].
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Computing related concept pairs
GO concepts are connected with various relationships
including is-a, part-of , has-part, regulates, negatively-
regulates and positively-regulates [5, 28]. A related concept
pair is a pair of concepts that are directly or indirectly
connected with a relationship. To obtain all the related
concept pairs in GO, we first extract directly related
concept pairs using the GOATOOLS python library [29],
and then obtain indirectly related concept pairs by
computing transitive closure leveraging the reasoning
rules given in Table 1. For example, one of the reasoning
rules is that if A is-a B and B part-of C, then it can be
inferred A part-of C. Note that these inference rules may
involve more complex cases combining multiple rules.
For instance, if A is-a B, B part-of C and C is-a D, then it
can be inferred A part-of D using the reasoning rules (2)
and (7) in Table 1.

Given a concept C, Algorithm 1 presents our procedure

Algorithm: 1 The algorithm to compute all the concepts
that a given concept C directly or indirectly connects to
via is-a.

1: procedure is-a(C)
2: Initialization:
3: direct is-a parents D ← direct parents of C
4: all is-a ancestors S ← D
5: for d in D do
6: S.add(is-a(d)) � Recursive call
7: end for
8: return S
9: end procedure

Algorithm: 2 The algorithm to compute all the concepts
that a given concept C directly or indirectly connects to
via part-of.

1: procedure part-of(C)
2: Initialization:
3: direct is-a parents D ← direct parents of C
4: direct part-of values E ← direct part-of values of C
5: all part-of values S ← E
6: for d in D do
7: S.add(part-of(d)) � Recursive call
8: end for
9: for e in E do

10: S.add(part-of(e)) � Recursive call
11: S.add(is-a(e)) � Calling is-a
12: end for
13: return S
14: end procedure

to obtain all the concepts that C connects to via the
is-a relationship; and Algorithm 2 demonstrates how to
compute all the concepts that C connects to via the part-
of relationship. The concept pairs connected via other
relationships can be similarly obtained. Note that such
transitive closure for a given concept can be obtained

through GOATOOLS (or other tools such as Owlready2
and OWL API) for the is-a relationship.

Extracting lexical patterns from concept pairs
We extract lexical patterns from pairs of concepts having
at least one word in common. Given a pair of concepts (C1,
C2) with

W(C1) = [w(1,1), w(1,2), w(1,3), ..., w(1,p)],

W(C2) = [w(2,1), w(2,2), w(2,3), ..., w(2,q)],

such that C1 and C2 have a set of common words K = {ki |
1 ≤ i ≤ s}, where s is the total number of commons words,
we can generate a lexical pattern of (C1, C2):

L(C1, C2) = (W′(C1), W′(C2)),

where W′(C1) is obtained by replacing each common
word ki in W(C1) with an abstract label Ki, and W′(C2)

is obtained by replacing each common word ki in W(C2)

with Ki.
For instance, considering the following two concepts in

Figure 1A:

A = ‘nitric oxide biosynthetic process′(GO : 0006809),

B = ‘cellular nitrogen compound biosynthetic process′

(GO : 0044271),

they have two words in common, that is, K = {‘biosynthetic’,
‘process’}. After replacing ‘biosynthetic’ with K1 and
‘process’ with K2, the obtained lexical pattern is

L(A, B) = ([“nitric”, “oxide”, K1, K2],

[“cellular”, “nitrogen”, “compound”, K1, K2]).

Similarly, in Figure 2B, for concepts

X = ‘negative regulation of corticosterone secretion′

(GO : 2000853),

Y = ‘negative regulation of mineralocorticoid secretion′

(GO : 2000856),

they have four common words (i.e. K = {‘negative’, ‘regu-
lation’, ‘of ’, ‘secretion’}). After replacing ‘negative’ with K1,
‘regulation’ with K2, ‘of ’ with K3 and ‘secretion’ with K4, the
obtained lexical pattern is

L(X, Y) = ([K1, K2, K3, ‘corticosterone’, K4],

[K1, K2, K3, ‘mineralocorticoid’, K4]).
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Table 1. Gene Ontology reasoning rules for relationships is-a, part-of , has-part, regulates, negatively-regulates (n-regulates) and
positively-regulates (p-regulates) [5, 28]

Relationship Reasoning rules

is-a (1) A is-a B, B is-a C ⇒ A is-a C
(2) A is-a B, B part-of C ⇒ A part-of C
(3) A is-a B, B has-part C ⇒ A has-part C
(4) A is-a B, B regulates C ⇒ A regulates C
(5) A is-a B, B n-regulates C ⇒ A n-regulates C
(6) A is-a B, B p-regulates C ⇒ A p-regulates C

part-of (7) A part-of B, B is-a C ⇒ A part-of C
(8) A part-of B, B part-of C ⇒ A part-of C

has-part (9) A has-part B, B is-a C ⇒ A has-part C
(10) A has-part B, B has-part C ⇒ A has-part C

regulates (11) A regulates B, B is-a C ⇒ A regulates C
(12) A regulates B, B regulates C ⇒ A regulates C

n-regulates (13) A n-regulates B, B is-a C ⇒ A n-regulates C
p-regulates (14) A p-regulates B, B is-a C ⇒ A p-regulates C

(15) A p-regulates B, B p-regulates C ⇒ A p-regulates C
(16) A n-regulates B, B n-regulates C ⇒ A p-regulates C

Figure 1. (A) Existing is-a relation between concept A =‘nitric oxide biosynthetic process’ (GO:0006809) and concept B = ‘cellular nitrogen compound biosynthetic
process’ (GO:0044271) that is leveraged to generate the lexical pattern L(A, B); (B) Missing is-a relation (dashed arrow in red) between concept X = ‘nitric
oxide metabolic process’ (GO:0046209) and concept Y = ‘cellular nitrogen compound metabolic process’ (GO:0034641) with the same lexical pattern; (C) and (D):
Pair of existing is-a relations that resembles the difference between (A) and (B).

Figure 2. (A) Erroneous existing is-a relation (red cross) between concept A = ‘cellular response to corticosterone stimulus’ (GO:0071386) and concept
B = ‘cellular response to mineralocorticoid stimulus’ (GO:0071389) that is leveraged to generate the lexical pattern L(A, B); (B) Invalid missing is-a relation
between GO:2000853 and GO:2000856 with the same lexical pattern; (C) and (D): Pair of existing is-a relations that resembles the difference between (A)
and (B).

Generating difference patterns from concept
quadruples
For two concept pairs with the same lexical pattern,
we further generate a difference pattern to represent
their different parts. More formally, given two concept
pairs (C1, C2) and (C3, C4), we consider (C1, C2, C3, C4) as a
candidate concept quadruple if the following conditions
are met:

(1) C1 and C3 contain the same number of words, and
have the same part-of-speech tags, i.e. T(C1) = T(C3);

(2) C2 and C4 contain the same number of words, and
have the same part-of-speech tags, i.e. T(C2) = T(C4);
and

(3) the lexical pattern of concept pair (C1, C2) is the
same as that of concept pair (C3, C4), i.e. L(C1, C2) =
L(C3, C4).
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For a candidate concept quadruple (C1, C2, C3, C4) with

W(C1) = [w(1,1), w(1,2), w(1,3), ..., w(1,p)],

W(C2) = [w(2,1), w(2,2), w(2,3), ..., w(2,q)],

W(C3) = [w(3,1), w(3,2), w(3,3), ..., w(3,p)],

W(C4) = [w(4,1), w(4,2), w(4,3), ..., w(4,q)],

we can generate a difference pattern:

D(C1, C2, C3, C4) = (W∗(C1), W∗(C2), W∗(C3), W∗(C4)),

where W∗(C1) = [w∗
(1,1), w∗

(1,2), w∗
(1,3), ..., w∗

(1,p)] is defined as

w∗
(1,i) =

{
w(1,i), if∃j(1 ≤ j ≤ q) such that w(1,i) = w(2,j),
PLi, otherwise;

W∗(C2) = [w∗
(2,1), w∗

(2,2), w∗
(2,3), ..., w∗

(2,q)] is defined as

w∗
(2,j) =

{
w(2,j), if ∃i(1 ≤ i ≤ p) such that w(2,j) = w(1,i),
PRj, otherwise;

W∗(C3) = [w∗
(3,1), w∗

(3,2), w∗
(3,3), ..., w∗

(3,p)] is defined as

w∗
(3,i) =

{
w(3,i), if ∃j(1 ≤ j ≤ q) such that w(3,i) = w(4,j),
PLi, otherwise;

and W∗(C4) = [w∗
(4,1), w∗

(4,2), w∗
(4,3), ..., w∗

(4,q)] is defined as

w∗
(4,j) =

{
w(4,j), if ∃i(1 ≤ i ≤ p) such that w(4,j) = w(3,i),
PRj, otherwise.

Here, PLi (1 ≤ i ≤ p) is an abstract label denoting that the
corresponding word locates at the i-th position of concept
pair (C1, C2)’s left concept C1 or concept pair (C3, C4)’s
left concept C3; and PRj(1 ≤ j ≤ q) is an abstract label
denoting that the corresponding word locates at the j-
th position of concept pair (C1, C2)’s right concept C2 or
concept pair (C3, C4)’s right concept C4. Intuitively speak-
ing, W∗(C1) is obtained by replacing words in W(C1) but
not in W(C2) with abstract labels; W∗(C2) is obtained by
replacing words in W(C2) but not in W(C1) with abstract
labels; W∗(C3) is obtained by replacing words in W(C3)

but not in W(C4) with abstract labels; and W∗(C4) is
obtained by replacing words in W(C4) but not in W(C3)

with abstract labels.
For example, consider the following four concepts in

Figure 1C and Figure 1D:

G = ‘hypochlorous acid biosynthetic process′
(GO : 0002149),

H = ‘reactive oxygen species biosynthetic process′

(GO : 1903409),

M = ‘hypochlorous acid metabolic process′
(GO : 0002148),

N = ‘reactive oxygen species metabolic process′
(GO : 0072593).

Concepts G and M have the same number of words and
the same part-of-speech tags. So does concepts H and N.
In addition, concept pair (G, H) and concept pair (M, N)

have the same lexical pattern:

([‘hypochlorous′, ‘acid′, K1, K2],

[‘reactive′, ‘oxygen′, ‘species′, K1, K2]).

Therefore, (G, H, M, N) forms a candidate concept
quadruple. For concept G, since words ‘hypochlorous’
and ‘acid’ do not appear in H, they are replaced by
labels PL1 and PL2, respectively, resulting in W∗(G) =
[PL1, PL2, ‘biosynthetic′, ‘process′]; for concept H, since
words ‘reactive’, ‘oxygen’ and ‘species’ does not appear in G,
they are replaced by labels PR1, PR2 and PR3, respectively,
resulting in W∗(H) = [PR1, PR2, PR3, ‘biosynthetic′, ‘process′];
and similarly, we can obtain W∗(M) = [PL1, PL2, ‘metabolic′,
‘process′] and W∗(N) = [PR1, PR2, PR3, ‘metabolic′, ‘process′].
Therefore, the difference pattern of (G, H, M, N) is

D(G, H, M, N) =
([PL1, PL2, ‘biosynthetic′, ‘process′],

[PR1, PR2, PR3, ‘biosynthetic′, ‘process′],

[PL1, PL2, ‘metabolic′, ‘process′],

[PR1, PR2, PR3, ‘metabolic′, ‘process′]).

Note that the difference pattern represents the differ-
ence between two pairs of concepts. In this example, we
can see that the different parts are [‘biosynthetic′, ‘process′]
in concept pair (G, H) and [‘metabolic′, ‘process′] in concept
pair (M, N).

Evidence-based identification of relational
defects
We focus on identifying relational defects regarding the
following set of GO relationships: R = {is-a, part-of , has-
part, regulates, negatively-regulates, positively-regulates}. For
each relationship r ∈ R, we extract lexical patterns
for all the related concept pairs connected via r. Then
we generate difference patterns for candidate concept
quadruples (C1, C2, C3, C4) where (C1, C2) and (C3, C4) are
related concept pairs connected via r. We leverage these
lexical patterns and difference patterns as two layers
of evidence to identify potentially missing r relations as
follows.

Given a pair of concepts X and Y that are not related
via any GO relationship, if

(1) there exists a related concept pair (A, B) connected
via r, such that

L(X, Y) = L(A, B),

and
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(2) there exists a candidate concept quadruple (G, H, M, N)

where (G, H) and (M, N) are related concept pairs
connected via r, such that

D(A, B, X, Y) = D(G, H, M, N),

then we suggest a potentially missing r relation between
concepts X and Y. Here, the related concept pair (A, B)

serves as the first layer of evidence, and the concept
quadruple (G, H, M, N) serves as the second layer of evi-
dence. Note that a potentially missing relation may be
derived by multiple first and second layers of evidence.

More specifically, for concepts A and B, given that they
have common words and are related via r, we assume
that the different words between A and B are highly
likely to make their r relation hold, which is leveraged
as the first layer of evidence for suggesting an r relation
between concepts X and Y, because (X, Y) have the same
lexical pattern as (A, B) (i.e. the different words between X
and Y are the same as the different words between A and
B). For instance, for concept A = ‘nitric oxide biosynthetic
process’ (GO:0006809) and concept B = ‘cellular nitrogen
compound biosynthetic process’ (GO:0044271) in Figure 1A
related by is-a, we assume that ‘nitric oxide’ in A and
‘cellular nitrogen compound’ in B are highly likely to make
the is-a relation hold; and this serves as the first layer
of evidence for us to suggest a potentially missing is-
a relation between concept X = ‘nitric oxide metabolic
process’ (GO:0046209) and concept Y = ‘cellular nitrogen
compound metabolic process’ (GO:0034641) in Figure 1B.

Although concept pair (X, Y) have the same lexical
pattern with concept pair (A, B), the common words of A
and B are distinct from that of X and Y. Therefore, we seek
further evidence of such distinction among other related
r concept pairs in candidate concept quadruples (i.e.
difference pattern). For the above example (A, B, X, Y) in
Figure 1A and Figure 1B, the difference pattern is ‘biosyn-
thetic process’ versus ‘metabolic process’; and there exists
a candidate concept quadruple (G, H, M, N) where (G, H)

and (M, N) are related is-a concept pairs (see Figure 1C
and Figure 1D), such that (G, H, M, N) have the same dif-
ference pattern (‘biosynthetic process’ versus ‘metabolic pro-
cess’), the second layer of evidence.

Note that in some instances, the same lexical pattern
could be obtained through different relationship types.
We discard such patterns as they would suggest multiple
types of missing relations among the same two concepts
(e.g. A is-a B and A part-of B both being suggested), which
is unlikely to be true.

In addition, it is possible that a suggested missing rela-
tion can be inferred by other suggested missing relations
and existing GO relations using the reasoning rules in
Table 1. To identify such cases, we check whether each
suggested missing relation is included in the transitive
closure computed with all the other suggested missing
relations and existing relations in GO. Such suggestions

are redundant and hence removed. For example, consider
the following two suggestions for missing relationships:
(1) regulates relation between concepts ‘regulation of NK
T cell differentiation’ (GO:0051136) and ‘NK T cell activa-
tion’ (GO:0051132); (2) is-a relation between the concepts
‘regulation of NK T cell differentiation’ (GO:0051136) and
‘regulation of NK T cell activation’ (GO:0051133). However,
GO currently has the regulates relation between concepts:
‘regulation of NK T cell activation’ (GO:0051133) and ‘NK T cell
activation’ (GO:0051132) which together with (2) infers (1)
through reasoning rule (4) in Table 1.

For the potentially missing relations automatically
suggested by our approach, manual review by domain
experts is required to assess their validity. If a suggested
missing r relation between concepts X and Y is agreed
by domain experts, then it is considered a valid missing
relation (e.g. is-a relation between ‘nitric oxide metabolic
process’ and ‘cellular nitrogen compound metabolic process’
in Figure 1B). However, if a suggested missing r relation
between concepts X and Y is disagreed by domain
experts, then the concept pair (A, B) that is leveraged as
the first layer of evidence to suggest the missing relation
is further examined as follows: if the r relation between
concepts A and B is agreed by domain experts, then we
consider the suggested missing r relation between X and
Y is a false positive suggested by our approach; but if
the r relation between concepts A and B is disagreed by
domain experts, then it is considered as a valid erroneous
existing relation.

For instance, Figure 2B shows a potentially missing is-a
relation between concepts X = ‘negative regulation of cor-
ticosterone secretion’ (GO:2000853) and Y = ‘negative regu-
lation of mineralocorticoid secretion’ (GO:2000856) suggested
by our approach by leveraging an existing is-a relation
between concepts A = ‘cellular response to corticosterone
stimulus’ (GO:0071386) and B = ‘cellular response to miner-
alocorticoid stimulus’ (GO:0071389) as shown in Figure 2A.
However, the suggested is-a relation between ‘negative
regulation of corticosterone secretion’ and ‘negative regula-
tion of mineralocorticoid secretion’ is disagreed by domain
experts, since mineralocorticoid is considered a subtype
of corticosterone (not the other way around) [30]. Further,
the is-a relation between the evidence concept pair ‘cellu-
lar response to corticosterone stimulus’ and ‘cellular response
to mineralocorticoid stimulus’ is also disagreed by domain
experts, and thus an erroneous existing is-a relation.

Evaluation
To evaluate the effectiveness of our approach, all
the potential missing relations obtained are manually
reviewed by our local domain experts (authors YY, MB
and WJZ who have expertise in systems biology and
genomics). Any disagreements among the experts are
resolved through discussion. For each potentially missing
relation, the domain experts are provided with the
concept names and web links (in QuickGO [26]) of the
two concepts involved in the relation. If a potentially
missing relation is confirmed as valid by domain experts,



Evidence-based Lexical Patterns to Audit GO | 7

Table 2. The numbers of relations, lexical patterns and potentially missing relations for each relationship

No. of direct No. of direct & No. of lexical No. of potentially
relations indirect relations patterns missing relations

is-a 70 759 496 502 290 849 702
part-of 8118 204 180 38 099 144
regulates 3550 162 927 23 901 19
has-part 808 17 349 3516 1
Total 83 235 880 958 356 365 866

then we consider it as a true missing relation; otherwise,
domain experts are further provided with the concept
pair that was leveraged as the first layer of evidence
to suggest the missing relation. If the evidence concept
pair is confirmed to have a valid relation by domain
experts, then we consider the original missing relation as
a false positive; however, if the evidence concept pair is
confirmed to be an invalid relation, then we consider the
evidence concept pair as an erroneous existing relation.

Results
In this work, we used the 15 December 2021 release of
GO with 50 757 concepts. We focused on auditing the
following GO relationships: is-a, part-of , has-part, regulates,
negatively-regulates and positively-regulates.

The distribution of each relationship in terms of the
number of direct relations, number of direct and indirect
relations and number of extracted lexical patterns can be
found in Table 2. Take the is-a relationship as an example,
there were 70 759 direct is-a relations, a total of 496
502 direct and indirect is-a relations and 290 849 lexical
patterns extracted.

In total, our approach suggested 2722 cases of
potentially missing relations in GO, among which 1856
relations can be inferred by others (these redundant
relations can be found in the Supplementary file
‘Redundant relations.xlsx’). Removal of such redundant
relations resulted in 866 potentially missing relations.
The number of potentially missing relations suggested
for each relationship can also be found in Table 2. For
instance, 702 potentially missing is-a relations were
suggested. Note that the approach suggested only two
negatively-regulates potential missing relations which
were both found to be redundant. The method did
not suggest any positively-regulates potential missing
relations.

The 866 potentially missing relations were suggested
by 764 unique lexical patterns. Out of these, 688
lexical patterns suggested only one potentially missing
relation, while 76 suggested more than one potentially
missing relation. Table 3 shows 10 examples of lexical
patterns and the number of potentially missing relations
each pattern suggested. For instance, lexical pattern
([K1, ‘differentiation′], [K1, ‘activation′]) was leveraged to
suggest five potentially missing is-a relations.

Evaluation results
The entire set of 866 potentially missing relations sug-
gested by this approach was evaluated by local domain
experts. Table 4 shows the number of potentially missing
relations suggested by our approach, number of valid
missing relations according to local domain experts and
number of valid erroneous existing relations according to
local domain experts, for each relationship. For instance,
there were 702 potentially missing is-a relations sug-
gested by our approach, of which 661 were identified
by local domain experts to be valid missing is-a rela-
tions and 41 revealed valid erroneous existing is-a rela-
tions. Out of 866 potentially missing relations suggested
by our approach, 821 were identified by local domain
experts to be valid missing relations and 45 revealed valid
erroneous existing relations (see Supplementary files
‘Missing relations.xlsx’ and ‘Erroneous relations.xlsx’ for
details).

Table 5 lists 10 examples of valid relational defects in
the random sample, including a missing part-of relation
between ‘cardiac right atrium formation’ (GO:0003217)
and ‘heart formation’ (GO:0060914), and an erroneous
is-a relation between ‘hypochlorous acid metabolic pro-
cess’ (GO:0002148) and ‘organic acid metabolic process’
(GO:0006082).

Time complexity and running time
We analyze the time complexity of our approach as fol-
lows. Given an ontology, let C be the number of concepts
in the ontology, R be the number of relations (direct and
indirect) in the ontology and n be the maximum number
of words contained in concepts. Then, the time complex-
ity for generating lexical patterns from related concept
pairs is O(n × R). For generating difference patterns from
existing relations, the time complexity is O(n × m2 × K),
where K is the number of generated lexical patterns
and m is the maximum number of relations exhibiting
a lexical pattern. For the last step to identify potential
missing relations, the time complexity is O(m × n × C2).
Therefore, the time complexity for the overall approach
is O(n×(R+m2×K+m×C2)). Note that in the 15 December
2021 release of GO used in this work, the maximum
number of words contained in concepts n is 27, while the
average number is 4.54. On the other hand, the maximum
number of relations exhibiting a lexical pattern m is 566,
while the average number is 1.17.
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Table 3. Ten examples of lexical patterns suggesting the most potentially missing relations and the number of potentially missing
relations suggested by each pattern.

Lexical pattern Relationship No. of potentially
missing relations suggested

([K1, K2, ‘import’, ‘across’, ‘plasma’, ‘membrane’], [K1, K2, ‘homeostasis’]) is-a 6
([K1, K2, K3, K4, ‘differentiation’], [K1, K2, K3, K4, ‘activation’]) is-a 6
([‘histone’, K1], [‘peptidyl − lysine’, K1]) is-a 5
([K1, ‘differentiation’], [K1, ‘activation’]) is-a 5
([‘dendritic’, ‘cell’, K1], [‘lymphocyte’, K1]) is-a 4
([K1, ‘dephosphorylation’], [K1, ‘modification’]) is-a 4
([K1, K2, K3, K4, ‘proliferation’], [K1, K2, K3, K4, ‘activation’]) is-a 4
([‘N − terminal’, K1, ‘deamination’], [K1, ‘modification’]) is-a 4
([K1, ‘activation’], [K1, ‘development’]) is-a 3
([K1, ‘guanylyltransferase’, ‘activity‘’], [K1, ‘processing’]) is-a 3

Table 4. The numbers of potentially missing relations suggested
by our approach, valid missing relations according to local
domain experts and valid erroneous existing relations according
to local experts.

No. of potentially No. of valid No. of valid
missing
relations

missing
relations

erroneous
relations

is-a 702 661 41
part-of 144 143 1
has-part 1 1 0
regulates 19 16 3
Total 866 821 45

In this work, we ran this approach 10 times on an iMac
with an M1 processor and 16GB of RAM. The average time
taken was 94 min.

Discussion
In this paper, we introduced an evidence-based approach
leveraging automatically extracted lexical patterns to
facilitate identification of two types of relational defects
in GO: missing relations and erroneous existing relations.
A vast majority of potentially missing relations suggested
by our approach are is-a relations. This is expected as the
majority of relations in GO are is-a relations. According
to local domain experts, 94.8% of potentially missing
relations (821 out of 866) are valid missing relations and
5.2% of them (45 out of 866) revealed valid erroneous
existing relations. This indicates the effectiveness of our
approach that leverages lexical patterns and difference
patterns derived from existing GO relations as two layers
of evidence.

For the erroneous existing relations identified, consid-
ering the is-a relation between ‘hypochlorous acid metabolic
process’ (GO:0002148) and ‘organic acid metabolic process’
(GO:0006082), this is invalid since hypochlorous acid is
not an organic acid as it does not contain a carbon.
Among the 45 erroneous existing relations identified,
seven were is-a relations with ‘hypochlorous acid metabolic
process’ (GO:0002148) as the parent. Local domain experts
suggested that some erroneous existing relations may

be better represented using a different relationship. For
instance, the concepts ‘negative regulation of cohesin load-
ing’ (GO:0071923) and ‘negative regulation of sister chromatid
cohesion’ (GO:0045875) may be better connected through a
part-of relation than the existing is-a relation. There were
16 such cases among the erroneous existing relations
identified.

Part-of-speech tagging tool selection
Note that we chose spaCy for performing part-of-speech
tagging of concept names. We also experimented with
two other NLP libraries: NLTK [31] and StanfordNLP [32],
and compared their results of potentially missing rela-
tions with spaCy’s. The comparison showed that a vast
majority of cases identified by NLTK and StanfordNLP
(83.74% and 81.22% respectively) were also identified by
spaCy. On the other hand, a considerable number of cases
identified by spaCy were not identified by NLTK and
StanfordNLP (40.6% and 41.84%, respectively).

Concept distance in missing relations
We define a distance measure to quantify the closeness
of concepts involved in the missing relations. Given a
missing relation between source concept A and target
concept B, the distance between A and B is defined as

dist(A, B) = minC∈mca(A,B)(shortest(A, C) + shortest(B, C)),

where mca(A, B) denotes the set of minimal common
ancestors of concepts A and B, and shortest(X, Y) denotes
the length of the shortest path between concepts X
and Y. For instance, considering the missing relation
between source concept ‘ganglion formation’ (GO:0061554)
and target concept ‘animal organ formation’ (GO:0048645)
in Table 5, they have one minimal common ancestor
‘anatomical structure formation involved in morphogenesis’
(GO:0048646), which is their direct parent. Therefore, the
distance between these two concepts is 2.

Figure 3 shows a distribution plot of the distances
between concept pairs involved in the 821 missing rela-
tions assessed by local domain experts. It can be seen
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Table 5. Ten examples of valid missing relations (M) or erroneous existing relations (E) according to local domain experts.

Source concept Relationship Target concept Type

ganglion formation (GO:0061554) is-a animal organ formation (GO:0048645) M
positive regulation of RIG-I signaling pathway (GO:1900246) is-a positive regulation of defense response (GO:0031349) M
geranyl diphosphate biosynthetic process (GO:0033384) is-a cellular lipid biosynthetic process (GO:0097384) M
hypochlorous acid metabolic process (GO:0002148) is-a organic acid metabolic process (GO:0006082) E
negative regulation of cell septum assembly (GO:1901892) is-a negative regulation of cytokinesis (GO:0032466) E
cardiac right atrium formation (GO:0003217) part-of heart formation (GO:0060914) M
endocardial cushion fusion (GO:0003274) part-of endocardial cushion formation (GO:0003272) M
regulation of cellotriose catabolic process (GO:2000936) regulates polysaccharide catabolic process (GO:0000272) M
regulation of glycogen catabolic process (GO:0005981) regulates glucose catabolic process (GO:0006007) M
polyadenylation-dependent ncRNA catabolic process (GO:0043634) has-part ncRNA processing (GO:0034470) M

Figure 3. Distribution plot of the distances between concept pairs in
missing relations validated by domain experts.

that most of the missing relations are observed among
concepts closed to each other. Especially, for is-a, part-of
and has-part, a majority of missing relations are observed
among concept-pairs with a distance of 3 (i.e. uncle–
nephew pairs). On the other hand, regulates relations are
generally observed among rather distant concept-pairs
(distances between 9 and 12). This may indicate that
it is more likely to find missing relations by analyzing
local subgraphs of an ontology, such as uncle–nephew
subgraphs [33] and non-lattice subgraphs [34–37].

Comparison with related work
A major difference between this work and other lexical
pattern-based work to audit GO is that the lexical
patterns are generated automatically rather than being
manually crafted. For instance, in a previous study, we
used three conditional rules (monotonicity, intersection
and sub-concept rules) that were manually defined
to uncover missing and erroneous is-a relations in GO
[25]. Such manual creation of lexical patterns may take
extensive exploration of existing concepts and relations
of an ontology which is very time-consuming and may
require thorough domain knowledge about the ontology.
Therefore, automated generation of such patterns from

existing relations in the ontology is a considerable
improvement in lexical-pattern-based ontological audit-
ing. In addition, only is-a relations were investigated in
[25], while this work covers a variety of relationships
including is-a, part-of , has-part, regulates, negatively-
regulates and positively-regulates. It should also be noted
that a vast majority (85.8%) of relational defects
identified by this approach is not identifiable by the
manually curated rules in [25]. Additionally, the local
domain expert evaluation in this work is much more
rigorous because the entire set of 866 potentially missing
relations suggested by our approach has been assessed.
In the previous work [25], only a random subset of 210
samples was assessed.

Ontology auditing approaches are discovery oriented
in their nature and different approaches are intended to
address different types of issues. This makes it harder
to compare different approaches in terms of their per-
formance, as there is a lack of gold standard for quality
issues in an ontology. However, purely based on the per-
centage of valid quality issues assessed by local domain
experts, our approach in this work outperforms the pre-
vious approach using manually crafted lexical patterns
in [25], where the monotonicity, intersection and sub-
concept rules revealed only 60.61%, 60.49% and 46.03%
valid quality issues, respectively, based on local domain
experts’ evaluation of 210 instances.

Another advantage of our work over approaches like
the one employed by Agrawal et al. [11] is that the manual
effort needed to uncover quality defects is considerably
less in our approach. Agrawal et al. approach requires an
extensive manual evaluation of the problematic areas of
the ontology to locate the exact quality issues. However,
this work directly provides the two concepts where a
missing relation may exist and the experts only need to
validate whether it is accurate.

GO consortium feedback
We have reached out to the GO consortium and sub-
mitted our suggested changes as a whole (821 missing
relations and 45 erroneous existing relations) for further
validation and incorporation to GO. The initial review by
the GO editorial team indicated that most of the missing
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Table 6. Six valid missing relations (M) or erroneous existing relations (E), which were further validated by the GO editorial team and
incorporated into GO.

Relation Type Solution

bone growth (GO:0098868) M Relation added
part-of
bone development (GO:0060348)
xylan catabolic process (GO:0045493) M External ontology changed
is-a
hemicellulose catabolic process (GO:2000895)
positive regulation of establishment of turgor in appressorium (GO:0075041) M GO:0075041 obsoleted
is-a
positive regulation of appressorium maturation (GO:0075037)
purine nucleobase biosynthetic process (GO:0009113) E Relation removed
is-a
pigment biosynthetic process (GO:0046148)
rhizobactin 1021 biosynthetic process (GO:0019289) E Relation removed
is-a
catechol-containing compound biosynthetic process (GO:0009713)
positive regulation of prosthetic group metabolic process (GO:0051200) E GO:0051200 obsoleted
is-a
positive regulation of cellular protein metabolic process (GO:0032270)

relations and erroneous existing relations we identified
seem correct. And they have also independently identi-
fied some of the issues we found, and are already working
on addressing them, including adding missing axioms for
some GO terms, working with external ontology teams
(e.g. Chemical Entities of Biological Interest [ChEBI] [38])
and restructuring specific parts of the ontology.

Meanwhile, we have put 20 sample issues (15 missing
relations and five erroneous existing relations) in the
GO-ontology tracking system on GitHub [39]. As of
10 March 2022, seven issues have received feedback,
where six of them were agreed by the GO editorial
team and revealed different remediation solutions
(see Table 6). For instance, the missing part-of relation
between ‘bone growth’ (GO:0098868) and ‘bone development’
(GO:0060348) has been directly added to GO; and the
erroneous existing is-a relation between ‘purine nucleobase
biosynthetic process’ (GO:0009113) and ‘pigment biosynthetic
process’ (GO:0046148) has been directly removed from
GO. In the case of the missing is-a relation between ‘xylan
catabolic process’ (GO:0045493) and ‘hemicellulose catabolic
process’ (GO:2000895), the issue was found to be a missing
is-a relation between concepts ‘xylan’ (CHEBI:37166) and
‘hemicellulose’ (CHEBI:61266) in the external ontology
ChEBI that GO reuses. We have reported this missing
is-a relation to ChEBI (which has been added), and thus
the former relation can be inferred in GO.

Note that certain issues uncovered by our approach
have helped with identification of additional issues in
GO. For instance, while reviewing the missing is-a rela-
tion between ‘positive regulation of establishment of tur-
gor in appressorium’ (GO:0075041) and ‘positive regulation
of appressorium maturation’ (GO:0075037), the GO edito-
rial team has decided to obsolete not only GO:0075041,
but also eight additional concepts including ‘regulation of
establishment of turgor in appressorium’ (GO:0075040) and

‘negative regulation of establishment of turgor in appresso-
rium’ (GO:0075042).

However, the GO editorial team did not agree with
a missing is-a relation between ‘histone methylation’
(GO:0016571) and ‘peptidyl-lysine methylation’ (GO:0018022).
The first layer of evidence leveraged by our approach to
suggest this relation is an existing is-a relation between
‘histone acetylation’ (GO:0016573) and ‘peptidyl-lysine
acetylation’ (GO:0018394). According to the GO editorial
team, histones can also be methylated on residues other
than lysine, while it looks like that aetlyation is only on
lysines [44].

Limitations and future directions
When generating lexical patterns for concept pairs, we
require that the two concepts in a concept pair need
to share at least one common word. Therefore, the sug-
gested missing relations are among such concept pairs
with common words. Since over 99% of concepts in GO
have at least one unrelated concept with common words,
almost all the GO concepts were considered for missing
relation identification by this approach. However, there
might be other missing relations among concept pairs
that do not share any common words that this approach
misses. In the future, we plan to explore whether lever-
aging ancestors’ lexical features could help identify rela-
tional defects for concept pairs without common words.

In addition, certain lexical patterns generated by our
approach may be similar and could be further grouped
or generalized. For instance, the following two lexical
patterns (see Table 3) are similar:

([K1, K2, K3, K4, ‘differentiation’], [K1, K2, K3, K4, ‘activation’]);

and ([K1, ‘differentiation’], [K1, ‘activation’]).
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These two lexical patterns could be grouped and gen-
eralized to a single lexical pattern:

([K, ‘differentiation’], [K, ‘activation’]),

where K represents one or more common words between
the two concepts. Such generalization may uncover addi-
tional potentially missing relations as the pattern does
not require a specific number of common words.

Since a lexical pattern can be generated by a pair of
concepts with an indirect relation (through reasoning
rules in Table 1), an identified missing relation using
this lexical pattern may also be indirect. That is, there
may be an intermediate missing relation (which is more
specific) from which the former missing relation can be
inferred. Given the significant amount of manual effort
needed to uncover such intermediate missing relations,
it is highly desirable to develop automated or semi-
automated methods that can identify such root cause
issues that lead to the indirect missing relations.

Although our approach is capable of automatically
suggesting potentially missing relations based on two
layers of evidence, the manual evaluation by domain
experts showed that a few cases revealed erroneous
existing relations. It remains a challenge to automati-
cally identify such erroneous existing relations to further
reduce manual effort by domain experts.

Additionally, although we have submitted all the find-
ings evaluated by local domain experts to the GO con-
sortium, it requires GO editorial team’s further adjudica-
tion and diligence to come up with specific remediation
measures (e.g. directly adding a missing relation, directly
removing an erroneous existing relation, obsoleting a
concept, adding another missing relation in an external
ontology that GO reuses) and perform GO content modi-
fication.

Since our approach only requires the concept names
and relational structures of an ontology, which are fun-
damental to biomedical ontologies, it is generally appli-
cable to audit relations in other biomedical ontologies.
We plan to apply it to other biomedical ontologies like
SNOMED CT and National Cancer Institute thesaurus,
and evaluate the effectiveness of this approach for other
ontologies.

Conclusions
In this work, we presented an evidence-based approach
to identify relational defects regarding is-a, part-of , has-
part, regulates, negatively regulates and positively regulates
relationships in GO. We were able to automatically
extract lexical patterns from concept pairs and differ-
ence patterns from concept quadruples as two layers of
evidence to suggest potentially missing relations. Both
local domain experts’ evaluation and GO consortium’s
encouraging feedback indicated the effectiveness of
our evidence-based approach, which can be utilized

to uncover missing relations and erroneous existing
relations in GO.

Key Points

• Biomedical ontology quality assurance is a critical com-
ponent of ontology management to ensure that an
ontology provides accurate knowledge representation to
downstream applications that rely on them.

• We developed a two-layered, evidence-based approach
to extract lexical patterns from existing relations and
automatically suggest potentially missing relations in
Gene Ontology.

• Local domain experts’ evaluation and GO consortium’s
feedback indicate that our evidence-based approach can
be utilized to uncover missing relations and erroneous
existing relations in GO.

Supplementary data
The source code of our evidence-based lexical pattern
approach, the supplementary files of the evaluation
results (Missing relations.xlsx and Erroneous existing
relations.xlsx), and the redundant relations removed
from the results (Redundant relations.xlsx) can be found
on GitHub (https://github.com/rashmie/GO-EBLP).
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