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1 Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogotá, Colombia,
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Abstract

The discovery and development of novel pharmaceuticals is an area of active research

mainly due to the large investments required and long payback times. As of 2016, the devel-

opment of a novel drug candidate required up to $ USD 2.6 billion in investment for only

10% rate of approval by the FDA. To help decreasing the costs associated with the process,

a number of in silico approaches have been developed with relatively low success due to

limited predicting performance. Here, we introduced a machine learning-based algorithm as

an alternative for a more accurate search of new pharmacological candidates, which takes

advantage of Recurrent Neural Networks (RNN) for active molecule prediction within large

databases. Our approach, termed PharmaNet was implemented here to search for ligands

against specific cell receptors within 102 targets of the DUD-E database, which contains

22886 active molecules. PharmaNet comprises three main phases. First, a SMILES repre-

sentation of the molecule is converted into a raw molecular image. Second, a convolutional

encoder processes the data to obtain a fingerprint molecular image that is finally analyzed

by a Recurrent Neural Network (RNN). This approach enables precise predictions of the

molecules’ target on the basis of the feature extraction, the sequence analysis and the rele-

vant information filtered out throughout the process. Molecule Target prediction is a highly

unbalanced detection problem and therefore, we propose that an adequate evaluation met-

ric of performance is the area under the Normalized Average Precision (NAP) curve. Phar-

maNet largely surpasses the previous state-of-the-art method with 97.7% in the Receiver

Operating Characteristic curve (ROC-AUC) and 65.5% in the NAP curve. We obtained a

perfect performance for human farnesyl pyrophosphate synthase (FPPS), which is a poten-

tial target for antimicrobial and anticancer treatments. We decided to test PharmaNet for

activity prediction against FPPS by searching in the CHEMBL data set. We obtained three

(3) potential inhibitors that were further validated through both molecular docking and in sil-

ico toxicity prediction. Most importantly, one of this candidates, CHEMBL2007613, was pre-

dicted as a potential antiviral due to its involvement on the PCDH17 pathway, which has

been reported to be related to viral infections.
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Introduction

The development and subsequent market penetration of new pharmaceuticals is a critical yet

time consuming and expensive process that has increased in cost by nearly 150% over the last

decade. In 2016, the development of just one medicine was estimated at around $ USD 2.6 bil-

lion [1]. This is mainly attributed to the costs of pre-clinical and clinical trials where ethical

issues and complications are encountered very often. As a result, only 10% of the pharmaceuti-

cals that reach trials finally obtain FDA approval [1, 2]. For these reasons, such large invest-

ments have often limited the development of drugs for medical conditions where the niche

market is not sufficient for a payback in a reasonable time frame. Even for some molecules of

urgent need such as the antibiotics, where resistance is increasingly worrisome worldwide,

there has been an stagnation in the discovery of alternative candidate molecules for over a

decade. As a result, these issues in the discovery and production of pharmaceuticals have been

seen as an opportunity to explore new approaches that combine both experimental and

computational routes to accelerate the development. In this regard, some of the most success-

ful experimental approaches include soil-dwelling, Rule of 5 (Ro5), genomics, proteomics,

phenotypic screening, binding assays to identify relevant target interaction, turbidimetric solu-

bility measurements and high throughput solubility measurements [3–7]. Despite the progress,

such approaches still rely on large investments in sophisticated infrastructure for automated

manipulation of samples and data collection and processing [8, 9]. Alternatively, in silico
approaches are more cost-effective and consequently, have attracted significant attention over

the past few years [8, 9]. Examples include virtual library screening, signature matching,

molecular docking, genetic association, pathway mapping, among others [6, 8, 9]. In this case,

however, the developed algorithms still lag behind in precision and effectiveness and the

obtained candidates might require considerable experimental testing [9, 10]. This combined

approach is therefore leading to the repurposing of known molecules for new and more potent

treatments, which is attractive for both companies and the patients [11]. To reduce the time

for screening and implementation of new therapeutic candidates even further, recent advances

in artificial intelligence (AI) have provided more effective search algorithms that rely on the

capacity to model relationships between the variables, which can also be trained to discover

patterns in significantly large data sets simultaneously [12].

Machine Learning-based algorithms have been particularly useful for improving drug dis-

covery because they can analyze large data sets and learn the optimal representation for spe-

cific tasks rather than using hand-craft fingerprints, which are difficult to achieve otherwise

[2]. Moreover, computational techniques such as Support Vector Machines (SVM) and Ran-

dom Forests (RF) have been successfully applied for the design of pharmaceuticals with high

specificity and selectivity, and improved physiological behavior in terms of important parame-

ters such as circulation times, bioavailability and biological activity [2], toxicity [13] and poten-

tial side effects [14]. These developments have been enabled by the availability of large public

databases with information about the physicochemical and biological properties of pharma-

ceuticals [15]. With this information it is possible to train deep learning models, which allow

virtual screening over large data sets by means of efficient optimization algorithms and new

computational capabilities [16]. A recent example of the application of such models was the

screening conducted by Stokes et al. [11] over a data set of more than 107 million candidate

molecules. The main result was the identification of the antibiotic potential of halicin, which

for the first time allowed the successful re-purpose of this molecule fully in silico. Halicin was

originally researched for the treatment of diabetes due to the inhibition potential of the

enzyme c-Jun N-terminal kinase but was abandoned because of low performance [17]. This

finding provides remarkable evidence for the notion that AI is a suitable route for the
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screening and eventual development of new drugs. Moreover, it offers the opportunity of a

reduction in both the required investment for development and the potential risks to be

undertaken in pre-clinical and clinical trials. Finally, it is possible to assure that from the

beginning of the development, candidate molecules comply with requirements imposed by

regulatory frameworks in terms safeness and reliability.

The current global COVID-19 pandemic is a compelling example of the urgent need for

automating drug discovery, as this situation is the result of a novel coronavirus (SARS-CoV-2)

capable of infecting humans at an extremely fast pace [18]. To respond to this contingency,

novel antiviral treatments and vaccines need to be developed in an extraordinarily short time.

In this regard, according to the experts and even with the unprecedented resources allocated

by governments, the shortest possible period for developing and deploying a COVID-19 vac-

cine is of about eighteen months [19, 20]. The European Union has raised $ 8 billion for collab-

orative development and universal deployment of diagnostics, treatments and vaccines against

SARS-CoV-2 [21]. This is also the case of the U.S. and German governments, which are plan-

ning to invest in vaccine and treatments development and distribution over $ 2 billion and $

812 million, respectively [22, 23].

Here, we applied recent developments in the field of computer vision to the critical task of

active molecule prediction, which mainly involves the estimation of whether a molecule is able

to bind to particular membrane receptors. Starting from the publicly available AD Dataset

[24], we formalized active molecule prediction as a detection problem for which we designed

an experimental framework that allowed us to evaluate results with the aid of normalized Pre-

cision-Recall curves [25]. According to our newly proposed framework, the state-of-the-art

technique only performs with a 1% efficiency, however, it was reported to show an AUC score

of 52% [24]. In search for a superior performance, we developed an algorithm based on deep

learning for active molecule prediction, which we called PharmaNet. Our approach elevated

the prediction performance (i.e., the area under the Normalized Average Precision (NAP)

curve) to the unprecedented level of 65.5%.

PharmaNet was designed on the basis of natural language processing (NLP) techniques

given that in this case the most important information lies in the sequence of each of the ele-

ments. Consequently, we implemented recurrent neural networks (RNNs) as the baseline for

PharmaNet due to their demonstrated performance in problems involving language [26–28].

Specifically, we considered a Gated Recurrent Unit (GRU) cell as it enables the analysis of

atom sequences in an information flow direction that finalizes in the current element by ana-

lyzing the ones before it. These architectures have been used previously explored for similar

tasks such as those required for property prediction and the generation of molecules according

to properties of interest. For instance, Marwin et al. [29] trained Long Short-Term Memory

(LSTM) cells to learn a statistical chemical language model for the generation of large sets of

novel molecules with similar physicochemical properties to those in the training set. The

LSTM network receives as input a canonical Simplified Molecular Input Line Entry System

(SMILES) representation of the molecules. In the same way, Goh et al. [30] used SMILES as

the input of a GRU to predict different chemical properties of the pharmaceuticals. In conse-

quence, due to the versatility of the SMILES format, we implemented it for data representation

in PharmaNet. This approach allowed us to build and map a 2D representation of the mole-

cules as simple sequences of characters with varying positions in such 2D space [31].

An overview of PharmaNet information pipeline is presented in Fig 1. We represented the

input molecule as a raw molecular image with rows corresponding to individual atoms. Then,

we processed this representation using modern visual recognition techniques. To accomplish

this, we trained a convolutional encoder that gradually merges the embeddings of individual

atoms with those of their neighbors, thereby resulting in a fingerprint molecular image.
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Subsequently, we input the data to a Recurrent Neural Network to analyze the information of

the whole molecule and to predict a probability distribution for 102 targets.

PharmaNet allowed us to classify organic compounds according to their tendency towards

interaction with an active cell membrane receptor without prior knowledge of its structural

features. This capability might be attractive for drug discovery approaches where the structural

information of target receptors is difficult to access or non-existing.

PharmaNet’s architecture combines the processing power of a Convolutional Neural Net-

work (CNN) and a RNN, which have demonstrated superior abilities to learn efficiently from

image-like representations such as the proposed raw molecular image. Furthermore, our

method enabled us to classify a molecule against multiple targets with a single trained model,

which turned out to be much more efficient than most of the previously reported ones [24, 32,

33]. This is because as opposed to Pharmanet, such approaches are trained to classify between

active and decoys for individual targets. Finally, our experiments demonstrated that all existing

methods for this task provide a performance that is nominally zero, which, to our knowledge,

positions PharmaNet as the most robust AI algorithm for target molecule prediction.

According to our measures, PharmaNet obtains a maximum performance for human farne-

syl pyrophosphate synthase (FPPS) as a target. This protein is a key enzyme on the mevalonate

(MVA) pathway that is responsible for the isoprenoid biosynthesis where it catalyzes the for-

mation of farnesyl diphosphate (FDP). This is a precursor for several classes of essential metab-

olites including sterols, dolichols, carotenoids, and ubiquinones [34]. Overexpression of FPPS

has been reported for multiple types of cancer, including prostate, glioblastoma, breast, and

bone metastases from breast cancer. FPPS is therefore a potential target for anticancer treat-

ments [35–40]. Also, silencing of FPPS via siRNA has slowed down viral influenza A replica-

tion and release in infected cells. This antiviral activity has been attributed to altered plasma

membrane fluidity and consequently to a limited formation of the lipid rafts required for the

survival of the virus [41]. On this basis, FPPS might potentially exhibit antiviral activity against

enveloped viruses [41]. Given the pharmacological application for FPPS inhibitors and the

high performance of our approach for FPPS, we evaluated a subset of the CHEMBL dataset to

search for candidates towards this target. Our top prediction was the CHEMBL2007613 mem-

ber of the data set, which corresponded to [5-[(5-amino-1H-1,2,4-triazol-3-yl)sulfamoyl]-

2-chloro-4-sulfanylphenyl] acetate (PubChem CID:380934). Details of the interaction of this

molecule with FPPS were determined by molecular docking analysis. Cytotoxicity and geno-

toxicity were further evaluated in silico with the aim of predicting toxicological effects directly

relevant to human cells, as well as to support hazard and risk assessment activities [42]. Taken

Fig 1. PharmaNet workflow. For each molecule we compute a raw molecular image with nxm dimensions, where n is the number of unique atoms and bonds and m

is the molecules’ maximum length. A convolutional encoder produces a fingerprint molecular image that is then analyzed globally by an RNN to predict scores for each

of the targets in the AD Dataset.

https://doi.org/10.1371/journal.pone.0241728.g001
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together, our results strongly suggest that CHEMBL2007613 is a potential candidate for antivi-

ral treatments.

Methods

DUD-E and AD data set

The DUD-E database contains 22886 active molecules against 102 targets and 50 decoys per

target. Each decoy is a chemical compound with physicochemical properties similar to those

of the active ones but different structure. Both groups of molecules (i.e., active compounds and

decoys) have therefore different data distribution, thereby making the binary classification

problem more amenable for a neural network. This approach has been proved successful pre-

viously by Gonczarek A. et al. [33] and Chen et al. [24].

The Active Decoys (AD) data set was proposed by [24] as a strategy to eliminate the bias

introduced by the decoys. This data set is based on DUD-E but changes the decoys of each tar-

get by those contained within the 101 receptors with the highest affinity towards the target as

estimated by molecular docking. This approach leads to a rather challenging binary classifica-

tion problem because all the molecules show the same data distribution.

Data preparation

The output of our model for a molecule is the binding probability distribution to individual

targets within the set of target classes. This was accomplished by defining a multiclass classifi-

cation problem instead of a binary one. For this reason, the ligand sequence is labeled with the

corresponding target protein prior to be input into our model.

We randomly split the complete set of binding ligand-protein SMILES sequences from the

AD data set into two main subsets where 90% of the available active molecules for a target

helped training the model, while the remaining 10% were employed for testing purposes.

Then, we split the training subset into four folders by making sure that all the folders had the

same distribution of active molecules per target. Subsequently, we conducted a four-fold cross-

validation approach where data in three of the folders were used to train each model while the

remaining one was only for validation. This multi-step validation approach allowed us to train

the model very robustly and finally report the ensemble of the four models as an overall metric.

Lastly, we converted the SMILES representation of the active molecules in the data set into

Raw molecular images. This process is described into detail below.

Neural network design: PharmaNet

PharmaNet comprises three main phases (Fig 1). In the first one, a SMILES representation of

the molecule undergoes an embedding stage that results in what we denominate a raw molecu-
lar image. In the second phase, that representation is the input of a CNN to obtain a fingerprint
molecular image that incorporates information of each atom and its neighbors [43]. This stage

allows the model to extract fingerprints of functional groups in the molecule, which are essen-

tial in defining their functionality. After this stage, the CNN’s output is processed by an RNN

architecture that enables a sequence-based analysis of the molecules [26]. This approach

enables precise predictions of the molecules’ target on the basis of the feature extraction, the

sequence analysis and the relevant information filtered in the last two stages. The extracted

information allows a different representation of the molecule in which the model can learn the

features that determine the activity towards a target protein. For this purpose, we compute the

probability scores from the RNN’s output with the aid of a Fully Connected (FC) layer, fol-

lowed by a Softmax Classifier.
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Raw molecular image. PharmaNet’s input is a SMILE sequence embedded into a one hot

vector as performed in [30]. We then generated a matrix of size n x m, where n = 36 is the total

of unique chars (atoms and type of bonds) in the data set, and m = 116 is the longest SMILES

sequence over all the molecules. This representation can be seen as a two dimensional image

of the molecule. This type of data arrays are typically encountered in computer vision algo-

rithms, which is attractive as we have extensive expertise with such approaches [44–46]. As

delineated below, we indeed applied our most recent developments and insights in classifica-

tion algorithms to classify them accurately.

Fingerprint molecular image. As shown in Fig 1, the raw molecular image enters a fea-

ture extracting phase. The image passed through a convolutional encoder composed by two

2D convolutional layers, ReLU nonlinearity activations and batch normalizations. By follow-

ing ResNet’s central concept [47], we performed a residual connection between the convolu-

tional layers. For the first layer, we computed the feature maps with a 5x5 kernel to produce a

64 channels output. The second convolutional layer used a 5x5 kernel to produce 128 output

channels. The final output is a matrix representation of each atom that takes into account sev-

eral of its neighbors. The obtained matrix can be interpreted as a fingerprint molecular image
of functional groups for the chemical compound.

Global analysis by recurrence. The fingerprint molecular image was input to an RNN,

which is a bidirectional Gatted Recurrent Unit (GRU) of 10 layers. This RNN analyzed the

sequence of atoms by selecting the information flow from the current fingerprint with that of

the atoms previously considered. Each GRU’s cell comprises two gates that control the flow of

information between them, namely, the reset gate (r) and the update gate (z). (r) decides

whether to keep, in the current cell state (h’t), information of the previous cell or to change it

by information from the input (xt). The recurrence of this process is described by the following

set of equations:

rt ¼ s � ðWrxt þ Urht� 1 þ brÞ ð1Þ

h0t ¼ tanhðWhxt þ Uhðht� 1 � rtÞ þ bh ð2Þ

In parallel, (z) controls which type of information of the previous and current cell will go to

the next one. The process is described by the following set of equations

zt ¼ sðWz � xt þ Uzht � 1þ bzÞ ð3Þ

ht ¼ zt � ht� 1 þ ð1 � ztÞ � h0t ð4Þ

where W and U are weight matrices, b is a non-linearity, h’ is the current cell state and h is the

output of the memory block [26, 48]. Finally, we considered the last hidden state of the GRU,

which contains information of each atom based on both its neighbors atom type and its posi-

tion in the SMILES. This output is processed by a FC layer and a Softmax Classifier to compute

the probability distribution over the 102 target receptors. This multiclass classification task

was accomplished with the aid of a Cross Entropy Loss.

Implementation details

The training curriculum was implemented via an Adam optimizer with a starting learning rate

of 5x10−4, betas of 0.9 and 0.999, an epsilon of 1x10−8 and a weight decay of 0.1. We reduced

the learning rate when the validation loss stagnated at both a factor of 0.1 and a patience of 10.

We trained the model end-to-end during 30 epochs with a batch size of 128. For the network,

we implemented a four-fold cross-validation approach.
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Evaluation metrics

In order to measure algorithmic performance, both the DUD-E and AD data sets report the

area under the Receiver Operating Characteristic curve (ROC-AUC). The ROC curves feature

Fallout against Recall, where Fallout (F) is the probability that a true negative was labeled as a

false positive while Recall (R) is the fraction of the true positives that are detected rather than

missed [49]. Considering that we are classifying molecules according to their binding receptor

but against 101 no binding receptors, we can understand our problem as a highly unbalanced

detection task. Consequently, when evaluating a single target, negative samples largely exceed

the positives ones. As a result, if we evaluate in light of the ROC-AUC curves, the probability

of predicting undesirable true negatives increases significantly. In this scenario, Precision-

Recall (PR) curves represent an attractive alternative to ROC curves because detection tasks

proceed by normalizing Precision (P) over the true positives [50–52]. The area under the PR

curves has been typically reported as the main metric for detection problems, which has been

also known as Average Precision (AP).

Nevertheless, as pointed out by Hoiem et al. [25], AP strongly depends on the true positive

samples in each class t (Nt). As a result, the best performance is for classes with the largest

numbers of true positives. To create a Normalized Precision PN, [25] replaces (Nt) with a con-

stant N that corresponds to the average of positive samples over all the classes. Eq 5 corre-

sponds to the definition of Normalized Precision (PN), where R is the fraction of objects

detected while F is the number of those incorrectly detected.

PN ¼
R � N

R � N þ F
ð5Þ

As not all targets have the same number of active molecules, we prefer to use APn for evalu-

ating the prediction on each target. We tested the four trained models in the test subset and

computed the APn for each target. With the estimates of mean and standard deviation for the

four models, we then computed the Normalized Averaged Precision (NAP) curve based on the

frequency of targets that achieve each APn score. We estimated the overall performance of

PharmaNet as the area under the NAP curve normalized by the total number of targets.

Screening in ChEMBL

We evaluated our best trained model with the ChEMBL database [53]. This manually curated

database contains information on chemical, bioactivity and genomic data of over 15’504.604

bioactive molecules with drug-like properties [53]. Within ChEMBL, 15’367.297 members

have their chemical structures represented by SMILES. This large volume of information

requires a wide search field to predict the activity of ChEMBL molecules towards the 102

receptors in the AD data set.

Within ChEMBL, we only selected the molecules with lengths below those of the largest

SMILE in the AD data set. Also, those exhibiting the same components and SMILES represen-

tations in AD data set. After applying this filter, the screening was reduced to 13’827.575

SMILES towards 102 targets. We computed the probability of each molecule to be a binding-

ligand for each target, and predicted whether it was active towards the one with the highest

score. Then, we focused on the molecules predicted as active toward FPPS and sort them out

to find the top-10 compounds for which the network was more confident at the prediction.

Molecular docking

The top 10 candidates for human farnesyl pyrophosphate synthase (FPPS) predicted by Phar-

maNet were further corroborated by molecular docking via AutoDock 4.2.
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Target protein. The target protein in this study was the human farnesyl diphosphate

synthase. The 3D structure for this protein was downloaded from Protein Data Bank Database

(PDB ID: 1ZW5). Protein optimization was performed by removing all water molecules and

all other molecules outside of the A chain of the target protein. Polar hydrogen groups were

added, and finally, Kollman charges were computed. A PBDQT file was produced using

MGL-Tools in AutoDock.

Ligand preparation. SDF files of candidates were downloaded from PubChem and con-

verted to PDB files with the aid of PyMOL. Ligands were optimized and converted to PDBQT

files via the MGL-Tools in AutoDock. For optimization Gasteiger charges were assigned and

non-polar hydrogens were combined. The rigid roots of each compound were defined auto-

matically and rotation of amide bonds was fully restricted.

Molecular docking parameters. Molecular docking on Zoladronate’s binding site was

performed by following [54]. The grid box size was set at 40, 40, and 40 Å(x, y, and z) and

Auto Grid 4.2 in conjunction with Auto Dock 4.2 were used to produce the grid maps for each

ligand. The distance between grid points was 0.375 Å. To search the best conformer, the

Lamarckian Genetic Algorithm was implemented with a maximum of 10 conformers per

ligand. The size of the population was set to 150 and the individuals were initialized arbitrarily.

The maximum number of energy estimation was set to 2500000 while the maximum number

of generations to 27000. Also, the maximum number of top individuals that automatically sur-

vived was set to 1 with a mutation rate of 0.02, a crossover rate of 0.8. The step sizes were 0.2

Åfor translations, 5.0˚ for quaternions and 5.0˚ for torsions. Cluster tolerance was maintained

at 2.0 Åwith an external grid energy of 1000.0 and a max initial energy of 0.0. The max number

of retries was set to 10000 for 10 LGA runs. The highest binding energy (most negative ΔG)

was considered as the ligand with maximum binding affinity. A positive control of the binding

algorithm was the well studied inhibitor for FPPS, Zoladronate [54].

Verification of AD data set distribution. In order to verify the complexity of the binding

ligand-receptor task in the AD data set, we applied molecular docking for the best five hundred

(500) molecules predicted by PharmaNet for each target. This data set encompassed both active

and inactive molecules for the receptors. We used the binding energy as classification -parame-

ter- by multiplying the energy by -1 and computing the corresponding sigmoid function. The

obtained data was interpreted as the classification probability for active molecules and allowed

us to compute the precision recall curve over all the classes and the mean average precision.

Toxicity evaluation in silico
The top 3 candidates obtained by molecular docking were further evaluated for cytotoxicity

and genotoxicity via the on-line Way2Drug Predictive Services server [55]. Citotoxicity was

performed using the SDF file of the ligands as input to the GUSAR Software. This software

predicts the LD50 for four routes of pharmaceutical administration (intraperitoneal, intrave-

nous, oral and subcutaneous) and calculates a toxicity class based on the OECD principles

[56]. Genotoxicity evaluation was conducted with the aid of the DIGEP-Pred software. This

tool is a web-based service for in silico prediction of drug-induced changes of gene expression

profiles based on the structural formula of the compounds [57]. This server received as input

the SMILES sequence of the ligands.

Results and discussion

Verification of AD data set

We performed molecular docking for 51000 molecules and found that 1926 of them showed

activity towards one of the 102 targets. With the binding energy, we calculated the probability
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for a binary classification and computed the average precision (AP) of these predictions. Fig 2

shows the precision recall curve for the active classes with an area under curve, i.e., AP of

3.8%. This result indicates that classification by molecular docking essentially leads to the same

result obtained by random classification. Furthermore, this experiment confirms the need for

new computational tools for more robust and accurate analyses of scenarios where active and

inactive molecules toward some targets have similar data distributions, molecular structures,

length and physicochemical properties.

Comparison with the state-of-the-art AI algorithms

We compared the performance of PharmaNet against the prediction made by the state-of-the-

art method recently published by Chen et al. [24] for each target in the AD data set. The data

was kindly provided by the authors for the comparisons presented herein.

Fig 3A shows the behavior of Chen et al.’s method [24] for the 102 targets classes evaluated,

where half of the models separate active molecules and decoys with an AUC performance of

51%. After reaching this point, their curve decreases rapidly to zero to reach an overall perfor-

mance of 51.8% (Curve Area in the AUC frequency curve). While [24] trains a different model

for each of the 102 target molecules, our single model is able to predict targets with a general

performance of 97.7%. However, a relatively small decrease in performance was observed after

0.8. A more stringent evaluation shows an area under the AP curve of 3.2% for Chen et al.’s

method [24] while for PharmaNet is 67.6% (Fig 3B). We obtained consistent results when we

evaluated both methods with the area under the NAP curve, in which [24] achieved 1% while

ours approached to 65.5% (Fig 3C).

Fig 2. Performance of molecular docking as a classifier. Precision Recall Curve over the predictions computed with

the binding energy of the molecular docking in the selected molecules against one of the 102 targets.

https://doi.org/10.1371/journal.pone.0241728.g002
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Ablation experiments

To verify whether all the components of PharmaNet were relevant to the task and to select

optimal hyperparameters, we performed an ablation study. First, we evaluated the main phases

of the architecture and their performance in the prediction task. Fig 4A shows the configura-

tion of PharmaNet for our best result, the same architecture without the convolutional encoder

and without the RNN. It is evident that the RNN is the most important component for supe-

rior performance but their combination is still beneficial for improving performance some-

what further. Regarding the specific RNN implemented herein, Fig 4B shows that training

with an LSTM decreases significantly PharmaNet’s performance. Considering the amount of

parameters that an LSTM has to learn and the time to train this network, we decided to keep

the GRU as our main RNN architecture.

Regarding the Convolutional Encoder, experiments show that the best performance was

achieved with two convolutional layers and a residual connection (Fig 5A and 5D). However,

we obtained similar results after eliminating one layer. We also found that batch normalization

produced the best results (Fig 5C) and that the optimal kernel size was 5x5 (Fig 5B).

Fig 3. Comparison of PharmaNet against the state-of-the-art method of [24]. The curves correspond to the

frequency in the 102 targets for each metric score: (A) Area Under the ROC Curve, (B) Average Precision, (C)

Normalized Average Precision. We report area under the frequency curve. Best viewed in color.

https://doi.org/10.1371/journal.pone.0241728.g003
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Fig 4. Main ablation experiments. (A) NAP curves evaluating the three main phases of our architecture. (B) NAP

curves evaluating different RNNs. Best viewed in color.

https://doi.org/10.1371/journal.pone.0241728.g004

Fig 5. Ablation study of convolutional architecture. (A) Number of convolutional layers. (B) Kernel size for the

convolution. (C) Type of normalization layers. (D) Type of residual connection. Best viewed in color.

https://doi.org/10.1371/journal.pone.0241728.g005

PLOS ONE PharmaNet: Pharmaceutical discovery with deep recurrent neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0241728 April 26, 2021 11 / 22

https://doi.org/10.1371/journal.pone.0241728.g004
https://doi.org/10.1371/journal.pone.0241728.g005
https://doi.org/10.1371/journal.pone.0241728


We also studied directionality, depth and hidden state size to establish the best configura-

tion for the RNN. Fig 6A shows that an bidirectional configuration leads to an slight improve-

ment in performance compared with unidirectional GRU cells. This result is obtained by the

analysis of the molecule from both left to right and right to left most likely due to the comple-

mentarity of the fingerprints obtained by the analysis of each direction. Regarding deepness of

the network, Fig 6C shows a significant increase in performance from 0 to 10 layers followed

by a decrease afterwards. Finally, Fig 6B demonstrates that by increasing the hidden size from

116 to 256, the performance increase in about 40%.

Targets analysis

Table 1 summarizes the performance and possible pharmaceutical applications of the top-10

best-performing receptors. Most of these receptors exhibit potential antimicrobial activities,

which is attractive not only to pharmaceutical industries but also to public health, giving the

increasing resistance of microorganisms to conventional antibiotics [58]. In this regard, having

a method to predict with high accuracy new active molecules towards the target proteins

might propel the drug discovery process unprecedentedly. Also, we identified multiple possible

targets for the development of novel pharmacological anticancer therapies. This is particularly

Fig 6. Ablation study of GRU’s architecture. (A) Unidirectional vs. Bidirectional GRU. (B) Hidden State Size. (C)

GRU’s depth. Best viewed in color.

https://doi.org/10.1371/journal.pone.0241728.g006

PLOS ONE PharmaNet: Pharmaceutical discovery with deep recurrent neural networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0241728 April 26, 2021 12 / 22

https://doi.org/10.1371/journal.pone.0241728.g006
https://doi.org/10.1371/journal.pone.0241728


important for certain types of cancer that are resistant to conventional chemotherapy such as

doxorubicin [59], imatinib [60], nilotinib [61], cisplatin [62], tamoxifen [63], paclitaxel [64],

temozolomide [65], and docetaxel [66]. Finally, one of the receptors could be a potential target

for Parkinson’s disease and consequently, a route to improve the palliative treatments for the

disease.

A closer inspection of each class separately allowed us to identify certain functional groups

that enabled a better classification, as we illustrate in Table 2.

The top-6 worst-performing classes were ABL1, CP3A4, CP2C9, SRC, LCK, and CDK2.

Their active molecules, however, vary widely within each class, both in length and in the type

of present functional groups. These organic molecules are composed principally by chains of

C, N, O, H, and contain from few to none P, Cl, Br, I, S, and Si in their structures. The process

of learning functional fingerprints was relatively hard for the network due to the similarities

between the involved molecules. Furthermore, the activity towards the ligands for some pro-

tein subclasses might vary significantly due to 3D changes in their binding pocket as a result of

the co-existence of multiple conformers. This is actually the case of the ABL1 protein subclass.

Considering such heterogeneity and the corresponding volume of data, our network is unable

to learn one representation that can be generalized across all the different types of ligands for

Table 1. Name, biological function and pharmaceutical application of best 10 performing targets with PharmaNet.

Target NAP Biological Function Pharmaceutical Application

C-X-C Chemokine Receptor Type 4 (CXCR4) 1 Receptor for the C-X-C chemokine CXCL12/SDF-1 Antiviral

Farnesyl Pyrophosphate Synthase (FPPS) 1 Key enzyme in isoprenoid biosynthesis Antimicrobial and Anticancer

Thymidine Kinase (KITH) 1 Catalyzes the addition of a gamma-phosphate group to thymidine Antimicrobial and Anticancer

Adenosylhomocysteinase (SAHH) 1 Competitive inhibitor of S-adenosyl-L-methionine dependent methyl

transferase reaction

Anti-inflammatory

Phosphoribosylamine (PUR2) 1 Involved in the synthesizes of N(1)-(5-phospho-D-ribosyl) glycinamide Antimicrobial and Anticancer

Fatty Acid-Binding Protein (FABP4) 1 Lipid transport protein in adipocytes Anti-inflammatory

3-Hydroxy-3-Methylglutaryl Coenzyme A

Reductase (HMDH)

1 Transmembrane glycoprotein, rate-limiting enzyme in biosynthesis of

cholesterol and nonsterol isoprenoids

None

Natural Resistance-Associated Macrophage

Protein (NRAM)

1 Divalent transition metal transporter and host resistance to certain

pathogens

Antibacterial and

Immunomodulator

Heat Shock Protein 90-Alpha 1 (HS90A) 1 Involved in cell cycle control and signal transduction Anticancer

Catechol O-Methyltransferase (COMT) 1 Catalyzes the O-methylation—Inactivation of catecholamine

neurotransmitters

Parkison’s disease

https://doi.org/10.1371/journal.pone.0241728.t001

Table 2. Chemical characteristics of the best performing classes with PharmaNet.

Target Characteristic

CXCR4 At least one dihydroimidazole group

FPPS One or two phosphonic acid groups

KITHH One secondary amide

SAHH One Amino-purine

PUR2 Two carboxyl groups at the end of the sequence

FABP4 One caboxilyc acid group

HMDH At least one carbonyl group or one C-C-O sequence

HS90A One benzothiazole group

COMT At least one benzene group

https://doi.org/10.1371/journal.pone.0241728.t002
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making meaningful predictions regarding their activity towards different conformers of the

same protein.

To verify that the learning process of our network involved no simple similarity correlations

among the active molecules for a specific target, we calculated the performance of our model

per protein class as a function of the Tanimoto Coefficient (TC). We employed RDKit to com-

pute the Morgan Fingerprints of the molecules to subsequently calculate their Tanimoto simi-

larity. We averaged the TC of the molecules with the same target class and plotted these values

against PharmaNet´s results per protein (Fig 7). We also computed a coefficient of determina-

tion (R2) of 0.425, which strongly indicates a low correlation between the TC and the Normal-

ized AP per protein. This result therefore suggests that a mere extrapolation of TC is not

enough to obtain suitable candidates for the targets of interest.

Due to the increasingly growing interest of the pharmaceutical industry in antimicrobial

treatments, and specifically in antivirals for enveloped viruses due to the possible impact on

the ongoing coronavirus pandemic, we performed a screening for molecules active towards

FPPS on a subset of the CHEMBL data set. The top-10 predicted molecules with a NAP of

100% are shown in Fig 8. All molecules contain Nitrogen atoms, which have been reported

Fig 7. Correlation between normalized AP and tanimoto Similarity per protein. Performance per protein in

PharmaNet is shown as a function of the averaged Tanimoto Coefficient in molecules of the same class. R2 is reported

for estimating correlation between these two values.

https://doi.org/10.1371/journal.pone.0241728.g007
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Fig 8. Top-10 predictions of PharmaNet towards FPPS on the CHEMBL subset data. CHEMBL ID, IUPAC name, SMILE and the molecule structure is

given for the best 10 performing molecules in CHEMBL subset data towards FPPS target when predicting with PharmaNet.

https://doi.org/10.1371/journal.pone.0241728.g008
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previously to be essential in the interaction with the IPP active site of FPPS [67]. However, it

can also be seen that none of the candidates has a phosphonic acid group, which we detected

previously as a common moiety of active molecules towards FPPS. This unexpected outcome

supports the idea that neural networks learn different fingerprints that those proposed and

implemented by chemists for drug design for decades [11]. This shift on the molecule and fin-

gerprint learning will enable the discovery of pharmaceuticals within a further representation

space that consequently leads to significant structural differences. This, in turn, is likely to lead

to revealing new and different mechanisms of action for known molecules. This is a very

important characteristic for drug discovery since drugs with similar mechanisms of action are

very likely to have the same drawbacks of current pharmaceuticals.

To further corroborate the performance of our method, the top-10 candidates were ana-

lyzed via molecular docking and compared with Zolonadrate, a molecule reported to induce

inhibition of FPPS (Table 3) [67]. All of our candidates showed binding energies lower than

Zolonadrate’s and consequently, they should exhibit better affinity towards FPPS than Zolona-

drate. This suggests a potential pharmacological use of the identified molecules and therefore

the need for further toxicity studies. The interactions and binding energies with FPPS for the

top-3 candidates and Zolonadrate are shown in Fig 9.

The obtained binding energy for Zolonadrate agrees well with that reported elsewhere [54].

In this case (Fig 8A), the prevalent interaction is by means of hydrogen bonding between the

hydroxyl groups of Zolonadrate and the amine groups of the residues Gln254 and Arg126

[68]. Additional hydrogen bonding takes place between the protonated nitrogen atom of the

heterocyclic ring in the side chain of Zolonadrate and the conserved main-chain carbonyl oxy-

gen of Lys214 and the hydroxyl group of the Thr215. This stabilization mechanism resembles

that of a carbocation intermediate [67].

CHEMBL250434 (6-bromo-N-[1-[[(1R,5S)-6,6-dimethyl-2-bicyclo[3.1.1]hept-2-enyl]

methyl]piperidin-4-yl]-1,3-benzothiazol-2-amine) (Fig 9B) has two heterocyclic rings in its

structure, which could protonate and interact strongly with the protein at residues Lys214,

Arg126, and Thr215 via hydrogen bonding. This is in contrast with Zoledronate, which has

only one site for interaction. CHEMBL2007613 (5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]

sulfonyl-2-chloro-4-mercaptophenyl acetate) (Fig 9C) has one heterocyclic ring with Nitrogen

atoms that can interact strongly with Lys214 and Arg216 and much less with Thr215. This

is most likely the reason for the lower binding energy compared to CHEMBL250434

Table 3. Binding energies for top-10 candidates and inhibitor.

CHEMBL ID Binding Energy

CHEMBL250434 -10.04

CHEMBL2007613 -9.56

CHEMBL222102 -8.48

CHEMBL1506796 -7.82

CHEMBL1523492 -7.60

CHEMBL1318151 -7.49

CHEMBL1992583 -7.43

CHEMBL316508 -6.56

CHEMBL1996901 -6.49

CHEMBL1492290 -5.94

Zolonadrate -5.92

Inhibitor in bold.

https://doi.org/10.1371/journal.pone.0241728.t003
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(6-bromo-N-[1-[[(1R,5S)-6,6-dimethyl-2-bicyclo[3.1.1]hept-2-enyl]methyl]piperidin-4-yl]-

1,3-benzothiazol-2-amine). Finally, CHEMBL222102 (2-morpholin-4-yl-6-thianthren-

1-ylpyran-4-one) (Fig 9D) has one heterocyclic ring with only one Nitrogen atom capable of

forming hydrogen bonds primarily with Arg126 residues, which explains the lowest biding

energy of the analyzed set of molecules.

After corroborating the interaction through molecular docking, the top-3 candidates were

analyzed with the aid of the online servers GUSAR, for cytotoxicity, and DIGEP-Pred for gen-

otoxicity. Table 4 shows the toxicity label for the three compounds after administration via

four different routes. Toxicity is categorized in a relative scale that goes from 1 to 5, with 1

for absence of toxicity and 5 the highest toxicity [56]. According to our findings, the only mol-

ecule with the potential for IV administration at the clinical level is CHEMBL2007613 (5-

[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl -2-chloro-4-mercaptophenyl acetate).

Regarding gene tocixity, CHEMBL2007613 upregulates the expression of the PCDH17
gene, which encodes for a protein that contains six extracellular cadherin domains, a trans-

membrane domain, and a cytoplasmic tail, which makes it different from classical cadherins

Fig 9. Molecular docking. (A) Zoledronate’s interaction with active site. Hydrogen bonds with Arg126 and Gln254.

Binding Energy = -5.92. (B) CHEMBL250434’s interaction with active site. Hydrogen bonds with Arg126 and Thr215.

Binding Energy = -10.04. (C) CHEMBL2007613’s interaction with active site. Hydrogen bonds with Arg126. Binding

Energy = -9.56. (D) CHEMBL222102’s interaction with active site. Hydrogen bonds with Arg126. Binding Energy =

-8.48.

https://doi.org/10.1371/journal.pone.0241728.g009
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[69]. This gene has shown varying expression levels under some viral infections, which change

depending on the type of virus [70]. Moreover, no reports are available discussing the downre-

gulation of any other genes.

CHEMBL2007613 5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl-2-chloro-4- mercap-

tophenyl acetate (PubChem CID:380934) was established as non-toxic for IV administration

routes and upregulates the PCDH17 gene, which has been related to viral infections. Further-

more, this molecule is purchasable at the chemical companies ChemTik and ZINC. Given the

above, we propose CHEMBL2007613 as a potential antiviral drug, for enveloped viruses, such

as SARS-CoV-2.

Conclusion

One important challenge in modern drug discovery is to accelerate the search for new and

more potent therapeutic molecules but in a more assertive manner as thus far, conventional

approaches are extremely costly, time consuming and largely ineffective. Pharmaceutical com-

panies have spent billions of dollars in development but only a small percentage of candidates

have made it to the market. Novel artificial intelligence algorithms provide an alternative route

for a more comprehensive search of candidates in already available and large databases of

pharmaceutical compounds. Also, those algorithms reduce the number of experiments needed

in vitro and in vivo, given that only the most promising candidates are further analyze. We

implemented this approach here and put forward PharmaNet, a deep learning architecture for

predicting binding of a molecule to possible protein target receptors. PharmaNet´s algorithm

represents the 2D structural information of a molecule as a molecular image and process it

with modern computer vision recognition techniques. Our architecture is trained end-to-end

and consists of a convolutional encoder processing phase followed by an RNN. This approach

allows multiclass classification with a single model. The conventional metric for this type of

task has been the Receiver Operating Characteristic curve (ROC-AUC); however, we propose

that a more accurate metric is the area under the Normalized Average Precision (NAP) curve.

Under this framework, PharmaNet outperforms the state-of-the-art algorithm by one order of

magnitude (from 1% to 65.5%) in the AD dataset, and has a perfect performance in identifying

the active molecules for 3 receptors of the 102 targets: CXCR4, FPPS and KITH. We selected

FPPS as target to apply our model in the search of active molecules within the large database of

pharmacological molecules, ChEMBL. We chose the 10 best candidate molecules to investigate

into detail interactions with FPSS via molecular docking. We also conducted an in silico evalu-

ation of toxicity with the aid of online servers. We found that the compound identified with

the ID CHEMBL2007613, i.e., (5-[(5-Amino-4H-1,2,4-triazol-3-yl)amino]sulfonyl-2-chloro-

4-mercaptophenyl acetate) exhibits potential antiviral activity, which needs to be corroborated

in vitro. We expect that our algorithm opens new opportunities for the rediscovery and repur-

pose of pharmacological compounds that otherwise might be disregarded in importance by

the pharmaceutical industry. Moreover, we are currently exploring its potential in the reverse

Table 4. Citotoxicity predicted by GUSAR.

CHEMBL ID IP (Intraperitoneal) IV (Intravenous) Oral SC (Subcutaneous)

CHEMBL250434 Class 4 Class 4 Class 4 NA

CHEMBL2007613 NA Non-Toxic NA NA

CHEMBL222102 Class 4 Class 4 Class 4 NA

NA: Non-Applicable to predictor domain.

https://doi.org/10.1371/journal.pone.0241728.t004
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problem, i.e., searching for multiple receptor targets for molecules with certain physicochemi-

cal properties.
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