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Oscillospira - a candidate for the next-generation probiotics
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ABSTRACT
Oscillospira is a class of organism that often appears in high-throughput sequencing data but has 
not been purely cultured and is widely present in the animal and human intestines. There is a strong 
association between variation in Oscillospira abundance and obesity, leanness, and human health. 
In addition, a growing body of studies has shown that Oscillospira is also implicated in other 
diseases, such as gallstones and chronic constipation, and has shown some correlation with the 
positive or negative changes in its course. Sequencing data combined with metabolic profiling 
indicate that Oscillospira is likely to be a genus capable of producing short-chain fatty acids (SCFAs) 
such as butyrate, which is an important reference indicator for screening “next-generation probio-
tics “. Considering the positive effects of Oscillospira in some specific diseases, such as obesity- 
related metabolic diseases, it has already been characterized as one of the next-generation 
probiotic candidates and therefore has great potential for development and application in the 
future food, health care, and biopharmaceutical products.
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1. Introduction

In the past two decades, with the continuous devel-
opment of high-throughput sequencing technology, 
people have gained further understanding of intest-
inal microorganisms, and the accuracy of species 
resolution is also getting higher, and some myster-
ious “dark matter” harbored in the gut is being 
revealed step by step1. From 16S rRNA amplicon 
sequencing to the widespread use of metagenomic 
technologies, growing data show that Oscillospira 
frequently appears in various gut microbiota- 
related studies, but so far, this organism has never 
been purely cultured and its metabolic and biological 
characteristics are still unraveled. Several studies 
have shown a significant positive association 
between Oscillospira and low fat, leanness, and 
human health,2 in addition to a strong association 
between this organism and a variety of diseases, 
especially inflammatory diseases.2,3 Gut and fecal 
microbiome sequencing data show that Oscillospira 
accounts for a high proportion of the human fecal 
microbiome, suggesting that this organism is likely 
to play an important role in human health.4 

Meanwhile, several studies have shown that 
Oscillospira can produce all kinds of short-chain 

fatty acids (SCFAs) dominated by butyrate.2,3,5 

Therefore, whether Oscillospira has potential for 
development as probiotics and whether it can be 
the most favorable next-generation probiotic candi-
date on par with Faecalibacterium prausnitzii, 
Akkermansia muciniphila, and Eubacterium hallii 
deserves further research.6

1.1. Know features of oscillospira

Records of Oscillospira first appeared a century ago 
when Chatton and Pérard discovered Oscillospira 
guilliermondii in guinea pig cecal contents, which is 
the only known species within the genus 
Oscillospira.7 However, little is known about its 
ecological role and physiological properties in the 
intestine because pure cultures have not been 
obtained.8 Since O. guilliermondii is large and mor-
phologically distinct, which facilitates its DNA iso-
lation and 16S rRNA gene amplification and 
sequencing, the genus Oscillospira was classified 
based on flow cytometry and determined by 16S 
rRNA phylogenetic analysis to be a member of the 
family Ruminococcaceae, order Clostridiales, class 
Clostridia in the phylum Firmicutes.7,8 Some 

CONTACT Jingpeng Yang yang_jp008@163.com; He Huang huangh@njnu.edu.cn School of Food Science and Pharmaceutical Engineering, 
Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China

GUT MICROBES                                              
2021, VOL. 13, NO. 1, e1987783 (18 pages) 
https://doi.org/10.1080/19490976.2021.1987783

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-0802-2891
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19490976.2021.1987783&domain=pdf&date_stamp=2021-10-22


members of the genus Oscillospira are generally 
rod-shaped or ellipsoidal, 3–6 μm in diameter and 
10–40 μm in length, especially O. guilliermondii 
cells are very large (about 5–7 μm in width, and 
up to 70 mm in length), and intracellularly closely 
spaced transverse septa could be seen under trans-
mission electron microscopy.7 Some of Oscillospira 
have endospores (2.5 × 4 μm), arranged longitud-
inally in rods, refractile and variable in number, 
which usually contain a large number of polysac-
charides and appear reddish or mauve in the pre-
sence of iodine.7 Since spore-like structures were 
observed in Oscillospira, it is speculated that this 
group of microorganisms may contain spore- 
associated genes.9 Gene-level analysis revealed the 
presence of the small acid-soluble spore protein, 
spore maturation proteins A and B, six stage III 
sporulation proteins, and the sporulation transcrip-
tional regulators SpoIIID, and SpoVT in some 
members of Oscillospira, however, some have no 
SpoVT and other related spore proteins,3 suggest-
ing that sporulation is likely a sporadically distrib-
uted feature in the Oscillibacter clade. Interestingly, 
sporulation genes are also present in some non- 
sporulating species, such as Oscillibacter valerici-
genes, which contain sporulation genes but do not 
produce spores, and these sporulation genes may 
play other roles, such as regulatory genes.10 

Oscillospira is a Gram-positive bacteria with low 
G + C content, whose sequence is close to that of 
uncultured bacterial clones within the clostridial 
cluster IV (Collins nomenclature) obtained from 
the cecum of broiler chickens and rumen contents 
of dairy cows.8 Interestingly, clonal sequences from 
human fecal samples also belong to this cluster, 
suggesting that microorganisms within this cluster 
are widespread not only in the digestive tract of 
herbivores, but also in the digestive tract of 
omnivores.7

Starting from a metagenomic and metabolic sig-
nature perspective, Gophna et al. used sequence 
similarity, gene neighborhood information, and 
artificial metabolic pathway screening to decipher 
key features of Oscillospira and found that this 
organism has a butyrate kinase-mediated pathway, 
from which it was inferred that Oscillospira is 
a butyrate producer and that at least some of these 
species can utilize gluconate, a common animal- 
derived sugar that is both produced by the human 

host and ingested by the host through a diet rich in 
animal products.3 On the other hand, it was further 
demonstrated that Oscillospira can ferment com-
plex plant carbohydrates.11 Specific carbon sources 
are also essential for its growth, e.g. Oscillospira 
grows well in media containing glucose, ethanol, 
and lactic acid, and glucose in particular signifi-
cantly promotes its growth.12 It has been shown 
that Oscillospira is difficult to culture and slow to 
grow, which may be related to the longer colonic 
transit time.3 Fast colonic transit times select for 
fast-growing microbes, and by the same token, 
slower transit conditions allow slower microbes to 
remain in the lumen and avoid being eluted,13 

a property that the slow-growing Oscillospira 
seems to fit. On the other hand, the number of 
tRNA genes in the genome can serve as a strong 
predictor when microbial generations.14 The vast 
majority of fast-growing microbes have more 
copies of tRNA genes in their genomes, and vice 
versa. Previous studies have shown that there are 
less than 40 tRNA genes in Oscillospira, and com-
pared to other fast-growing intestinal microbes 
such as Bacteroides fragilis (72–73 tRNA genes, 
generation time 0.63 h), Clostridioides difficile (82 
tRNA genes, generation time of < 70 minutes), 
Oscillospira is typically a very slow-growing 
organism.3 In recent years, multiple 16S rRNA 
amplicon sequencing data based on the human 
gut microbiome have shown that Oscillospira is an 
abundant component of the human gut and fecal 
microbiota, and its gene sequence amount some-
times account for more than 10% of the entire gut 
microbiota,4 meanwhile, Oscillospira can produce 
butyrate,3 suggesting that this organism may play 
an important role in various aspects of human 
bodily functions and health, therefore, more 
research data are needed to reveal its properties.

2. Factors affecting the abundance of 
oscillospira

Various factors are affecting Oscillospira abun-
dance, mainly exogenous factors (Table 1). It is 
known from a range of literature that probiotics, 
prebiotics, heavy metals, natural active products, 
pharmacological interventions, exercise and diet, 
and other factors can have an impact on the abun-
dance of Oscillospira in the gut (Figure 1).
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Table 1. Factors affecting the abundance of oscillospira.
Category Factors Positive (+)/Negative (-) references

Probiotics and prebiotics Bacillus coagulans 13002 + 15

Bacillus subtilis 29,784 + 16

Bacillus amyloliquefaciens & Bacillus subtilis + 17

Bifidobacterium breve ATCC 15700 + 18

Leuconostoc pseudomesenteroides XG5-exopolysaccharide + 19

Tibet kefir milk (TKM) + 20

Lactobacillus rhamnosus - 21

Clostridium butyricum - 22

Fructo-oligosaccharides (FOS) + 15

Fucoidan (FUC) + 23

Galactooligosaccharides (GOS) + 23

Fucosyl-α1,3-GlcNAc (3FN); Fucosyl-α1,6-GlcNAc; Lacto-N-biose (LNB); Galacto- 
N-biose

+ 24

Pea fiber + 25

Potato fiber (FiberBind 400) + 26

Oat β-glucan (OG); Oat resistant starch (ORS); Whole oat foods (WO) - 27

Cereus sinensis polysaccharide (CSP-1) - 28

Heavy metals Lead (Pb); Cadmium (Cd) - 29–31

Arsenium (As) - 32

Copper (Cu) - 33

Silver (Ag) - 34

Mercury (Hg) + 35,36

Natural products Millet shell polyphenols (MSPs) + 37

Polyphenol-rich plant extract (TOTUM-63) + 38

Green tea polyphenols (GTP) + 39

Qingzhuan tea (QZT) - 40

Capsaicin (CAP) + 41

Beta-patchoulene (β-PAE) + 42

Macleaya cordata extract (MCE) + 43

Cranberry pomace (CBP) + 44

Blueberry malvidin-3-galactoside (M3G) + 45

Polysaccharide from Pueraria lobata (PPL) + 46

Pectil (5%) & Cellulose (5%) + 47

Extensively hydrolyzed casein formula & Lactobacillus rhamnosus GG (EHCF & LGG) + 48

Sophora alopecuroides L.-derived alkaloids - 49

Flaxseed polysaccharides (FSP) - 50

Wasabi - 51

Pharmacological intervention Etifoxine - 52,53

hydroxychloroquine (HCQ) - 54

Fungicide thiram - 55

Trifluoromethanesulfonic acid (TFMS) + 56

Propamocarb (fungicide propamocarb) + 57

Immunoglobulin G (IgG) + 58

Exercise and diet High-intensity interval training & linseed oil (HIIT & LO) + 59

Spontaneous physical activity (PA) + 60

Mediterranean diet + 61

Almond + 62

High-fat diet + 51

High-fat diet - 63

Fasting - 64

Feed, temperature, and altitude Grazing & oats hay supplement + 65

High feed efficiency + 66

Fresh forage + 67

High altitude + 68

Fermented feed diets - 69

Heat stress - 70

Age and gender Female rat model of Rett syndrome - 71

Male autism spectrum disorder rodent model + 72

Female autism spectrum disorder rodent model - 72

Older calves + 73

mature specific-pathogen-free chickens - 74

Mature rhesus macaques + 75
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2.1 Probiotics and prebiotics

In poultry farming, probiotic Bacillus is often 
mixed with feed to achieve the ultimate goal of 
ensuring individual health and obtaining high- 
quality meat. Keerqin et al. found that Bacillus 
subtilis 29,784 significantly improved broilers 
weight gain and enhanced their gut health status, 
as well as increased the abundance of Oscillospira in 
the intestinal tract.16 Liu et al. added Bacillus sub-
tilis to the diets of pullets, which was able to 
improve the growth performance and intestinal 
function and induce Oscillospira to gradually 
become the dominant species in the gut.76 

Similarly, during neonatal broiler chicken rearing, 
the addition of probiotic bacillus preparations 
(Bacillus amyloliquefaciens plus Bacillus subtilis) 
increased the Oscillospira abundance and signifi-
cantly reduced the horizontal transmission of 
pathogenic E. coli, and alleviated the severity of 
the infection.17 Probiotics have also performed 
well in animal models exploring specific disease- 
related conditions. Zhao et al. found that Bacillus 
coagulans 13002 significantly alleviated cyclopho-
sphamide-induced intestinal damage in mice and 
substantially increased the abundance of beneficial 
microbes such as Oscillospira in the mouse gut 
through microbiota modulation.15 Tian et al. used 
Bifidobacterium breve ATCC 15700 (BB) to treat 
mice exposed to chronic alcohol intake, followed by 

analyzing the parameters of intestinal flora and 
liver injury, they found that there was a significant 
negative correlation between alcoholic liver disease 
(ALD) and Oscillospira, while ALD mice treated 
with BB showed remission of symptoms and 
a significant increase in Oscillospira abundance.18 

Some probiotic generated proteins and products 
also have the similar effects. Exopolysaccharide iso-
lated from Leuconostoc pseudomesenteroides XG5 
(XG5-EPS) significantly increased the richness of 
mouse cecum microbiota, especially increasing the 
relative abundance of Oscillospira at the genus level 
and the relative abundance of Firmicutes at the 
phylum level.19 The effect of Tibet kefir milk 
(TKM) that co-fermented with lactic acid bacteria 
and yeast, on fat deposition in rats fed high-fat diets 
with human-derived flora-associated (HFA), was 
investigated, and it was found that TKM reduced 
abdominal fat deposition and the triglyceride (TG) 
levels in serum at the transcriptional level by reg-
ulating Lpl and Angptl4 genes, while increasing 
Oscillospira abundance.20 However, not all probio-
tics can directly or indirectly increase Oscillospira 
abundance. Gamallat et al. found that long-term 
supplementation with Lactobacillus rhamnosus 
reduced female Sprague Dawley Rats body weight, 
improved serum cytokines, and reduced serum 
lipoprotein profiles, while their gut Oscillospira 
abundance was significantly downregulated.21 

Similarly, Clostridium butyricum is capable of 

Figure 1. Various factors are affecting oscillospira abundance in the human gut. probiotics, prebiotics, natural products, exercise, and 
diet can positively regulate oscillospira abundance, whereas heavy metals and pharmacological interventions can negatively regulate 
oscillospira abundance in the gut.
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producing butyric acid, which has been shown to 
limit lipid deposition in the liver, restore intestinal 
barrier function, and improve liver inflammation, 
with probiotic potential.77 Liu et al. found that 
Clostridium butyricum was used in the colitis- 
associated colon cancer mice and it had alleviated 
the intestinal inflammation and was accompanied 
by a decrease in the relative abundance of 
Oscillospira.22

In addition to probiotics, prebiotics also has an 
important impact on the gut microbiota.78 Zhao 
et al. found that oligofructose (FOS) significantly 
increased the abundance of Oscillospira in the 
mouse gut, especially when FOS was combined 
with probiotics was further able to inhibit many 
harmful gut microbes.15 Fucoidan (FUC) and 
galactooligosaccharides (GOS) improved serum 
dyslipidemia, bile salt hydrolase (BSH) activity, 
and bile acid-related metabolic levels and promoted 
Oscillospira abundance in the gut of rats with 
a high-fat diet; meanwhile, in vitro tests it revealed 
that FUC and GOS stimulated BSH activity in 
Lactobacillus casei DM 8121.23 Human milk oligo-
saccharides are very important and have a unique 
and diverse structure, which can influence the 
development and composition of the gut micro-
biota of infants and children through different 
mechanisms.79 A human mouse model of infant 
fecal transplantation was used to study the effects 
of fucosyl-α1,3-GlcNAc (3FN), fucosyl- 
α1,6-GlcNAc, lacto-N-bioside (LNB), and galacto- 
N-bioside on fecal microbiota and host-bacteria 
interactions, and it was found that all these disac-
charides significantly upregulate Oscillospira 
abundance.24 Li et al. found that pea fiber improved 
the health status in overweight individuals and 
increased their intestinal Oscillospira abundance, 
meanwhile, they found that the increased 
Oscillospira was significantly associated with the 
decreased deoxycholic acid (DCA) and lithocholic 
acid (iso-LCA) in the stool.25 Potato fiber is a by- 
product of starch production and is rich in dietary 
fiber such as pectin, cellulose, hemicellulose, and 
resistant starch, which can be utilized and metabo-
lized by gut microbiota to produce SCFAs.80 One of 
the representatives, FiberBind 400, is 
a commercially available potato fiber product.26 In 
the Gastro-Intestinal Model (TIM)-2 colon model 
assay, the ingestion of FiberBind 400 increased the 

intestinal survival of exogenous Lactobacillus fer-
mentum PCC®, Lactobacillus rhamnosus LGG®, 
Lactobacillus reuteri RC-14®, Lactobacillus paraca-
sei F-19® and was also found to promote the growth 
of intestinal Oscillospira by cross-feeding effect.26 

However, there were also some prebiotics and sub-
stances with prebiotic-like properties that were 
negatively correlated with the abundance of 
Oscillospira. Zhu et al. found that oat β-glucan 
(OG), oat resistant starch (ORS), and whole oat 
foods (WO) significantly improved symptoms in 
the type II diabetic rats and reduced their gut 
Oscillospira abundance.27 Cui et al. found that the 
marine-animal-derived Cereus sinensis polysac-
charide (CSP-1) significantly increased thymus, 
spleen index, and total SCFAs production in mice 
and decreased Oscillospira abundance, and they 
hypothesized that CSP-1 might be a potential 
prebiotic.28

Taken together, probiotics and prebiotics typi-
cally exhibit health-promoting effects in poultry 
farming as well as in specific disease-related animal 
models, where the vast majority of probiotics or 
prebiotics intake can directly or indirectly increase 
the abundance of Oscillospira in the host intestinal, 
whereas, a small number do the opposite, the up-or 
down-regulation of Oscillospira abundance appears 
to be associated with specific strains or specific 
prebiotics.

2.2 Heavy metal

Studies on the effects of heavy metals on the gut 
microbiota and host health represent a significant 
portion of the overall intestinal microbiota-related 
research.81 There is growing epidemiological evi-
dence revealed that heavy metals may contribute to 
and influence the progression of various metabolic 
diseases whose etiology and progression are due, in 
part, to heavy metal-induced disorders of the gut 
microbiota.82,83 By studying the effects of different 
doses of lead (Pb) exposure on the gut microbiota 
and gut barrier in mice, Yu et al. found that with 
increasing doses of Pb, damage to mouse colonic 
tissue increased, while the relative abundance of 
Coprococcus and Oscillospira in the gut decreased 
linearly, while Lactobacillus increased, and Pb 
exposure had significant effects on the three genera 
in a dose-dependent manner.29 It has been shown 

GUT MICROBES e1987783-5



that Pb and cadmium (Cd) exposure can affect the 
concentration of SCFAs by altering the abundance 
of related microbes that produce SCFAs, such as 
Ruminococcus, Bacteroides, Oscillospira.30 Several 
studies have shown that Oscillospira produced 
butyrate and propionate, increased cupped cell 
and mucus production, maintained the integrity 
of the intestinal epithelium, and reduced Pb 
absorption, thereby reducing colonic tissue damage 
and inflammation.5,84–87 Chi et al. found that 
4-week-old C57BL/6 female mice ingested drinking 
water containing 100 ppb arsenic (As) for 13 weeks 
showed a significant decrease in the Oscillospira 
abundance, but this was accompanied by an 
increase in Akkermansia and Bifidobacterium 
abundance.32 Similarly, Gao et al. found 
a significant decrease in the abundance of 
Oscillospira in the gut of female mice that ingested 
drinking water containing 10 ppm Pb for 
13 weeks,31 a phenomenon consistent with those 
results of the experiment by Yu et al.29 In addition, 
Oscillospira appears to be equally sensitive to other 
heavy metals, such as copper and silver, which can 
significantly affect the proportion of Oscillospira in 
the gut of rats.33,34 However, there were also heavy 
metals that positively correlated with Oscillospira 
abundance, such as Hg exposure that caused intest-
inal damage in mice and increased their intestinal 
Oscillospira abundance,35 and this phenomenon 
was further confirmed in another study.36 

Notably, it has been shown that higher concentra-
tions of lead, arsenic, copper, zinc, mercury, cal-
cium, and magnesium in the pediatric autism 
spectrum disorder (ASD) population, especially 
As and Hg concentrations, were associated with 
intestinal Oscillospira abundance was highly 
correlated.88

The effect of different heavy metals on the abun-
dance of Oscillospira in the gut varies. The up-or 
down-regulation of Oscillospira abundance alone 
does not seem to indicate whether a specific heavy 
metal has a positive or negative effect on the host 
health. Therefore, the patterns of Oscillospira abun-
dance under different heavy metal exposures need 
to be further explored, and this genus may also have 
the potential to be used as one of the indicators for 
assessing the degree of heavy metal contamination.

2.3 Natural products

The effect of natural products on the intestinal 
microbiota has been studied more frequently; 
among them, polyphenols seem to be able to play 
an important role on the host microbiota.89 Millet 
shell polyphenols (MSPs) extracted from the cereal 
husks have anti-atherosclerotic effects in vitro.90–92 

Liu et al. used ApoE-/- mice fed a high-fat diet as 
experimental subjects to investigate the anti- 
atherosclerotic activity of MSPs in vivo and found 
that MSPs effectively inhibited the development of 
atherosclerotic plaques, reduced the levels of 
related inflammatory factors, and significantly 
upregulated the expression levels of tight junction 
proteins (ocludin, zona occludens-1 and claudin 1) 
at the mRNA and protein levels; also, MSPs signifi-
cantly altered the structure of mouse gut micro-
biota, in which Oscillospira and Ruminococcus 
were significantly enriched.37 TOTUM-63 (T-63) 
is a polyphenol-rich plant extract that can have 
beneficial effects on the body weight and the insulin 
resistance in mice on a high-fat diet (HFD).38 The 
combination of high-intensity interval training 
(HIIT) and T-63 was applied to a Western diet- 
induced obesity rat model, and it was found that 
this combined modality significantly limited the 
weight gain and improved the blood glucose levels 
in the rats, while their Oscillospira abundance was 
also significantly increased.38 Green tea polyphe-
nols (GTP) can also improve the abundance of 
Oscillospira in the gut of female sprague-dawley 
rats.39 However, polyphenols were also not all posi-
tively correlated with Oscillospira abundance. It has 
been shown that Qingzhuan tea (QZT) has signifi-
cant anti-obesity, free radical scavenging, antioxi-
dant, inhibiting the proliferation of 3 T3-L1 
preadipocytes and other health effects.93,94 Feng 
et al. found that QZT extract ameliorated gut 
microbiota-mediated metabolic disorders in the 
high-fat mice and reduced the abundance of 
Oscillospira, which was significantly positively asso-
ciated with the metabolic syndrome.40 In addition 
to polyphenols, some other active products have 
similar effects. Capsaicin (CAP) is an active ingre-
dient in chili peppers with a variety of pharmaco-
logical activities and potential effects on psychiatric 
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disorders.95–97 CAP was found to improve depres-
sion and serum levels of 5-hydroxytryptamine 
(5-HT) and tumor necrosis factor-α (TNF-α) in 
mice with lipopolysaccharide (LPS)-induced 
depressive-like behavior and to significantly upre-
gulate the relative abundance of key microbes such 
as Oscillospira.41 Liu et al. found that Oscillospira 
became the dominant genus in the gut of β- 
patchoulene (β-PAE)-treated mice with colitis.42 

Macleaya cordata contains many important alka-
loids, including sanguinarine, chelerythrine, proto-
pine, allocryptopine, and phenolic acids.98 The 
addition of Macleaya cordata extract (MCE) as 
a dietary supplement to pig feed improved their 
growth performance and reduced the diarrhea 
score.99,100 Li et al. found that MCE intake signifi-
cantly increased the relative abundance of 
Oscillospira in the jejunum of weaned pigs.43 

Cranberry pomace (CBP) is rich in polyphenols, 
complex carbohydrates, fiber and nutritional 
minerals.101 Continuous addition of CBP during 
the rearing of broiler chickens eventually signifi-
cantly increased the abundance of Oscillospira in 
their gut.44 Blueberry malvidin-3-galactoside 
(Blueberry M3G) also increased the gut microbial 
diversity in mice and significantly increased the 
abundance of Oscillospira and Ruminococcus.45 

Chen et al. found that polysaccharide was derived 
from pueraria lobata (PPL) not only reduced the 
isovaleric acid concentrations in the normal mice, 
but also significantly increased Oscillospira 

abundance and ultimately alleviated antibiotic- 
associated diarrhea (AAD) induced colonic patho-
logical changes and dysbiosis of intestinal flora in 
mice.46 Gut microbiota also plays an important role 
in improving cognition and shaping 
behavior.102,103 Mailing et al. found that 5% pectin 
mixed with 5% cellulose improved mice learning 
and memory and significantly increased their gut 
Oscillospira abundance.47 Likewise, gut microbiota 
plays a crucial role in food allergies.104 In a study of 
changes in the gut microbiota in patients with 
wheat-dependent exercise-induced anaphylaxis 
(WDEIA), Oscillospira was positively associated 
with the ω-5 alcohol-soluble protein-specific 
immunoglobulin E (IgE), whereas Bifidobacterium 
was significantly negatively correlated with the total 
IgE levels.105 Another study found that Oscillospira 
was highly enriched in the gut of milk-tolerant 
infants compared to children who remained aller-
gic after treatment with extensively hydrolyzed 
casein formula plus Lactobacillus rhamnosus GG 
(EHCF + LGG).48 However, there was a negative 
correlation between some natural products and 
Oscillospira abundance. Zhang et al. found that 
Sophora alopecuroides (Leguminosae) L.-derived 
alkaloids improved depression-like behaviors and 
depression-related indicators in the chronic unpre-
dictable mild stress (CUMS)-induced depression 
model mice and decreased Oscillospira 
abundance.49 Yang et al. found that the high-fat- 
diet-fed mice treated with flaxseed polysaccharide 

Table 2. Oscillospira-related diseases.
Positively Subject References Negatively Subject References

High-fat diet-induced obesity 
(HFDIO)

Mice 52,118 Ulcerative colitis (UC) UC patients 119

Inflammatory bowel disease (IBD) Children 120

High-fat diet-induced type 2 
diabetic (T2DM)

Rat 27 T2DM Rat 121

DSS-induced ulcerative colitis 
(UC)

Mice 122 Crohn’s disease (CD) Patient 123

Pediatric nonalcoholic fatty liver disease Obese 
patients

124

Chronic kidney disease (CKD) Idiopathic nephrotic 
syndrome patients

125 Chronic inflammation Geriatric 
population

126

Parkinson’s disease (PD) PD patients 127 PD PD patients 128

Autism spectrum disorder (ASD) Children 129 Overweight and obesity Children 130

Chronic unpredictable mild 
stress (CUMS)

Mice 131 Obesity Obese patient 132

Gallstone Gallstones patients 133 Fragile X syndrome (FXS) Mice 134

Chronic constipation Female patients 135 CUMS Mice 49

Autism Children 136

Fatty liver Adolescents 137

Nonalcoholic fatty liver disease (NAFLD); 
nonalcoholic steatohepatitis (NASH)

Patient 138

Alcoholic liver disease Mice 18

Lung cancer Patient 139

Loose stools Patient 140
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(FSP) had significantly decreased their serum fast-
ing glucose, total triglyceride and total cholesterol 
levels and significantly increased the proportion of 
beneficial Akkermansia and Bifidobacterium ratio, 
while decreasing the proportion of Oscillospira.50 

Thomaz et al. found that wasabi powder signifi-
cantly improved the health status of diet-induced 
obese rats and down-regulated their intestinal 
Oscillospira abundance.51

Taken together, the natural products represented 
by polyphenols were able to significantly improve 
the health status of animal models for specific dis-
eases, particularly metabolic diseases such as obe-
sity caused by high-fat diets, and were accompanied 
by a significant upregulation of intestinal 
Oscillospira abundance. In addition, other natural 
active products showed beneficial effects on host 
health in general, but the abundance of Oscillospira 
under the action of different products varied con-
siderably, and more studies are needed to explore 
these relationships.

2.4 Pharmacological interventions

Pharmacological interventions have an important 
impact on the gut microbiota.106,107 Age-related 
macular degeneration (AMD) is the main cause of 
visual impairment in the elderly. Treatment of 
AMD mice with etifoxine significantly reduced 
the abundance of Oscillospira in the gut.52 

Etifoxine is also a therapeutic agent for obesity, 
which was found to down-regulate the relative 
abundance of Oscillospira in the obese mouse 
model.53 Hydroxychloroquine (HCQ) is a widely 
used antimalarial drug that is recommended for the 
treatment of coronavirus disease 2019 (COVID- 
19).108 Short-term high-dose HCQ stimulation in 
mice altered the structure of their gut microbiota, 
in particular the abundance of Oscillospira, but did 
not affect their intestinal integrity and immune 
response.54 Kong et al. found that fungicide thiram 
disrupted the gut microbiota of chickens, causing 
disruption of lipid metabolism and significantly 
reducing the abundance of Oscillospira.55 

However, the intervention of some drugs can 
increase the relative abundance of Oscillospira. 
For example, trifluoromethanesulfonic acid 
(TFMS)-treated mice showed increased abundance 
of Oscillospira.56 Wu et al. consistently treated 

C57BL/6 J mice with fungicide propamocarb and 
found that their bile acid metabolism was disturbed 
and Oscillospira abundance was increased.57 Liu 
et al. found a significant positive correlation 
between immunoglobulin G (IgG) and 
Oscillospira abundance in the gut of male Brandt’s 
voles (Lasiopodomys brandtii), with a concomitant 
increase in Oscillospira abundance with increasing 
IgG concentration.58 During the pharmacological 
interventions, the gut and gut microbiota are the 
central sites of drug metabolism and drug efficacy, 
and the metabolic process of different drugs may 
have the participation of different gut microbes, 
while the variation of Oscillospira abundance may 
also vary from drug to drug.109

2.5 Exercise and diet

Dietary structure and exercise patterns have been 
shown to influence the host health and the gut 
microbial composition.110,111 Plissonneau et al. 
found that the high-intensity interval training 
(HIIT) had a significant effect on the gut microbial 
diversity in Wistar rats and that HIIT alone only 
had a significant effect on their body fat mass, but 
when HIIT was combined with linseed oil (LO) 
improved the conversion of α-linolenic acid 
(ALA) to docosahexaenoic acid (DHA) and signifi-
cantly increased the relative abundance of 
Oscillospira in the colonic microbiota.59 Notably, 
neither HIIT nor LO alone resulted in significant 
changes in the intestinal mucosa-associated flora, 
but when used in combination, it significantly 
increased Oscillospira abundance. The results of 
that study were similar to those of previous studies 
in that Oscillospira was negatively correlated with 
the body mass index (BMI)112,113 and positively 
correlated with leanness.114 Similarly, Maillard 
et al. found a significant increase in the abundance 
of Oscillospira in the gut microbiota of mice after 
their spontaneous physical activity (PA), accompa-
nied by a significant increase in the level of 
SCFAs.60 Two animal experiments showed 
a strong correlation between Oscillospira abun-
dance, lactate levels, and exercise intensity.115,116 

In a population-based trial, Haro et al. found that 
obese people on a Mediterranean diet for one year 
showed a decrease in the gut Prevotella abundance 
and a significant increase in Oscillospira 
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abundance.61 Thus, Oscillospira is considered as 
a possible next-generation probiotic candidate for 
weight loss and fat reduction.2 In a randomized 
controlled trial, short-term consumption of 
almonds also increased Oscillospira abundance in 
healthy adults.62 A high-fat diet has been consid-
ered a non-healthy diet. Thomaz et al. found that 
a high-fat diet increased Oscillospira abundance in 
the gut of rats,51 however, the opposite result was 
seen in another animal test, where Schots et al. 
found a significant decrease in Oscillospira abun-
dance in the gut of female mice on a high-fat diet,63 

and it is unknown whether this is due to species 
differences. In addition, He et al. found that fasting 
reduced the relative abundance of Oscillospira in 
the human intestine,64 suggesting that calorie 
restriction may have a negative regulatory effect 
on Oscillospira. Overall, appropriate exercise pat-
terns and moderate exercise levels appear to 
increase the relative abundance of Oscillospira in 
both human and animal, while an accepted healthy 
dietary structure also positively regulates the 
increase in Oscillospira abundance.

2.6 Other factors

Oscillospira was first discovered in the rumen of 
animals, and feed and grazing practices have had 
a wide impact on this intestinal organism. Ahmad 
et al. found that the combination of grazing and 
concentrate supplement significantly increased the 
abundance of Oscillospira in the rumen flora of yak 
(Bos grunniens).65 The cecum microbiota plays an 
important role in the host food digestion and nutri-
ent absorption, and to some extent affects feed 
efficiency (FE). Notably, Oscillospira showed 
a stronger positive correlation in the high feed 
efficiency group (HFE) than that in the low feed 
efficiency group (LFE).66 O. guilliermondii was 
detected in the rumen of several herbivorous ani-
mals, including cattle and sheep, and the abun-
dance of this organism was significantly higher 
especially when the diet was fresh forage.67 

However, in the opposite case, Yan et al. fed geese 
with fermented feed diets prepared by co- 
fermentation of Bacillus, Lactobacillus, and yeast 
with corn, soybean meal, and wheat bran and 
found a significant downregulation of Oscillospira 
abundance.69

Heat stress also down-regulated the abundance 
of Oscillospira in the broilers’ intestine.70 

Oscillospira is commonly found in the gut of herbi-
vores in high-altitude environments, accounting 
for nearly 20% of the total microbiota.68 Host char-
acteristics such as sex and age are closely related to 
the structure and function of the gut microbiota.117 

Sequencing analysis of rhesus macaques (Macaca 
mulatta) fecal samples revealed that female maca-
ques had higher levels of alpha diversity and a more 
distinctive microbial structure than males, and 
those mature individuals had a higher abundance 
of Oscillospira compared to immature 
individuals.75 Similarly, the abundance of 
Oscillospira in male and female ASD rodent models 
exhibited substantial differences, and these differ-
ences may be due to sex specificity.71,72 Xi et al. 
found that the abundance of Oscillospira in the gut 
of specific-pathogen-free chickens decreased with 
increasing age.74 Maron et al. found that 
Oscillospira was commonly found in the gut of 
older calves compared to younger calves.73

3. Oscillospira-related diseases

In studies of gut microbiota and their related dis-
eases, Oscillospira often appears in high- 
throughput sequencing data, and it is particularly 
noteworthy that Oscillospira abundance fluctuates 
widely in some specific diseases. Here, we give 
a summary of diseases positively or negatively asso-
ciated with Oscillospira (Table 2).

3.1 Diseases positively associated with oscillospira

Data from animal experiments show that a high-fat 
diet appears to promote an increase in intestinal 
Oscillospira abundance. Compared to the normal 
group (NOR), the mice on the high-fat diet- 
induced obesity and showed dysbiosis of the intest-
inal flora, with a significantly higher abundance of 
Oscillospira,118 a result that was also seen in another 
high-fat diet mouse test.52 Oscillospira abundance 
in the gut of Type 2 diabetes mellitus (T2DM) rats 
was positively correlated with the development of 
diabetes and inflammation,27 however, in contrast, 
Oscillospira abundance in another trial was extre-
mely low.121 In the dextran sulfate sodium (DSS)- 
induced ulcerative colitis in mice test, DSS was 
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observed to increase the percentage of Oscillospira 
in the gut.122 Zhang et al. found that patients with 
chronic kidney disease (CKD) had a high abun-
dance of Oscillospira in the gut.125 There is also 
a close association between central neurological 
and degenerative disorders and Oscillospira. 
Parkinson’s disease (PD) patients also had a high 
abundance of Oscillospira,127 but this result showed 
the opposite trend in another study.128 Zhai et al. 
sequenced and analyzed the gut microbiota of ASD 
children and found that Oscillospira significantly 
increased.129 In another study of CUMS-induced 
depression-like mice, CUMS induction resulted in 
increased abundance of Oscillospira, while this 
genus decreased after Kai-Xin-San (KXS) 
treatment.131 What can be determined is that, 
Oscillospira is directly associated with gallstones 
and this organism can be used as a biomarker for 
symptomatic gallstone formation.133 Keren et al. 
found that patients with gallstones had higher 
total fecal bile acids (BAs) concentrations and 
lower microbial diversity, accompanied by 
increased abundance of Oscillospira, which was 
further analyzed and found to be positively corre-
lated with secondary BAs and negatively correlated 
with primary BAs.133 It was worth noting that slow 
transmission/constipation was a definite risk factor 
in the formation of gallstones.141 It has been shown 
that fast colonic transit times select for fast-growing 
microbes, while slower transit/constipation allows 
slower replicating organisms to remain in the 
lumen and avoid being eluted.13 Oscillospira 
showed high abundance in this case, most likely 
due to its slow growth and thus benefiting from 
a slow transit time in the gut. Thus, a high abun-
dance of Oscillospira was positively correlated with 
constipation, especially in the female population 
with chronic constipation, and this correlation 
was very strong.135

3.2 Diseases negatively associated with oscillospira

Currently, several studies have shown that inflam-
mation is strongly associated with Oscillospira, and 
most of them have a negative correlation.2 Xu et al. 
found that Oscillospira abundance was negatively 
correlated with disease severity in patients with 
ulcerative colitis (UC).119 Lima et al. found 
a lower abundance of Oscillospira in the gut of 

children with inflammatory bowel disease 
(IBD).120 A significantly lower abundance of 
Oscillospira was also found in the gut of Crohn’s 
disease (CD) patients and pediatric nonalcoholic 
fatty liver disease (NALD) patients.123,124 Aging is 
a low-grade chronic inflammation characterized by 
elevated circulating levels of inflammatory 
mediators.142 This chronic inflammation occurs in 
the absence of obvious infection is called inflamma-
tion and is a risk factor for morbidity and mortality 
in the elderly population.143 In addition, the impor-
tant role of gut microbiota perturbation with aging 
has been revealed, and a growing body of literature 
suggests that age-related gut microbiota dysbiosis 
contributes to the overall inflammatory status of 
older adults.144 Among them, Oscillospira showed 
a strong negative correlation with pro- 
inflammatory monocyte chemoattractant protein- 
1 (MCP-1).126 Childhood obesity is a global health 
problem, and gut microbiota plays an extremely 
important role in obesity.145 Chen et al. found 
a significant decrease in the abundance of 
Oscillospira in the overweight children gut.130 

Similarly, Verdam et al. found a significant decrease 
in Oscillospira abundance in the gut of obesity- 
associated diabetic patients, while O. guillermondii 
was significantly decreased in obese patients with 
local and systemic inflammation.132 Fragile 
X syndrome (FXS) is a neurodevelopmental disor-
der that is considered to be the most common cause 
of genetic intellectual disability and one of the 
major predisposing factors for autism.146,147 

Altimiras et al. found that Oscillospira abundance 
was significantly downregulated in the gut of FXS 
mouse models.134 A strong correlation between 
Oscillospira and several depression-related indica-
tors was also previously confirmed in another 
trial.49 This relationship appears to be further sup-
ported by data from a population-based experi-
ment, where Johnson et al. found that social 
competence (a composite measure of participants’ 
extraversion, social skills, and communication abil-
ity) was highly positively correlated with 
Akkermansia, Lactococcus, and Oscillospira, 
among them, Oscillospira was more abundant in 
individuals with higher sociality scores.136 Tian 
et al. studied mice exposed to chronic alcohol 
intake by analyzing gut microbiota and liver injury 
parameters and found that the development of 
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ALD was accompanied by a significant decrease in 
Oscillospira abundance.18 Clinically, Oscillospira 
abundance was also negatively correlated with 
hepatic fat;137 the abundance of Oscillospira in the 
gut of pediatric nonalcoholic fatty liver disease 
(NAFLD) and nonalcoholic steatohepatitis 
(NASH) patients was similarly reduced. Currently, 
reduced Oscillospira accompanied by increased 
2-butanone has been identified as a gut microbiota 
signature of NAFLD onset.138 Lung cancer patho-
genesis was accompanied by a significant decrease 
in Oscillospira abundance, with a negative correla-
tion between the two.139 A study of gut microbiota 
and stool softness/hardness in European adults 
showed that Oscillospira abundance was positively 
correlated with harder stools and negatively corre-
lated with loose stools.140

4. Potential applications of oscillospira

Oscillospira is currently described only in high- 
throughput sequencing data related to the gut 
microbiota. Pure cultures of this organism have 
not been obtained and therefore, the actual biol-
ogy, function, and specific role of Oscillospira in 
the gut microbiota and human health have not 
been conclusively established. The current 
description of Oscillospira is mainly reflected in 
the variation of its abundance in different 
environments.3 Through multiple studies in 
Table 2, we found that Oscillospira is highly 
associated with obesity and obesity-related 
chronic inflammatory and metabolic diseases 
and that Oscillospira abundance is significantly 
decreased in this category of disease. In addition, 
several studies have confirmed that Oscillospira 
is strongly associated with leanness or lower 
BMI in children and adults, and shows a high 
degree of heritability.112,132,148,149 Numerous evi-
dences suggest that Oscillospira abundance plays 
an important role in the metabolic activities 
associated with obesity in humans. Oscillospira 
may be a next-generation probiotic candidate 
with weight loss, lipid-lowering, slimming, and 
metabolic syndrome-relieving effects, and it has 
great potential for health applications. In addi-
tion, there is an association between Oscillospira 

and central nervous system disorders and degen-
erative diseases, but more studies are needed to 
reveal the underlying mechanisms as the evi-
dence is scarce and the causality has not been 
confirmed. It is noteworthy that Oscillospira is 
more abundant in people with gallstones and 
chronic constipation, and it is not known what 
role this organism play can either foster health 
or contribute to disease in the development of 
such diseases. It should be seen that Oscillospira 
plays an important role in the gut microbiota 
and its abundance is closely related to the host 
health. External interventions such as probiotics, 
prebiotics, polyphenols, diet, and exercise can 
significantly influence the abundance of 
Oscillospira in the gut, which opens up the pos-
sibility of targeted interventions for the preven-
tion, mitigation, and treatment of specific 
diseases mediated by intestinal flora, such as 
obesity and obesity-related diabetes. In the 
future, microecological formulations with 
Oscillospira as the core may bring new options 
for food, nutraceuticals, and biopharmaceuticals 
for consumption or medicinal use.

5. Conclusions

Overall, Oscillospira exhibited beneficial microbial 
traits. In particular, Oscillospira directly or indirectly 
exhibits positive regulatory effects in areas related to 
obesity and chronic inflammation. Therefore, 
Oscillospira has the potential to be developed as the 
next generation of probiotics. In the future, more 
preclinical and clinical studies are needed to confirm 
the efficacy of Oscillospira in different diseases, and 
until then, if the pure culture technology of this 
organism can be overcome, then it will greatly accel-
erate its development and application process.
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