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Abstract: In this paper, we developed an organic solvent-free, eco-friendly, simple and efficient one-
pot approach for the preparation of amphiphilic conjugates (Ugi-OSAOcT) by grafting octylamine
(OCA) to oxidized sodium alginate (OSA). The optimum reaction parameters that were obtained
based on the degree of substitution (DS) of Ugi-OSAOcT were a reaction time of 12 h, a reaction
temperature of 25 ◦C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The
chemical structure and composition were characterized by Fourier transform infrared spectroscopy
(FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), thermogravimetry anal-
yser (TGA), gel permeation chromatography (GPC) and elemental analysis (EA). It was found that the
Ugi-OSAOcT conjugates with a CMC value in the range of 0.30–0.085 mg/mL could self-assemble into
stable and spherical micelles with a particle size of 135.7 ± 2.4–196.5 ± 3.8 nm and negative surface
potentials of −32.8 ± 0.4–−38.2 ± 0.8 mV. Furthermore, ibuprofen (IBU), which served as a model
poorly water-soluble drug, was successfully incorporated into the Ugi-OSAOcT micelles by dialysis
method. The drug loading capacity (%DL) and encapsulation efficiency (%EE) of the IBU-loaded
Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10) reached as much as 10.9 ± 0.4–14.6 ± 0.3% and
40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated that the IBU-loaded
micelles had a sustained and pH-responsive drug release behavior. In addition, the DS of the hy-
drophobic segment on an OSA backbone was demonstrated to have an important effect on IBU
loading and drug release behavior. Finally, the in vitro cytotoxicity assay demonstrated that the Ugi-
OSAOcT conjugates exhibited no significant cytotoxicity against RAW 264.7 cells up to 1000 µg/mL.
Therefore, the amphiphilic Ugi-OSAOcT conjugates synthesized by the green method exhibited great
potential to load hydrophobic drugs, acting as a promising nanocarrier capable of responding to pH
for sustained release of hydrophobic drugs.

Keywords: amphiphilic conjugates; sodium alginate; nanocarrier; self-assembly; sustained release

1. Introduction

Polymer nanocarriers made from naturally occurring and biodegradable polymers
have attracted much attention, especially in various drug delivery systems, since they offer
a promising means by which to enhance the therapeutic values of drugs by improving
their bioavailability, solubility and retention time, as well as benefitting patients due to
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lower cost and reduced toxicity [1–5]. Through great efforts from researchers, various
polymer nanocarriers are currently being developed with the aim of improving drug
delivery, especially of hydrophobic drugs including liposome, polymeric nanoparticles, self-
assembly micelles, polymersomes, polyelectrolyte complexes, polymer–drug conjugates,
dendrimers and others [6–9]. Among them, polymeric micelles with inbuilt unique features
to solubilize insoluble drugs present one of the promising drug delivery candidates and
have been proven to have a multitude of advantages, such as simple, convenient and
time-saving synthetic procedures, prolonged circulation of the blood and biocompatibility,
low cytotoxicity, efficient drug delivery and controlled release [10–12].

Polymeric micelles are formed by amphiphilic block copolymers with hydrophilic and
hydrophobic units, which can self-assemble in aqueous media above the critical micelle
concentration (CMC) into unique and stable core-shell structures and are driven by a
decrease in interfacial free energy [13,14]. Their hydrophobic core promotes the solubiliza-
tion of water-insoluble drugs, protecting them from degradation by harsh environments,
whereas their outer hydrophilic shell can reduce the binding of plasma proteins and mini-
mize nonspecific uptake by the reticuloendothelial system (RES), prolonging their blood
circulation time [15]. Naturally occurring polysaccharides used as a hydrophilic block,
such as alginate, dextran, chitosan, heparin, hyaluronic acid and chondroitin sulfate, are
the best candidates for the construction of polymeric micelles due to their well-reported
biocompatibility, availability and cost-effectiveness as well as their abundant functional
groups, amenable to chemical modifications [16–20].

Grafting of hydrophobic moieties, such as long alkyl chains or hydrophobic polymers,
to the backbone of hydrophilic polysaccharides is the most commonly used method for
preparation of amphiphilic polymers, and various preparation procedures have already
been described in the reported literature [21–23]. For example, Yang et al. prepared
amphiphilic cholesteryl-grafted sodium alginate using N,N-dicyclohexylcarbodiimide
as a coupling agent and 4-dimethylaminopyridine as the catalyst at room temperature,
where the derivatives formed self-aggregates with a size of approximately 136 nm in an
aqueous sodium chloride solution [24]. Similarly, de Oliveira Pedro et al. reported the
synthesis of amphiphilic N-(N,N-diethylethylamine)-N-dodecyl chitosan. The formed N-
(N,N-diethylethylamine)-N-dodecyl chitosan self-aggregates exhibited a high entrapment
efficiency for quercetin of more than 73%, and the release study followed a Fickian diffusion
mechanism and controlled releasing process [25].

Belonging to the category of one-pot reactions, multicomponent reactions (MCRs),
in which at least three components react to form a single product that retains all or most
of the atoms of the starting materials [26], have been emerging as a powerful tool for the
synthesis of biologically active compounds because of unique advantages, such as high
efficiency, atomic economy, waste reduction, as well as time and energy economy; this is
consistent with most of the green chemistry principles of Anastas and Warner [27]. The
Ugi four-component reaction (Ugi-4CR) is one of the most famous MCRs reported so far
to directly obtain N-acylated α-aminoamides in one step by the reaction of a carboxylic
acid, an aldehyde, an amine and an isonitrile [28]. In polymer chemistry, the Ugi-4CR also
shows its potential in the preparation of highly functional polymers [28–30].

Alginates, one of the most naturally abundant anionic polysaccharides extracted from
different species of marine brown algae and bacteria, have been extensively investigated
and used for many biomedical and pharmaceutical applications, including drug delivery,
encapsulation of enzymes and cells as well as wound healing management and tissue
regeneration, due to its excellent biocompatibility, biodegradability, non-toxicity, relatively
low cost, mild gelation by the addition of divalent cations (Ca2+), and the activity of
carboxylic and hydroxyl groups [31–34]. In addition, they have already been granted
permission from the U.S. Food and Drug Administration (USFDA) for human use [35].
Alginates are linear copolymers that consist of (1–4)-linked β-D-mannuronic acid (M) and
its C-5 epimer α-L-guluronic acid (G), which are arranged in repeating GG (MM) blocks
or alternating MG blocks. The content of the M and G residues in the framework and the
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physical properties, such as the molecular weight of the copolymer, vary with the source
and type of alginate [36]. However, alginates with high molecular weights are difficult
to degrade through cleavage of glycosidic linkages under physiological conditions [37].
This mainly restricts its applications in drug delivery. It is now well-established that the
oxidation of alginate with sodium periodate on the hydroxyl group (-OH) at the C-2 and
C-3 positions of the uronic units can enhance its biodegradability and reactivity, providing
an interesting opportunity for broadening the biomedical applications of alginate [38–40].
However, there are few reports on OSA-based amphiphilic polymer as a smart carrier for
drug delivery, especially as a pH-responsive carrier for oral hydrophobic drugs.

Herein, we report a catalyst-free approach for green and efficient preparation of the
innovative OSA-based amphiphilic conjugate (Ugi-OSAOcT) through an Ugi-4CR from
octylamine (OCA), oxidized sodium alginate (OSA), acetic acid (HAc) and tosylmethyl
isocyanide (TOSMIC) in distilled water at room temperature. The chemical structure and
thermal property of the Ugi-OSAOcT conjugate were characterized by FTIR, 1H NMR,
XRD, EA, GPC and TGA. The influencing factors, including the reaction time, temperature,
and feed molar ratio of the reactant on the degree of substitution (DS) were investigated.
The self-assembly behavior, particle size, zeta potential, morphology and stability of the
micelles in aqueous solutions were evaluated by FM, DLS and TEM. In addition, the in vitro
cytotoxicity of the Ugi-OSAOcT conjugates was evaluated by MTT assay. Ibuprofen (IBU),
which served as a model poorly water-soluble drug, was incorporated into the Ugi-OSAOcT
micelles by dialysis method. The physicochemical characteristics of the IBU-loaded Ugi-
OSAOcT micelles and in vitro drug-release behavior under different pH values were also
investigated. The results revealed that the amphiphilic Ugi-OSAOcT conjugates could have
potential applications for effective entrapment and oral delivery of hydrophobic bioactive
compounds.

2. Materials and Methods
2.1. Materials

Sodium alginate (SA, Mw: 198,000, Mn: 136,000) was obtained from J&K Reagent
Technology Co., Ltd. (Beijing, China), and the molecular weight was measured by gel per-
meation chromatography (GPC). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was purchased from Macklin Biochemical Co., Ltd. (Shanghai, China).
Sodium periodate (AR, 99.5%), ethylene glycol (AR, 98%), tosylmethyl isocyanide (TOSMIC,
98%), octylamine (OCA, 99%), acetic acid (HAc, 99.5%), ethanol absolute (AR), methanol
(AR), N,N-dimethylformamide (AR, 99.5%), sodium chloride (AR, 99.5%), model drug
ibuprofen (98%) and pyrene as a fluorescence probe were purchased from Aladdin Chemi-
cal Reagent Co., Ltd. (Shanghai, China). RAW 264.7 cells were purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China). DMEM medium were ob-
tained from Gibco (Thermo Fisher Scientific, Waltham, MA, USA). Fetal bovine serum (FBS)
was supplied by Biological Industries (Rehovot, Israel). The dialysis bag (MWCO 3500)
was purchased from Beijing Laibo Runke Biotechnology Co., Ltd. (Beijing, China) for drug
release studies. All reagents were of analytical grade and used without further purification.
Deionized water was used in all the experiments.

2.2. Synthesis of Ugi-OSAOcT Conjugates
2.2.1. Oxidation of Sodium Alginate

OSA was prepared according to the protocol previously reported by Gomez et al. with
some modifications [39]. In brief, 4.0 g (20.2 mmol) of sodium alginate (SA) was dissolved
in 200 mL of distilled water, the required amount of sodium periodate was added and
the mixture was stirred for 24 h under dark conditions at room temperature. The molar
ratios of sodium periodate to monomeric unit of SA were 1:10, 3:10 and 5:10, respectively.
The reaction was quenched by adding equimolar ethylene glycol to sodium periodate and
stirring for 0.5 h. Then, 500 mL of ethanol and 1.50 g (0.025 mol) of NaCl was added to
the mixture. The precipitate was collected by vacuum filtration, re-dissolved in deionized
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water and dialyzed against distilled water using a dialysis bag (MWCO 3500 Da) for 3 days
and, finally, lyophilized to obtain oxidized sodium alginate (OSA), named as OSA10, OSA30
and OSA50, respectively. In this paper, the subscripts in OSA10, OSA30 and OSA50 mean
the theoretical oxidation degree of OSA.

The degree of oxidation of OSA was followed by determining the concentration of
unreacted periodate by iodometry, according to the previous method [39,40]. Based on
titration results, the degree of oxidation of OSA10, OSA30 and OSA50 can be calculated as
9.51%, 27.76% and 44.25% (Table 1), respectively.

Table 1. Elemental contents of Ugi-OSAOcT conjugates prepared by the optimum reaction
parameters.

Sample a b DO (%) C (% m/m) H (% m/m) N (% m/m) DS (%)

Ugi-OSA10OcT 9.51 51.5 7.45 0.89 4.8
Ugi-OSA30OcT 27.76 41.69 7.17 1.96 14.8
Ugi-OSA50OcT 44.25 30.36 6.77 2.1 24.3

a Subscript refers to the degree of theoretical oxidation of OSA; b the degree of actual oxidation of OSA was
determined by the hydroxylamine hydrochloride/sodium hydroxide colorimetric titration method.

2.2.2. OSA Modification with OCA

Ugi-OSAOcT was synthesized via an Ugi-4CR according to the procedure described
by Yan et al. with some modifications [41]. Briefly, 2.0 g (10.0 mmol) of OSA (OSA10, OSA30
and OSA50) was first dissolved in 200 mL of deionized water (1.0%, m/v), and 4.0 mL
(24.0 mmol) of OCA was added under mechanical stirring at room temperature for 30 min.
Then, 1.71 mL (30.0 mmol) HAc and 6.44 g (33.0 mmol) of TOSMIC dissolved in 5.0 mL of
DMF was added into the reaction solution and mechanically stirred at room temperature for
12 h. Subsequently, volume of absolute ethanol five times greater was added to the mixture
to precipitate product. The precipitate was collected by centrifugation, re-dissolved in
deionized water and dialyzed against distilled water using a dialysis bag (MWCO 3500 Da)
for 3 days. Subsequently they were lyophilized to obtain the target Ugi-OSAOcT, named as
Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT, respectively.

2.3. Characterizations of Ugi-OSAOcT Conjugates

2.3.1. FTIR and 1H NMR Spectroscopy

The structure of the Ugi-OSAOcT conjugates was characterized by FTIR and 1H NMR
spectroscopy. In detail, the FTIR spectra of the sample were recorded on a Nicolet-6700
(Thermo Scientific, Waltham, MA, USA) with KBr pellets in the range of wavenumbers
between 4000 and 400 cm−1 for 64 scans with a spectral resolution of 2.0 cm−1. The 1H
NMR spectra was recorded at 25 ◦C using an ULTRASHIELD 400 PLUS spectrometer
(Bruker, Fällanden, Switzerland) operating at 400 MHz with deuterated water (D2O) as
a solvent and tetramethylsilane (TMS) as an internal standard; the concentration of the
sample was approximately 8.0–10.0 mg/mL.

2.3.2. X-ray Diffraction Analysis

The XRD pattern was performed over a 2θ range from 5◦ to 60◦ on an AXS/D8 X-
ray diffractometer (Bruker, Cambridge, UK) equipped with graphite monochromatized
high-intensity Cu-Kα radiation (λ = 0.154 nm, 40 kV, 100 mA). The scan rate was 2◦/min.

2.3.3. Thermogravimetric Analysis

Thermal stability was studied by thermogravimetric analysis (TGA). In detail, a 9.0–
10.0 mg sample was weighed and placed on a 449F3 thermogravimetric analyzer (TA
Instrument, New Castle, DE, USA) with aluminum crucibles as a sample holder. Then, the
temperature was increased from 20 ◦C to 800 ◦C at a heating rate of 20 ◦C/min under the
protection of high purity nitrogen (100 mL/min, 0.04 MPa).
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2.3.4. Measurement of Degree of Substitution

The degree of substitution (DS, %), defined as the number of OCA molecules per
100 sugar residues of OSA, was quantified by elemental analysis according to the method
described in the existing literature [41]. The elemental contents of C, H and N (% m/m)
of the sample were determined using Elementar’s vario EL Cube (Elementar, Germany).
The DS was calculated based on the C and N contents (% m/m) according to the following
Equation (1):

DS =
6αMC

2MN − 19αMC
× 100% (1)

where α, MC and MN erefer to the N/C content ratio, relative atomic mass of C and relative
atomic mass of N, respectively.

2.3.5. Gel Permeation Chromatography Analysis

A GPC (Waters e2695, Milford, MA, USA) equipped with an UltrahydrogelTM120
(7.8 × 300 mm2) column was applied to measure the weight-average molecular weight
(Mw), number-average molecular weight (Mn) and polydispersity index(PDI) of the Ugi-
OSAOcT conjugates. The concentration of the sample was 1 mg/mL, and 0.05% sodium
azide was used as the mobile phase with a flow rate of 0.6 mL/min at 40 ◦C.

2.4. Measurement of Critical Micelle Concentration (CMC)

The CMC of the Ugi-OSAOcT conjugates in 0.05 mol/L of NaCl aqueous solution was
determined using pyrene as a fluorescent probe on a F7000 fluorescence spectrophotometer
(Hitachi, Honshu, Japan) [42]. Briefly, a series of concentration ranges of 5.0 × 10−4–
2.0 mg/mL of the Ugi-OSAOcT solutions were prepared by adding 0.05 mol/L of NaCl
solution and 10 µL of pyrene (1.0 × 10−3 mol/L in methanol) to the aforementioned
solution (10.0 mL), respectively. All solutions were sonicated in ultrasonic bath and left
to evaporate overnight at 25 ◦C. Pyrene was excited at 335 nm, and its emission spectra
was recorded in the range of 350–600 nm at an integration time of 1 s with a slit width of
2.5 nm. The ratio of fluorescence intensity at 373 and 384 nm (I1/I3) was calculated and
plotted against the logarithmic concentration of the corresponding samples to determine
the CMC value of the conjugates.

2.5. Preparation of Blank Ugi-OSAOcT Micelles

The blank Ugi-OSAOcT micelles were prepared by directly dispersing the Ugi-OSAOcT
conjugates in deionized water, followed by sonication to facilitate aqueous dispersion and
self-assembly. Briefly, the Ugi-OSAOcT conjugates were dissolved in distilled water to
make a concentration of 1 mg/mL under gentle stirring at 25 ◦C for 6 h. The solution was
then sonicated for 4 min by a probe sonicator at 120 W and repeated 3 times in order to
guarantee optically clear dispersion. The sonication pulse was turned on 2 s with a waiting
time of 4 s between pulses. Finally, the micellar solution was further filtered through a
0.45 µm syringe filter and stored at 4 ◦C.

2.6. Characterization of Polymeric Micelles
2.6.1. Dynamic Light Scattering (DLS)

The particle size, polydispersity index (PDI) and zeta potential of the Ugi-OSAOcT
micelles in aqueous solution were measured by the DLS experiments using the Zetasizer
Nano ZS90 (Malvern, Worcestershire, UK) at 25 ◦C with an argon laser (He-Ne) light
wavelength of 633 nm at a 90◦ scattering angle. The solution of conjugates was maintained
at a concentration of 1 mg/mL and was passed through a 0.45 µm microfilter before DLS
measurement.

2.6.2. Transmission Electron Microscopy (TEM)

The morphologies of the Ugi-OSAOcT micelles were observed on a TEM instrument
(JEM2100, JEOL Co., Tokyo, Japan) operated at an acceleration voltage of 200 kV. Prior to
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obtaining the images, several drops of micelles solution were dropped on a carbon-coated
copper grid, stained with 2% (w/v) phosphotungstic acid for 20 s and then left to dry at
room temperature for 30 min.

2.6.3. Storage Stability of Blank Ugi-OSAOcT Micelles

To evaluate the storage stability of the prepared micelles, the blank Ugi-OSAOcT
micelles (1 mg/mL) were dispersed in PBS (pH 7.4) and incubated at 25 ◦C for 0, 1, 2, 4, 6,
8, 10 and 15 days. The mean size, PDI and zeta potential of the micelles were monitored by
DLS. All measurements were repeated in triplicate to ensure reproducibility of the results.

2.7. Preparation of IBU-Loaded Self-Assembled Nanoparticles

The IBU-loaded Ugi-OSAOcT nanoparticles were prepared by an ultrasound dialysis
method [43]. Typically, 10.0 mg of Ugi-OSAOcT conjugates were dissolved in 10 mL
distilled water. Different volumes of IBU methanol solution (0.5 mg/mL) were then added
dropwise to the solution under gentle stirring for 2 h at room temperature and further
sonicated for 10 min by probe-type ultra sonicator. Subsequently, the whole solution was
transferred to a dialysis bag (MWCO 3500 Da) and dialyzed against distilled water for
48 h to remove the organic solvents and free IBU. Distilled water was exchanged at 4 h
intervals during the dialysis procedure. After dialysis, the final solutions were centrifuged
at 8000 rpm for 20 min, and the supernatant was filtered through a 0.45 µm syringe filter to
remove the insoluble IBU and then lyophilized for 48 h to obtain micelle powders.

To determine the IBU-loading contents, a known amount of freeze-dried IBU-loaded
nanoparticles was dissolved in methanol (1 mL), sonicated for 30 min and filtered through
a 0.45 µm syringe filter. The IBU concentration was measured by using a UV-vis spec-
trophotometer (U-3900, Hitachi, Japan) at 222 nm based on the standard calibration curve
obtained from free IBU in methanol. The encapsulation efficiency (%EE) and drug loading
(%DL) were calculated according to Equations (2) and (3), as follows, respectively:

%EE =
Weight o f IBU loaded in micelles

Weight o f f eeding IBU
× 100 (2)

%DL =
Weight o f IBU loaded in micelles

Total Weight o f micelles
× 100 (3)

2.8. In Vitro Drug Release Studies

To evaluate the suitability of the Ugi-OSAOcT nanoparticle for a variety of applications,
the in vitro release behavior of IBU from an IBU-loaded Ugi-OSAOcT nanoparticle was
investigated by a common dialysis method in PBS buffer media with different pH values
(0.1 M, pH 1.2, 5.0 and 7.4) at 37 ◦C. The PBS media with pH values of 1.2 and 7.4 were
respectively used as the simulated gastric fluid and simulated intestinal fluid. Tween
80 (0.5%, w/v) used as a surfactant was added to the PBS media to maintain the sink
conditions [44]. Briefly, 1.0 mL of IBU-loaded Ugi-OSAOcT nanoparticle solution was
placed in dialysis bag (MWCO 3500 Da) and then immersed completely in 30 mL of release
media. The whole release system was incubated in a thermostat water bath and shaken
at 100 rpm at 37 ◦C. At the predetermined time points (0.5, 1, 3, 5, 7, 9, 12, 15, 18, 24, 36
and 48 h), 3 mL of the release media was withdrawn, and the same volume of fresh release
media were then added to maintain a constant volume. The released amounts of IBU were
measured by a UV–vis absorption experiment at a wavelength of 222 nm. For comparison,
similar release experiments were performed with the same amount of free IBU as found
in the IBU-loaded nanoparticle. Before the UV absorption experiments, calibration curves
of IBU in the PBS-containing Tween80 (0.5%, w/v) were plotted. All experiments were
performed in triplicate. The percentage of cumulative drug release was calculated from
Equation (4) as follows:

Er(%) =
3 ∑n−1

1 Ci + 30Cn

WloadedIBU
× 100 (4)
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where Ci and Cn refer to the concentrations of IBU extracted from release media at i and
n time, respectively, and n is the number of times the sample solution was withdrawn.
Wloaded IBU is the weight of IBU previously loaded in the Ugi-OSAOcT nanoparticles.

2.9. In Vitro Cytotoxicity Assays

The cytotoxicity of the Ugi-OSAOcT conjugates, OSA and SA (control) against RAW
264.7 cells were evaluated by MTT assay [45,46]. In detail, RAW 264.7 cells were seeded
into 96 well plates at a density of 4.0 × 103 cells/well in the incubator (37 ◦C, 5% CO2) for
24 h. The culture medium was replaced with 100 µL of the sample solutions containing
a series of concentrations (0, 200, 400, 600, 800 and 1000 µg/mL) in DMEM. Following
incubation for 48 h, the culture medium was then replaced with fresh DMEM (100 µL),
followed by an addition of 20 µL of MTT solution in PBS (5 mg/mL), and incubated for
an additional 4 h at 37 ◦C in CO2. The MTT-containing medium was then removed, and
100 µL of DMSO was added to each well to solubilize the formed formazan crystal with
gentle agitation for 10 min. The absorbance of the solution was measured at 570 nm with
a Multiskan MK3 microplate reader (Thermo, Waltham, MA, USA). All experiments for
this study were performed in triplicate, and the cell viability (%) was calculated from
Equation (5) as follows:

%Cell viablilty =
AbS570nmsample − AbS570nmblank
AbS570nmcontrol − AbS570nmblank

× 100 (5)

where Abs570nm blank refers to the absorbance of DMSO at 570 nm without cells. Abs570nm
sample and Abs570nm control refer to the absorbance at 570 nm in the presence and in the
absence of treatment samples, respectively.

2.10. Statistical Analysis

All data are presented as the mean value ± standard deviation. A single factor ANOVA
was performed by SPSS software to analyze the variables, and a value of p < 0.05 was
considered statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterization of Ugi-OSAOcT Conjugates

The Ugi-OSAOcT conjugates with various DS were straightforwardly synthesized by
grafting OCA to the OSA backbone via an Ugi-4CR, and the detailed synthetic scheme of
the Ugi-OSAOcT conjugate was presented in Figure 1. Water, a non-toxic and safe solvent,
can significantly reduce the impact of the process on the environment of the reaction.
Accordingly, we envisioned that the utilization of an Ugi-4CR would provide a rapid and
effective synthetic way to constructi novel amphiphilic polymers, due to the advantages
of simplicity, atom-economy and good yields. Successful synthesis of the conjugates was
confirmed by FTIR and 1H NMR, as shown in Figure 2A,B, respectively.

The FTIR spectra of SA, OSA, OCA and the Ugi-OSAOcT conjugates were represented
in Figure 2A. The strong and broad band at 4000–3000 cm−1 was assigned to the O-H
stretching vibration of polysaccharide, and the band at 2925 cm−1 was attributed to the
C-H stretching vibration of the polysaccharide structure [47]. The characteristic absorption
peak of SA at 1621 cm−1 and 1419 cm−1 belonged to the asymmetric and symmetric stretch-
ing vibrations of -COO-, respectively [48]. The band at 1100–890 cm−1 was attributed to
ether groups of the polysaccharide skeleton (C-O-C stretching) [49]. However, OSA’s char-
acteristic band at 1734 cm−1 was too weak and hard to be detected due to the formation of
hemiacetal by the free aldehyde groups [50]. The characteristic band of OCA was also iden-
tified at 3300 cm−1 (N-H stretching), at 2925 cm−1 (-CH2 stretching) and at 2842 cm−1 (-CH3
stretching). After conjugation of OCA to the OSA backbone, the abovementioned typical
bands of OSA appeared in the Ugi-OSAOcT conjugate with various DS spectra. In addition,
the characteristic absorption peaks corresponding to OCA (2925 cm−1 and 2842 cm−1) were
both observed, which confirmed successful introduction of OCA in the OSA skeleton [25].



Polymers 2022, 14, 694 8 of 22

Furthermore, it was possible to compare the Ugi-OSAOcT conjugate with its physical
mixture, where the amino group of OCA is well observed, further supporting successful
synthesis of the Ugi-OSAOcT conjugates.
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The structures of the Ugi-OSAOcT conjugates were further confirmed by 1H NMR.
From Figure 2B, the typical peaks of SA were found at δ = 3.5–5.0 ppm, assigned to the
methylene of uronic acid for SA [48]. In comparison with SA, the new signals of OSA at
about δ = 5.35, 5.02 and 4.30 ppm confirmed the successful oxidation of SA with sodium
periodate, which were attributed to a hemiacetalic proton generated formaldehyde groups
with hydroxyl groups present on the adjacent uronic acid subunits on the OSA [39]. On the
Ugi-OSAOcT conjugate spectra, the peaks at δ = 0.8, 1.1–1.5 and 2.0–3.0 ppm were attributed
to the methyl group (-CH2-CH3), methylene (-(CH2)6-CH2-NH-) and methylene (-(CH2)6-
CH2-NH-) of OCA, respectively. The characteristic peaks at δ = 2.30 and 7.0–8.0 ppm
were attributed to the methyl group (Ph-CH3) and its phenyl protons (Ph-H) of TOSMIC,
respectively. Therefore, the presence of the typical peaks of OSA, OCA and TOSMIC in the
Ugi-OSAOcT conjugate spectra further confirmed successful synthesis of the Ugi-OSAOcT
conjugates via the Ugi-4CR [25].

The DS of the Ugi-OSAOcT conjugates was calculated by the element contents of
C and N obtained from EA data. The optimum reaction parameters for coupling of the
primary amines to OSA via Ugi-4CR were found through a series of experiments (see
Table 2). In all the optimization experiments, the influence of the feed molar ratio of OSA
to OCA, temperature and amounts of HAc using the same batch of OSA10 on DS were
investigated. As SA was oxidized by sodium periodate to obtain OSA with a dialdehyde
structure, all experiments were carried out on the basis of a molar ratio of OSA to OCA
(1:2), in order to obtain a high DS. As shown in Figure 3A–C, the DS of the Ugi-OSAOcT
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conjugates increased with an increasing reaction time for all combinations of the reaction
parameters and reached the plateau DS values at 12 h.
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Figure 2. (A) FTIR spectra of (a) SA, (b) OSA, (c) Ugi-OSA10OcT, (d) Ugi-OSA30OcT, (e) OCA, (f) Ugi-
OSA50OcT and (g) OCA+OSA mixture; (B) 1H NMR spectra of (a) OCA (CDCl3), (b)TOSMIC (D2O),
(c)SA (D2O), (d)OSA (D2O), (e)Ugi-OSA10OcT (D2O), (f) Ugi-OSA30OcT (D2O) and (g) Ugi-OSA50OcT
(D2O).
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Table 2. Optimization of reaction parameters for preparation of OCA-grafted OSA10 (Ugi-OSA10OcT)
via Ugi-4CR.

NOSA10:NOCA:NHAc:NTOSMIC
a t (h) T (◦C) DS (%) b Mw c Mn c Mw/Mn c Yield (%)

1:2:2:2.2 12 25 3.3 112,671 84,132 1.34 41.3
1:2.4:2.4:2.6 12 25 4.0 121,653 92,161 1.32 52.6
1:2.8:2.8:3.1 12 25 3.9 119,868 77,334 1.55 53.4
1:2.4:2.4:2.6 16 25 3.8 120,848 81,654 1.48 53.3
1:2.4:2.4:2.6 8 25 2.8 111,269 73,203 1.52 46.8
1:2.4:2.4:2.6 12 37 3.8 121,058 85,857 1.41 48.5
1:2.4:3:3.3 12 25 4.8 123,259 88,676 1.39 54.2

1:2.4:3.5:3.9 12 25 4.8 124,512 87,685 1.42 54.7
a The molar ratio of reagent corresponding to OSA10:OCA:HAc:TOSMIC; b determined by EA; c determined by
GPC (0.05% sodium azide as the mobile phase).
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Figure 3. (A–C) DS (%), as a function of reaction time after coupling of OCA to OSA10 varying: (A)
molar ratio of OCA to OSA at 25 ◦C; (B) temperature (25 ◦C and 37 ◦C) using the molar ratio of
1:2.4:2.4:2.6 (NOSA10:NOCA:NHAc:NTOSMIC); and (C) amount of HAc at constant molar ratio of
1:2.4 (NOSA10:NOCA) and 25 ◦C. (D) GPC traces of OSA10 and Ugi-OSAOcT conjugates.

The DS could be increased by increasing the amounts of OCA. As shown in Figure 3A,
the feed molar ratio of OSA to OCA increased from 1:2 to 1:2.4, corresponding to an
increase in the DS from 3.3% to 4.0%. It then continued to increase to 1:2.8 as the DS slightly
decreased to 3.9%. The reason for this may be that an increase in the feed amount of
OCA will increase the alkalinity of the solution, making OSA more easily decomposed and
degraded, resulting in a decrease in DS. Whereas, increasing the temperature from 25 ◦C to
37 ◦C had a definite effect on the DS (Figure 3B), indicating that a temperature beyond 25 ◦C
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resulted in the degradation or hydrolysis of isocyanide. Therefore, the most appropriate
temperature proved to be around 25 ◦C. In addition, the DS increased from 4.0% to 4.9%
with an increase in the molar ratio of OSA to HAc from 1:2.4 to 1:3.5, suggesting that the DS
could be substantially increased by increasing the amount of HAc (Figure 3C). This may be
attributed to the fact that the HAc was conducive to the protonation of imine intermediates
and promoted progress in the Ugi-4CR.

Overall, the optimum reaction conditions for synthesizing a high DS of the Ugi-
OSAOcT conjugate was obtained, which were a reaction time of 12 h, a reaction temperature
of 25 ◦C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively, and a
series of Ugi-OSAOcT conjugates with a high DS were prepared using OSA with different
oxidation degrees. As shown in Table 1, the DS of the Ugi-OSAOcT conjugates varied from
4.8% to 24.3% with an increase in the oxidation degree of OSA from 9.51% to 44.25%. In
addition, the molecular weight of the Ugi-OSAOcT conjugates decreased with an increase
in the oxidation degree of OSA (Figure 3D). These results are consistent with previous
findings in other reports [51].

XRD is the most direct and effective method for analyzing the crystallinity of the poly-
mers, which has great influence on drug incorporation, micelle stability, and drug release.
Importantly, the research of Zhang et al. has revealed that an amorphous structure was
favorable for drug loading [52]. As shown in Figure 4A, the XRD patterns of SA and OSA
showed diffraction peaks at 2θ = 14.8, 22.3◦ and 2θ = 15.1◦, 22.4◦, respectively, suggesting
that the hydrated crystalline structure resulted from the intramolecular hydrogen bonds
of SA and OSA. For the Ugi-OSAOcT conjugates, a typical diffraction peak at 2θ = 20◦

was observed, indicating that the Ugi-OSAOcT conjugates became amorphous due to the
introduction of hydrophobic OCA units in the OSA block and destruction of inter- and
intramolecular hydrogen bonds [53]. These results are consistent with those reported by
Prabaharan et al. and Zong et al. [54,55].

The thermal stability of the Ugi-OSAOcT conjugates with different DS was evaluated
by TGA and DTG. The TGA curves were shown in Figure 4B. SA and the Ugi-OSAOcT
conjugates displayed similar thermal degradation behaviors, revealing two notable weight
loss stages. The first one began at 80–120 ◦C, which was attributed to the evaporation
of the physically adsorbed and encapsulated water in the samples [56,57]. The second
weight loss stage took place between 200–300 ◦C, corresponding to the decomposition of
the Ugi-OSAOcT conjugates’ molecular skeletons [58]. It can be also observed that the
initiatial decomposition temperature of the Ugi-OSAOcT conjugates was independent of
their DS, which was lower than that of SA (248 ◦C), indicating that the thermal stability of
the Ugi-OSAOcT conjugates decreased. This result could be attributed to the introduction
of hydrophobic groups that reduced the carboxyl groups of polymers, thus destroying the
intramolecular hydrogen bonds of SA, which was consistent with the XRD analysis.

3.2. Self-Assembly Behavior of Ugi-OSAOcT Conjugate

The self-assembly behavior of the amphiphilic conjugate was first evaluated by mea-
suring the CMC with a pyrene fluorescence probe technique. Pyrene displays five char-
acteristic emission peaks in the range of 370–400 nm. The peak intensity is sensitive to
the micro-environmental polarity surrounding the pyrene molecules. As illustrated in
Figure 5A, the ratio of pyrene fluorescence intensities emitted at 373 and 384 nm (I1/I3)
remained almost unchanged at low concentrations of the amphiphilic conjugate and de-
creased sharply once the amphiphilic conjugate concentration reached the CMC, indicating
that the micelles were formed, and the pyrene probe molecules were encapsulated, in the
hydrophobic interior of the micelles. The intensity ratio of I1/I3 was plotted as a function
of the logarithm of conjugate concentration to obtain the CMC value. The CMC values
of Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT were found to be 0.30, 0.20 and
0.085 mg/mL, respectively, which was significantly lower than that of the surfactant for
sodium dodecyl sulfate (CMC = 2.3 mg/mL) [59]. It can be observed from Figure 5B that
the CMC value of the Ugi-OSAOcT conjugates decreased with an increase in the DS. This
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was possibly ascribed to the introduction of an OCA unit that provided more hydropho-
bicity to the Ugi-OSAOcT conjugates, thus exhibiting a higher tendency for self-assembly
in an aqueous solution, which was similar to the previously reported amphiphilic block
copolymers [60]. Moreover, an amphiphilic conjugate with a lower CMC value could show
a higher thermodynamic stability and retain intact micellar structures even under a high
dilution condition, achieving the aim of a long blood circulation time [61,62].
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in 0.05 mol/L aqueous NaCl solution at 25 ◦C; (B) changes in the CMC value of Ugi-OSAOcT micelles
in 0.05 mol/L aqueous NaCl solution at 25 ◦C as a function of DS.

3.3. Preparation and Characterization of Ugi-OSAOcT Micelles

An ultrasonic is a commonly used approach to induce the self-assembly of the am-
phiphilic Ugi-OSAOcT conjugates in order to achieve the formation of micelles in an
aqueous solution. The particle size and zeta potential, characterized by DLS, are crucial
parameters for nanoparticle evaluations. Table 3 summarizes the particle size and zeta
potential of Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT micelles (1.0 mg/mL). As
shown in Figure 6A, when the DS of the Ugi-OSAOcT conjugates increased from 4.8 to
24.3%, the particle size of the micelles decreased from 196.5 ± 3.8 to 135.7 ± 2.4 nm, suggest-
ing that an increase in hydrophobic block content enhanced the hydrophobic interaction
between hydrophobic groups, resulting in a more compact cores and a smaller particle size.
Zeta potential is one of the important factors for maintaining the stability of micelles. In
general, micelles with an absolute value of zeta potential greater than 30 mV have good
stability due to electrostatic repulsion [63,64]. Figure 6B showed that the zeta potential of
the Ugi-OSAOcT micelles (1.0 mg/mL) was around −35 mV, indicating the presence of
multiple ionized carboxyl groups (-COO−) on the micelles’ surfaces, favoring long-term
storage stability and long circulation in the body, due to strong electrostatic repulsion
between micelles.

Table 3. Characteristics of Ugi-OSAOcT micelles (1.0 mg/mL): Data are presented as mean ± SD
(n = 3).

Sample DS (%) CMC
(mg/mL) Size (nm) PDI Zeta Potential

(mV)

Ugi-OSA10OcT 4.8 0.30 196.5 ± 3.8 0.43 ± 0.04 −38.2 ± 0.8
Ugi-OSA30OcT 14.8 0.20 178.3 ± 4.5 0.45 ± 0.03 −36.8 ± 0.6
Ugi-OSA50OcT 24.3 0.085 135.7 ± 2.4 0.37 ± 0.02 −32.8 ± 0.4

A TEM image showed the morphologies of the self-assembled Ugi-OSA50OcT mi-
celles (1.0 mg/mL). As shown in Figure 6C, all micelles were almost spherical with a size
ranging from 90–110 nm and were well-dispersed with no aggregation. The particle size
obtained from TEM was found to be smaller than that obtained by DLS measurement
(135.7 ± 2.4 nm), as shown in Figure 6D. This phenomenon was ascribed to shrinkage of
the micelles caused by water evaporation during air drying during the TEM analysis, while
the DLS measurements were carried out in an aqueous medium, where the micelles were
in swollen form [65].
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Figure 6. (A) Size distribution and (B) zeta potential determined with DLS for the blank Ugi-OSAOcT
micelles with different DS at 25 ◦C; (C) TEM; and (D) size distribution for the blank Ugi-OSA50OcT
micelles at 25 ◦C. The mass concentration of Ugi-OSAOcT conjugates was 1.0 mg/mL. Data are
presented as mean ± SD (n = 3).

Figure 7A,B illustrates the influence of pH on the particle size and zeta potential of the
Ugi-OSAOcT micelles. When the pH decreased from 5.0 to 3.6, the zeta potential increased
promptly from −27.8–−33.1 mV to −15.2–−19.5 mV. Nevertheless, no significant changes
in the particle size of the micelles were observed. This may be attributed to the fact that
the beginning of protonation of the carboxylic acid groups reduced electrostatic repulsion
among the polymer chains and increased the hydrophobicity of micelles, resulting in a
decrease in the swelling capacity of the micelles. When the pH increased from 5.0 to
7.4, the particle size of the Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT micelles
increased from 145,138 and 108 nm to 196,178 and 135 nm, respectively, suggesting that an
increase in deprotonation of the carboxylic acid groups enhanced electrostatic repulsion
among the polymer chains and hydrophilicity of the micelles, giving rise to the swelling
behavior of the micelles, which could be further supported by the decrease in zeta potential
from −27.8–−33.1 mV to −32.8–−38.2 mV. A similar swelling behavior of the polymeric
nanoparticles responding to pH changes has been reported elsewhere [66].
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The long-term stability of the Ugi-OSAOcT micelles (1.0 mg/mL) of up to 15 days
was also performed in PBS (pH 7.4) at 25 ◦C by measuring the particle size, PDI and zeta
potential. As shown in Figure 7C,D, the particle size and zeta potential of all micelles did
not significantly change during the first six days. With the extension of storage time to
15 days, the particle size and absolute value of the zeta potential decreased slightly due,
to a certain extent, the degradation of the polymer micelles, indicating good long-term
stability in PBS (pH 7.4), which is in line with the fact that the micelles generally have good
stability under neutral conditions [67].

3.4. Preparation and Characterization of IBU-Loaded Ugi-OSAOcT Micelles

The IBU-loaded Ugi-OSAOcT micelles were obtained by self-assembly and purified
by dialysis in order to remove the organic solvent. A series of IBU-loaded Ugi-OSAOcT
micelles with various drug feeding ratios were prepared, and their characteristics were
shown in Table 4. It was found that the sizes of the IBU-loaded micelles increased as the
loading content increased, suggesting that the IBU molecules were successfully encapsu-
lated into the hydrophobic inner cores, and the encapsulated IBU molecules increased
the size of the Ugi-OSAOcT micelles. The DL and EE of the IBU-loaded Ugi-OSA50OcT
micelles increased with an increase in the drug feeding ratio. However, when the feeding
mass ratio of IBU to Ugi-OSA50OcT increased from 3:10 to 5:10, the EE reduced from
57.2 ± 1.3% to 52.4 ± 1.5%, suggesting that the EE reached a maximum value at the mass
ratio of 3:10 (IBU:Ugi-OSA50OcT). This upward trend in DL and EE could be explained
by the enhanced hydrophobic interaction between hydrophobic groups and IBU with the
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increase in hydrophobic IBU feeding ratio. When the drug content in the micelles reached
saturation, severe precipitation occurred with a further increase in the IBU feeding ratio,
leading to the decrease in EE. In addition, the size of IBU-loaded Ugi-OSA50OcT micelles
remained less than 200 nm, which was very crucial for avoiding reticuloendothelial system
(RES), as shown in Figure 8A [68,69]. As can be seen in Figure 8B, the TEM image of the
IBU-loaded Ugi-OSA50OcT micelles also indicated a spherical morphology.

Table 4. Characteristics of IBU loaded Ugi-OSAOcT micelles. Data are presented as mean ± SD
(n = 3).

Sample Drug/Polymer
(w/w) DL (%) EE (%) Size (nm) PDI Zeta Potential

(mV)

Ugi-OSA50OcT 1:10 3.9 ± 0.4 40.8 ± 1.6 142.5 ± 3.5 0.37 ± 0.06 −34.8 ± 1.4
Ugi-OSA50OcT 2:10 8.2 ± 0.5 44.6 ± 1.8 150.7 ± 2.3 0.41 ± 0.03 −35.2 ± 1.8
Ugi-OSA50OcT 3:10 14.6 ± 0.3 57.2 ± 1.3 160.3 ± 5.7 0.35 ± 0.02 −38.8 ± 0.6
Ugi-OSA50OcT 5:10 19.3 ± 1.2 52.4 ± 1.5 154.6 ± 4.8 0.36 ± 0.05 −36.7 ± 1.5
Ugi-OSA10OcT 3:10 10.9 ± 0.4 40.8 ± 1.6 210.8 ± 5.2 0.45 ± 0.03 −42.5 ± 0.3
Ugi-OSA30OcT 3:10 13.2 ± 0.5 50.6 ± 1.8 198.6 ± 4.8 0.43 ± 0.03 −42.3 ± 0.5
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When the feeding mass ratio of the IBU to Ugi-OSAOcT was maintained at 3:10, the
size of the IBU-loaded Ugi-OSAOcT micelles displayed a slight decrease with the rise in
DS from 210.8 ± 5.2 nm (Ugi-OSA10OcT) to 198.6 ± 4.8 nm (Ugi-OSA30OcT) and further
to 160.3 ± 5.7 nm (Ugi-OSA50OcT). This tendency of the particle size was in agreement
with that of the blank Ugi-OSAOcT micelles in terms of DS. In addition, the DL of the
Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT micelles were 10.9 ± 0.4%, 13.2 ± 0.5%
and 14.6 ± 0.3%, respectively, corresponding to EE values of 40.8 ± 1.6%, 50.6 ± 1.8% and
57.2 ± 1.3%, respectively. Obviously, the DS influenced both the DL and EE of the IBU-
loaded Ugi-OSAOcT micelles. A possible reason is that more hydrophobic OCA groups
grafted on the hydrophilic mainchain enhanced the hydrophobic association between the
hydrophobic chain, which improved the hydrophobic affinity with the hydrophobic IBU
molecules, thereby providing more available sites for hydrophobic interaction with IBU
molecules in the inner cores, and thus resulting in an increase in EE and DL. This is in
accordance with the results from study by Yokoyama et al. [70].
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3.5. In Vitro Release of IBU from Ugi-OSAOcT Micelles

To investigate the potential utilization of the Ugi-OSAOcT micelles as oral drug
carriers, in vitro drug release of IBU from micelles was explored in PBS (pH 7.4 and 5.0) at
37 ◦C. As shown in Figure 9A, IBU release from micelles occurred in a sustained release
pattern compared with that of free IBU, which was found to release 93% within 7 h,
confirming that IBU molecules were well encapsulated in the inner core of micelles. The
cumulative release amount of IBU from Ugi-OSA10OcT, Ugi-OSA30OcT and Ugi-OSA50OcT
was 73.2%, 67.2% and 63.1% within 48 h, respectively, displaying a slight decrease with an
increasing DS. A possible reason is that the Ugi-OSAOcT micelles with a high DS could form
a more compact hydrophobic core and exhibit a higher affinity with IBU molecules, which
reduced the rate of drug diffusion from the micellar core. Therefore, it can be considered as
a potential strategy to fine-tune the DS of conjugates for better control of the drug release,
thereby retaining more drugs in polymeric micelles during their in vivo transport before
reaching target tissue/cells, which provides a higher therapeutic efficacy [71].
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Figure 9. In vitro release profile of: (A) free IBU and loaded IBU from Ugi-OSAOcT micelles with
different DS at 37 ◦C in PBS (pH 7.4) containing Tween 80 (0.5% w/v) and (B) loaded IBU from
Ugi-OSA50OcT micelles at 37 ◦C in PBS containing Tween 80 (0.5% w/v) at different pH values. Data
are expressed as mean ± SD (n = 3).

The IBU loaded micelles also showed a sustained and pH-dependent drug release
manner. As shown in Figure 9B, about 39.8% and 54.1% of IBU were released, respectively,
from the Ugi-OSA50OcT micelles in PBS (pH = 1.2) and PBS (pH = 5.0), while 63.1% of
IBU was released in PBS (pH = 7.4). The results showed slower release behavior at a
lower pH. In acidic conditions (pH = 1.2 and 5.0), the weak acid groups (-COOH) in
the Ugi-OSA50OcT backbone were protonated, and the surface charge of the micelles
gradually decreased, which could enhance the hydrophobicity of the micelles and reduce
the electrostatic repulsion, thus forming a tighter core-shell structure to make the IBU
release more slowly. In actual drug therapy, the prolongation of release time and ideal
control performance is beneficial for improving the drug efficacy and drug utilization. In a
short period of time after taking the drug, the blood concentration of the drug in the matrix
could reach the effective concentration relatively quickly, and then, the concentration could
be maintained for a longer period of time, thereby achieving the purpose of sustained
release. Moreover, the protonated Ugi-OSA50OcT backbone at a lower pH (simulated
gastric fluid) was conducive for protecting the drug from digestion. Consequently, the
Ugi-OSA50OcT micelles were suitable for oral drug administration [72]. Conversely, the
release rates of the IBU in PBS (pH = 7.4) showed a faster and greater release behavior,
which made it a potential carrier for liposoluble nutraceuticals, such as IBU with controlled
release in gastrointestinal fluid.
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3.6. In Vitro Cytotoxicity of Ugi-OSAOcT Conjugates

The in vitro cytotoxicity of the Ugi-OSAOcT conjugates, OSA and SA (control) against
RAW 264.7 cells were evaluated by MTT assay. In general, a percentage of cell viability
greater than 80% is considered to be a low cytotoxic in MTT assay analysis [73,74]. As
shown in Figure 10, the Ugi-OSAOcT conjugates displayed a similar cell viability to SA;
the cell viability of the RAW 264.7 cells remained above 90% after incubation for 48 h
with a concentration of Ugi-OSAOcT conjugates ranging from 0 µg/mL to 1000 µg/mL.
This indicated that an introduction of alkyl chains into OSA would not cause significant
cytotoxicity against RAW 264.7 cells, even though the Ugi-OSAOcT concentration reached
1000 µg/mL. More importantly, the biocompatibility was independent of the concentration
and DS of the Ugi-OSAOcT conjugates. These results were in good agreement with other
studies on the development of amphiphilic OSA derivatives [75,76].
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4. Conclusions

In the present study, amphiphilic Ugi-OSAOcT conjugates with different DS were
successfully synthesized in distilled water at room temperature using OCA, OSA, HAc
and TOSMIC via the Ugi-4CR for sustained release of IBU. The optimum reaction param-
eters were a reaction time of 12 h, a reaction temperature of 25 ◦C and a molar ratio of
1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The Ugi-OSAOcT conjugates could
self-assemble into stable micelles in aqueous solutions with low CMC values in the range
of 0.40–0.085 mg/mL, a small size in the range of 135.7 ± 2.4–196.5 ± 3.8 nm and negative
zeta potential in the range of −32.8 ± 1.4–−38.2 ± 1.8 mV. The DL and EE of the IBU-loaded
Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10, w/w) reached as much as 10.9 ± 0.4–14.6
± 0.3% and 40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated
that the IBU-loaded micelles exhibited sustained and pH-responsive drug release behavior,
indicating that the micelles are suitable for oral drug delivery. In addition, the DS of the
hydrophobic segment on the OSA backbone had an important effect on the IBU-loading
and drug release behavior. Additionally, the Ugi-OSAOcT conjugates exhibited a lower
cytotoxicity against RAW 264.7 cells, which indicates that the Ugi-OSAOcT micelles could
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be considered a safe carrier for biomedical applications. Therefore, it could be an ideal
candidate for hydrophobic drug delivery in the biomedical field.
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