

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(5-Methylthiophen-2-yl)methylidene]malononitrile

Xuewei Liu, Zhengbang Chen, Weiwei Cao, Haifeng Gan and Kai Guo*

College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Puzhunan Road No.30 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: kaiguo@njut.edu.cn

Received 19 March 2013; accepted 25 May 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.070; wR factor = 0.102; data-to-parameter ratio = 15.0.

There are two independent molecules in the asymmetric unit of the title compound, $C_9H_6N_2S$, which is an intermediate compound of a cardiovascular drug. The two molecules are nearly planar, displaying dihedral angles of 3.5 (2) and 5.7 (2)° between the thiophene ring and the malononitrile moiety. In the crystal, $C-H\cdots N$ interactions lead to the formation of a sheet structure that packs in a parallel fashion.

Related literature

For a related structure, see: Altundas *et al.* (2011). For bond-length data, see: Allen *et al.* (1987).

c = 10.1350 (2) Å

Experimental

Crystal data
$C_9H_6N_2S$
$M_r = 174.22$
Triclinic, $P\overline{1}$

$M_r = 174.22$	$\alpha = 81.10 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	$\beta = 80.71 \ (3)^{\circ}$
a = 9.1120 (18) Å	$\gamma = 86.70 \ (3)^{\circ}$
b = 9.9380 (2) Å	V = 894.3 (3) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 0.30 \text{ mm}^{-1}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.915, \ T_{\max} = 0.970$
3465 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.102$ S = 1.003247 reflections 1399 reflections with $I > 2\sigma(I)$ $R_{int} = 0.081$ 3 standard reflections every 200 reflections

3247 independent reflections

intensity decay: 1%

217 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.20\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.28\ e\ \text{\AA}^{-3} \end{split}$$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C3 - H3A \cdots N2^{i}$ $C6 - H6A \cdots N3^{ii}$ $C12 - H12A \cdots N4^{iii}$ $C15 - H15A \cdots N1^{i}$	0.93 0.93 0.93 0.93	2.52 2.52 2.60 2.51	3.439 (6) 3.434 (6) 3.518 (6) 3.430 (6)	168 169 171 170

Symmetry codes: (i) x, y, z + 1; (ii) x + 1, y - 1, z - 1; (iii) x, y, z - 1.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This research work was financially supported by School of Pharmaceutical Science, Nanjing University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2229).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altundas, A., Ayvaz, S. & Logoglu, E. (2011). Med. Chem. Res. 20, 1-8.
- Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

T = 293 K

supplementary materials

Acta Cryst. (2013). E69, o1003 [doi:10.1107/S1600536813014487]

2-[(5-Methylthiophen-2-yl)methylidene]malononitrile

Xuewei Liu, Zhengbang Chen, Weiwei Cao, Haifeng Gan and Kai Guo

Experimental

To a solution of 5-methylthiophene-2-carbaldehyde (10.02 mmol, 1.27 g) and malononitrile (10.13 mmol, 0.67 g) in ethanol (20 ml) was added triethyl (0.31 ml) and the reaction mixture stired at room temperature for 3 h. The reaction solution was filtered to get the title compound (1.44 g) as yellow solid. Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.96 for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ (or 1.5 for methyl groups) times $U_{eq}(C)$.

Computing details

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1989); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Fig. 2. A practical packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Figure 2

A packing diagram for the title compound.

2-[(5-Methylthiophen-2-yl)methylidene]malononitrile

Crystal data C₉H₆N₂S $M_r = 174.22$ Triclinic, P1 Hall symbol: -P1 a = 9.1120 (18) Å b = 9.9380 (2) Å c = 10.1350 (2) Å $\alpha = 81.10 (3)^{\circ}$ $\beta = 80.71 (3)^{\circ}$

 $\gamma = 86.70 (3)^{\circ}$ $V = 894.3 (3) Å^{3}$ Z = 4 F(000) = 360 $D_{x} = 1.294 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 Å$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$

T = 293 K $0.30 \times 0.20 \times 0.10$ mm Colorless, yellow Data collection Enraf-Nonius CAD-4 3247 independent reflections 1399 reflections with $I > 2\sigma(I)$ diffractometer Radiation source: fine-focus sealed tube $R_{\rm int} = 0.081$ Graphite monochromator $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ $h = 0 \rightarrow 10$ $\omega/2\theta$ scans Absorption correction: ψ scan $k = -11 \rightarrow 11$ (North et al., 1968) $l = -12 \rightarrow 12$ $T_{\rm min} = 0.915, T_{\rm max} = 0.970$ 3 standard reflections every 200 reflections 3465 measured reflections intensity decay: 1% Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.070$ Hydrogen site location: inferred from $wR(F^2) = 0.102$ neighbouring sites S = 1.00H-atom parameters constrained 3247 reflections $w = 1/[\sigma^2(F_0^2) + (0.017P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ 217 parameters $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.49006 (14)	0.26105 (12)	-0.05976 (12)	0.0669 (4)	
N1	0.4196 (5)	0.3320 (4)	-0.3837 (4)	0.0881 (14)	
C1	0.4416 (6)	0.3227 (5)	0.2007 (5)	0.0890 (16)	
H1A	0.4734	0.2980	0.2872	0.133*	
H1B	0.3370	0.3081	0.2092	0.133*	
H1C	0.4603	0.4171	0.1682	0.133*	
C2	0.5250 (5)	0.2376 (5)	0.1038 (4)	0.0659 (14)	
N2	0.7023 (5)	0.0147 (5)	-0.5565 (4)	0.0922 (15)	
C3	0.6315 (5)	0.1367 (5)	0.1227 (5)	0.0712 (15)	
H3A	0.6654	0.1091	0.2047	0.085*	
C4	0.6835 (5)	0.0797 (4)	0.0059 (4)	0.0657 (13)	
H4A	0.7563	0.0102	0.0025	0.079*	
C5	0.6177 (5)	0.1354 (4)	-0.1039 (4)	0.0505 (12)	
C6	0.6545 (5)	0.0882 (4)	-0.2296 (4)	0.0540 (12)	

H6A	0.7237	0.0157	-0.2307	0.065*
C7	0.6063 (4)	0.1304 (4)	-0.3479 (4)	0.0525 (12)
C8	0.5028 (5)	0.2431 (5)	-0.3670 (4)	0.0630 (14)
С9	0.6586 (5)	0.0674 (5)	-0.4633 (5)	0.0644 (14)
S2	-0.01039 (14)	0.76331 (12)	0.47759 (12)	0.0648 (4)
N3	-0.0749 (5)	0.8358 (4)	0.8055 (4)	0.1014 (16)
N4	0.2033 (5)	0.5077 (4)	0.9825 (4)	0.0876 (14)
C10	-0.0682 (5)	0.8159 (5)	0.2138 (4)	0.0893 (17)
H10A	-0.0390	0.7866	0.1272	0.134*
H10B	-0.0479	0.9107	0.2070	0.134*
H10C	-0.1726	0.8030	0.2428	0.134*
C11	0.0171 (5)	0.7347 (5)	0.3137 (4)	0.0602 (13)
C12	0.1235 (6)	0.6340 (5)	0.2928 (4)	0.0652 (14)
H12A	0.1542	0.6064	0.2088	0.078*
C13	0.1810 (5)	0.5769 (4)	0.4076 (5)	0.0641 (13)
H13A	0.2525	0.5063	0.4094	0.077*
C14	0.1206 (4)	0.6363 (4)	0.5186 (4)	0.0540 (12)
C15	0.1587 (5)	0.5924 (4)	0.6492 (4)	0.0563 (12)
H15A	0.2295	0.5211	0.6526	0.068*
C16	0.1108 (5)	0.6353 (4)	0.7697 (4)	0.0506 (11)
C17	0.0059 (5)	0.7456 (5)	0.7899 (4)	0.0603 (14)
C18	0.1617 (5)	0.5647 (5)	0.8883 (5)	0.0640 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0696 (9)	0.0566 (8)	0.0684 (9)	0.0139 (7)	-0.0053 (7)	-0.0016 (6)
N1	0.083 (3)	0.074 (3)	0.102 (3)	0.030 (3)	-0.019 (3)	-0.004(2)
C1	0.095 (4)	0.091 (4)	0.076 (4)	0.006 (3)	-0.007 (3)	-0.006 (3)
C2	0.061 (3)	0.069 (3)	0.061 (3)	0.000 (3)	0.004 (3)	-0.002 (3)
N2	0.088 (4)	0.104 (4)	0.084 (3)	0.024 (3)	-0.023 (3)	-0.013 (3)
C3	0.068 (4)	0.068 (4)	0.070 (3)	0.008 (3)	-0.008(3)	0.009 (3)
C4	0.071 (4)	0.050 (3)	0.070 (3)	0.006 (3)	-0.010 (3)	0.006 (2)
C5	0.052 (3)	0.045 (3)	0.047 (3)	0.007 (2)	-0.002 (2)	0.007 (2)
C6	0.049 (3)	0.038 (3)	0.066 (3)	0.005 (2)	0.001 (2)	0.008 (2)
C7	0.043 (3)	0.047 (3)	0.061 (3)	0.014 (2)	-0.003 (2)	0.003 (2)
C8	0.059 (3)	0.065 (3)	0.059 (3)	0.008 (3)	0.000 (3)	-0.002 (3)
C9	0.057 (3)	0.066 (3)	0.065 (3)	0.016 (3)	-0.010 (3)	0.000 (3)
S2	0.0640 (9)	0.0575 (8)	0.0679 (9)	0.0153 (7)	-0.0109 (7)	0.0010 (6)
N3	0.118 (4)	0.083 (3)	0.095 (3)	0.038 (3)	-0.005 (3)	-0.014 (3)
N4	0.097 (4)	0.087 (3)	0.079 (3)	0.019 (3)	-0.029 (3)	-0.003 (2)
C10	0.083 (4)	0.110 (4)	0.072 (3)	-0.007 (3)	-0.023 (3)	0.008 (3)
C11	0.058 (3)	0.061 (3)	0.053 (3)	-0.010 (3)	0.002 (2)	0.009 (2)
C12	0.072 (4)	0.065 (3)	0.058 (3)	-0.002(3)	-0.001 (3)	-0.016 (3)
C13	0.057 (3)	0.054 (3)	0.075 (3)	0.010 (2)	-0.002 (3)	-0.001 (3)
C14	0.048 (3)	0.048 (3)	0.061 (3)	0.003 (2)	-0.001 (2)	-0.001 (2)
C15	0.046 (3)	0.040 (3)	0.077 (3)	0.010(2)	-0.004(2)	0.001 (2)
C16	0.054 (3)	0.042 (3)	0.052 (3)	0.010 (2)	-0.007(2)	0.001 (2)
C17	0.069 (3)	0.046 (3)	0.061 (3)	0.019 (3)	-0.005 (3)	-0.004 (2)
C18	0.054 (3)	0.063 (3)	0.072 (3)	0.018 (3)	-0.013 (3)	-0.006 (3)

Geometric parameters (Å, °)

S1—C2	1.716 (4)	S2—C11	1.704 (4)
S1—C5	1.717 (4)	S2—C14	1.736 (4)
N1—C8	1.141 (5)	N3—C17	1.141 (5)
C1—C2	1.483 (6)	N4—C18	1.141 (5)
C1—H1A	0.9600	C10—C11	1.486 (5)
C1—H1B	0.9600	C10—H10A	0.9600
C1—H1C	0.9600	C10—H10B	0.9600
C2—C3	1.368 (6)	C10—H10C	0.9600
N2—C9	1.155 (5)	C11—C12	1.369 (6)
C3—C4	1.394 (5)	C12—C13	1.381 (6)
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.375 (5)	C13—C14	1.373 (5)
C4—H4A	0.9300	С13—Н13А	0.9300
C5—C6	1.409 (5)	C14—C15	1.420 (5)
C6—C7	1.342 (5)	C15—C16	1.353 (5)
С6—Н6А	0.9300	C15—H15A	0.9300
С7—С9	1.414 (6)	C16—C18	1.426 (5)
C7—C8	1.432 (6)	C16—C17	1.429 (5)
C2—S1—C5	92.6 (2)	C11—S2—C14	91.3 (2)
C2—C1—H1A	109.5	C11—C10—H10A	109.5
C2—C1—H1B	109.5	C11-C10-H10B	109.5
H1A—C1—H1B	109.5	H10A—C10—H10B	109.5
C2—C1—H1C	109.5	C11—C10—H10C	109.5
H1A—C1—H1C	109.5	H10A—C10—H10C	109.5
H1B—C1—H1C	109.5	H10B—C10—H10C	109.5
C3—C2—C1	129.9 (5)	C12—C11—C10	128.2 (4)
C3—C2—S1	110.8 (4)	C12—C11—S2	111.3 (3)
C1—C2—S1	119.2 (4)	C10—C11—S2	120.5 (4)
C2—C3—C4	112.8 (4)	C11—C12—C13	114.0 (4)
С2—С3—НЗА	123.6	C11—C12—H12A	123.0
С4—С3—НЗА	123.6	C13—C12—H12A	123.0
C5—C4—C3	114.0 (4)	C14—C13—C12	112.4 (4)
C5—C4—H4A	123.0	C14—C13—H13A	123.8
C3—C4—H4A	123.0	С12—С13—Н13А	123.8
C4—C5—C6	121.7 (4)	C13—C14—C15	122.8 (4)
C4—C5—S1	109.8 (3)	C13—C14—S2	111.0 (3)
C6—C5—S1	128.5 (3)	C15—C14—S2	126.1 (3)
C7—C6—C5	130.7 (4)	C16—C15—C14	131.7 (4)
С7—С6—Н6А	114.6	C16—C15—H15A	114.1
С5—С6—Н6А	114.6	C14—C15—H15A	114.1
С6—С7—С9	121.4 (4)	C15—C16—C18	119.4 (4)
C6—C7—C8	122.8 (4)	C15—C16—C17	124.7 (4)
С9—С7—С8	115.8 (4)	C18—C16—C17	115.8 (4)
N1—C8—C7	178.9 (5)	N3—C17—C16	178.3 (5)
N2—C9—C7	179.2 (5)	N4C18C16	179.5 (5)
C5—S1—C2—C3	0.1 (4)	C14—S2—C11—C12	-0.9(4)
	(·)		(

C5—S1—C2—C1	-179.6 (4)	C14—S2—C11—C10	179.8 (4)
C1—C2—C3—C4	179.7 (5)	C10-C11-C12-C13	-179.3 (4)
S1—C2—C3—C4	0.0 (5)	S2—C11—C12—C13	1.4 (5)
C2—C3—C4—C5	-0.2 (6)	C11—C12—C13—C14	-1.3 (6)
C3—C4—C5—C6	-178.6 (4)	C12—C13—C14—C15	178.0 (4)
C3—C4—C5—S1	0.3 (5)	C12—C13—C14—S2	0.6 (5)
C2—S1—C5—C4	-0.2 (4)	C11—S2—C14—C13	0.2 (4)
C2—S1—C5—C6	178.6 (4)	C11—S2—C14—C15	-177.2 (4)
C4—C5—C6—C7	-178.2 (4)	C13—C14—C15—C16	-178.8 (4)
\$1—C5—C6—C7	3.1 (7)	S2-C14-C15-C16	-1.8 (7)
C5—C6—C7—C9	-180.0 (4)	C14—C15—C16—C18	175.5 (4)
C5—C6—C7—C8	1.8 (7)	C14—C15—C16—C17	-1.9 (7)
C6—C7—C8—N1	-151 (29)	C15—C16—C17—N3	-92 (17)
C9—C7—C8—N1	30 (29)	C18—C16—C17—N3	91 (17)
C6—C7—C9—N2	6 (43)	C15—C16—C18—N4	21 (69)
C8—C7—C9—N2	-175 (100)	C17—C16—C18—N4	-161 (68)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C3—H3A····N2 ⁱ	0.93	2.52	3.439 (6)	168
C6—H6A···N3 ⁱⁱ	0.93	2.52	3.434 (6)	169
C12—H12A····N4 ⁱⁱⁱ	0.93	2.60	3.518 (6)	171
C15—H15A····N1 ⁱ	0.93	2.51	3.430 (6)	170

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) *x*+1, *y*-1, *z*-1; (iii) *x*, *y*, *z*-1.