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Abstract

Obtaining an accurate prediction of the number of influenza patients in specific areas is a

crucial task undertaken by medical institutions. Infections (such as influenza) spread from

person to person, and people are rarely confined to a single area. Therefore, creating a

regional influenza prediction model should consider the flow of people between different

areas. Although various regional flu prediction models have previously been proposed, they

do not consider the flow of people among areas. In this study, we propose a method that

can predict the geographical distribution of influenza patients using commuting data to rep-

resent the flow of people. To elucidate the complex spatial dependence relations, our model

uses an extension of the graph convolutional network (GCN). Additionally, a prediction inter-

val for medical institutions is proposed, which is suitable for cyclic time series. Subse-

quently, we used the weekly data of flu patients from health authorities as the ground-truth

to evaluate the prediction interval and performance of influenza patient prediction in each

prefecture in Japan. The results indicate that our GCN-based model, which used commuting

data, considerably improved the predictive accuracy over baseline values both temporally

and spatially to provide an appropriate prediction interval. The proposed model is vital in

practical settings, such as in the decision making of public health authorities and addressing

growth in vaccine demand and workload. This paper primarily presents a GCN as a useful

means for predicting the spread of an epidemic.

Introduction

Predicting infectious diseases is a critical task for public health authorities and industry stake-

holders worldwide. Influenza (or simply flu) epidemics, representing a class of severe infec-

tious diseases, are characterized by the widespread incidence of various symptoms, such as the

sudden onset of fever, coughs, and headaches. The World Health Organization (WHO)

reports that every year, 3–5 million cases of severe illness occur worldwide due to influenza,

leading to 290,000–650,000 deaths annually [1]. Influenza also reduces economic productivity
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because of employee absenteeism and sudden increase in hospital workload [2]. Such instances

have motivated public health authorities to predict the consequences of influenza in different

countries.

Existing influenza prediction systems must be improved to make better decisions regarding

public health. First, the influenza volume should be predicted over small regions, rather than

over entire countries. Second, the reliability of prediction results should be investigated.

Regional influenza predictions must consider the characteristics of infectious diseases, which

are mainly spread through direct contact with infected persons (contact infection) or the

sneezing and coughing of infected persons, which can lead to the spread of infectious droplets

in the air (droplet infection) [3, 4]. Thus, influenza tends to spread from one area to the sur-

rounding areas through direct contact with infected persons. According to previous research,

such a regional infection spreading pattern can be better modeled by considering the flow of

people between regions, rather than considering spatially-adjacent relations [5–7]. Addition-

ally, public health organizations must comprehend the degree of prediction confidence. This

will stimulate a flexible response to various problems triggered by influenza epidemics.

This study aimed to develop a regional flu prediction model that incorporates the geograph-

ical flow of people and uncertainty estimation for a cyclic time series. To achieve this, we used

commuting data to model the flow of people into a region from other regions. In particular,

inter-regional commuting information, as shown in Fig 1(b), was used instead of regional

adjacency data (AD), as shown in Fig 1(a). We incorporated influenza data and commuting

data into a traffic simulation model to assess the spread of infection caused by the flow of peo-

ple based on geographical relations. This study extended the use of graph convolutional neural

networks (GCNs) to capture latent geographical relations using graph representation, where

each node of the graph is a target region for influenza prediction, and each edge represents the

commuting flow of people. GCNs capture spatial dependencies and can be easily combined

with other neural models to improve prediction. It is important to show that a GCN can effec-

tively predict the geographical distribution of influenza. We aimed to construct an infectious

disease prediction system for each region.

Furthermore, we estimated the suitable uncertainty of our model’s prediction using a pre-

diction interval. This is important for decision making in terms of public health regarding fac-

tors such as vaccine demand and medical personnel allocation. Our spatiotemporal model is

based on neural networks that are adopted by some epidemic prediction studies [6, 8]. How-

ever, it is difficult to estimate the prediction interval for the downside or upside of prediction

points because neural networks conduct point estimation. Therefore, owing to the unknown

reliability of prediction results, it becomes difficult for public health authorities to take certain

decisions. To resolve such difficulties, Zhu et al. [9] presented an encoder–decoder method

with an inference of prediction intervals by calculating three sources of prediction uncertain-

ties, i.e., model uncertainty, inherent noise, and model misspecification, using Monte Carlo

(MC) dropout, which was derived from the property of dropout-approximate Bayesian infer-

ence. This method appends an inference module to a trained model, without re-training it, to

estimate the prediction uncertainties of the model. However, Zhu et al.’s method tends to

favor a prediction interval that is much larger than adequate for non-epidemic periods (mainly

in summer). This is due to the lack of consideration of the one-year periodicity in the time

series of flu data, which exhibit strong seasonality (i.e., epidemic in winter and non-epidemic

in summer). In brief, Zhu et al.’s method is not suitable for a time series with periodicity, such

as flu data. Therefore, we extended their method to estimate a suitable prediction interval for

one-year cyclic trends in time series and evaluated the effectiveness of the extended method.

The main contributions of this study can be summarized as follows:
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1. We demonstrate that modeling the flow of people as spatial information is useful for

regional flu prediction. Our spatiotemporal model aims to provide better predictions than

baseline models.

2. We introduce an uncertainty estimation method for cyclic time series with real-life applica-

tions (such as the prediction of infectious diseases).

The proposed model with uncertainty estimation has important applications, including

decision support for regional public health authorities in terms of vaccines and workload.

Related work

Influenza prediction

Influenza prediction methods can be broadly classified into three categories: compartmental

model-based, statistical and time series, and machine learning. Compartmental models

Fig 1. (a) Adjacency matrix, which is undirected with no weights, has been used so far. (b) Weighted directed matrix, originating from commuting

data, includes weights and directions to assess infectious disease characteristics.

https://doi.org/10.1371/journal.pone.0250417.g001
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include the “susceptible–infected–removed” (SIR) [10] and incidence decay with exponen-

tial adjustment [11] models. They differ from statistical and machine-learning methods as

they set suitable parameters for each compartment and focus on understanding disease

dynamics. Statistical and time series methods include the autoregression-integrated moving

average [12] and generalized autoregressive moving average [13] methods. In particular, the

autoregression with Google search (ARGO) method [14], which is based on linear regression

using the input data of the Google search time series and historical influenza-like illness

data, has exhibited superior results for flu forecasting [15–17]. Our GCN-based model is

based on machine learning. Other examples of machine-learning methods include linear

regression [18, 19], random forest [20], Gaussian process [21], and long short-term memory

(LSTM) [7, 8, 22].

Resource selection for the prediction method is also an important factor in influenza pre-

diction. Many studies have relied on user-generated content (UGC) from internet services,

such as search services [12, 14, 23, 24] and social networking services [25–27]. Infectious dis-

ease surveillance conducted with online content, such as that described above, is generally

described as infoveillance [28]. Currently, Google Flu Trends [24] is one of the most represen-

tative systems, which is designed to estimate the current influenza-like illness rate using related

Google search terms. Signorini et al. [29] examined Twitter streams for the volume of tweets

including keywords related to influenza and demonstrated the usefulness of Twitter data for

tracking flu epidemics. In addition to user-generated content, many studies have used diverse

resources to improve their models, such as Wikipedia [30], historical flu data [14, 31–33], and

weather data [34]. Our model used historical flu data as a resource.

Moreover, our research on influenza prediction for each prefecture is related to the follow-

ing studies. Senanayake et al. [5] used a kernel function based on the distance between two

areas to capture spatial dependence. Wu et al. [6] used a convolutional neural network (CNN)

architecture to convolve the information of surrounding areas. Liu et al. [35] used a geographi-

cally weighted regression model, which extended the ordinary linear regression model and

embedded geographical location data into the regression parameters, with geographical infor-

mation about hospitals, such as the number of hospitals per 10,000 population, to predict the

COVID-19 situation in China. In contrast to the abovementioned studies, our study used

regional commuting data to model the flow of people into a specific area. Brockmann et al.

[36] attempted to capture the onset of an epidemic using data on international traffic. Wang

et al. [37] extended the classic SIR model to consider the visitor transmission between any two

areas to predict intra-city epidemic propagation using the traffic volumes in cities. To the best

of our knowledge, our study is the first attempt to predict influenza volume in detail for a large

area, i.e., the entire territory of Japan, by considering the inter-regional flow of people using

machine learning.

Spatiotemporal model

Spatiotemporal models have a long history [38] as below. Dynamical state-space models,

where the current state is conditioned in the past, have also been explored [39]. The use of

tensor methods to analyze epidemic data [40] and models that detect the movement of a per-

son in a video using conditional random fields [41] are examples of spatiotemporal models.

Recently, GCNs [42], which convolve the graph architecture, were used for text classification

[43], image analysis [44], and molecular structure analysis [45]. Additionally, GCN models

can present regional relations as graphs and capture time dependence. Previously, GCNs

were studied for traffic prediction problems, such as bicycle flow [46] and traffic volume

[47].
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Bayesian neural networks

Bayesian neural networks (BNNs) are derived from Bayesian methods and can incorporate

uncertainty in deep learning models. The method described by Zhu et al. [9], which is the base

model for our prediction interval estimation, is related to BNNs. A BNN aims to determine

the posterior distribution of network parameters rather than conduct point estimation. How-

ever, it is difficult to calculate the posterior inference of deep learning models because of their

complex nonlinearity and non-conjugacy characteristics. Several approximate inference meth-

ods have been proposed to address this difficulty, such as probabilistic backpropagation [48]

and stochastic search [49]. Zhu’s method is based on the MC dropout proposed in [50]. An

important feature of MC dropout is that it can be easily applied to neural networks because it

performs stochastic dropouts after passing through each learned hidden layer; further, it gen-

erates a posterior predictive distribution.

Materials and methods

This section describes the proposed model. We propose a spatiotemporal model inspired by

[9, 51] that incorporates the geographical flow of people. Moreover, the model incorporates an

estimation method for influenza prediction that is suitable for a year-long cyclic time series.

Our model consists of two parts: influenza prediction and uncertainty (prediction interval)

estimation. Fig 2 illustrates an overview of the proposed model.

Influenza prediction

The influenza prediction part of the model is composed of two combined modules: a GCN

and a sequence-to-sequence architecture. The GCN extracts the features of various spatial rela-

tionships between observation points and captures spatial dependencies. The GCN can be eas-

ily combined with other neural networks, such as a recurrent neural network (RNN), which is

useful in predicting infectious diseases [22]. The GCN can be used for feature extraction

related to graph nodes. Overall, the GCN can achieve high accuracy in predicting infectious

diseases. Based on the above reasons, we selected a GCN to capture spatial dependencies. Our

model also employs a sequence-to-sequence architecture, which is useful for producing fore-

casts more than two weeks in advance. Table 1 defines the main notations used to represent

the influenza prediction part of our model.

Task definition. The objective of influenza prediction is to predict the number of future

influenza patients based on previously observed data and commuting data corresponding to N
regions in the network. One can use XðtÞ 2 RN�M

to represent M epidemiology information

observed from N different signals at time t; for example, the number of influenza patients in t
weeks in N regions of Japan. Additionally, we represent the regional network as a weighted

directed graph G ¼ ðV; E;WÞ, where V is a set of nodes jVj ¼ N, E is a set of edges, and W 2
RN�N

is a weighted matrix representation, such as the constant commuting volume between

regions. The influenza prediction problem aims to learn the function f(�) that maps T0 histori-

cal signals and a constant weighted matrix representation of G to T future signals:

½Xðt� T
0þ1Þ; . . . ;XðtÞ; G� !

f ð�Þ
½Xðtþ1Þ; . . . ;XðtþTÞ�

Diffusion graph convolutional network. We used a diffusion GCN (DGCN), which was

originally developed for traffic flow prediction by [51], where we modeled the spatial depen-

dence of the virus spreading by applying a diffusion process, i.e., random walk on a commut-

ing graph. Thus, the temporal dynamics of the infection spread through regions were captured
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by a stochastic process on the input graph G. Intuitively, this stochastic process represents the

step-by-step “flows of viruses” through regions; one day, a commuter transmits a virus to a

region, and the following day, other commuters transmit the virus from this region to other

regions with some probability, and so on. The transition matrix of the diffusion process is

D� 1

O W, where DO = diag(W 1) is the diagonal matrix of the total out-commuters from each

region, and 1 denotes the all-ones vector. The stationary distribution of the diffusion process is

as follows:

P ¼
X1

k¼0

að1 � aÞ
k
ðD� 1

O WÞk ð1Þ

where k represents the number of diffusion steps and α 2 [0, 1] represents the restart probabil-

ity, with which the diffusion process restarts from its initial states [52, 53]. The DGCN adopts

a graph diffusion convolution using the above-mentioned diffusion process in Eq (1)over an

input epidemiology signal X and a filter fθ, leveraging the flows both leaving and entering each

region. The signal information X, such as the current number of patients, is transferred from

one node to its neighboring nodes with the probabilities given in the transition matrix, and the

spread signal distribution can reach the above-mentioned stationary distribution after several

Fig 2. Overview of our model. The model includes sequence-to-sequence combinations of a diffusion GCN and gated recurrent unit (GRU) with

uncertainty estimation. We feed the historical time series of patient numbers into the encoder. Next, we use its final states to initialize the decoder. The

decoder generates a prediction from previous ground-truths or the values predicted by the model using scheduled sampling. Additionally, our model

applies the predicted values to our uncertainty estimation method and then outputs the prediction interval.

https://doi.org/10.1371/journal.pone.0250417.g002
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steps. However, the DGCN uses only a finite K-step truncation of the whole diffusion process

for computational efficiency. Thus, it captures the K-localized graph structures of G as follows:

X:;m
?Gf θ ¼

XK� 1

k¼0

ðyk;1ðD
� 1

O WÞk

þyk;2ðD
� 1

I WTÞ
k
ÞX:;m m 2 f1 . . .Mg

ð2Þ

where θ 2 RK�2 are the filter parameters, and ?G denotes a graph convolution operation. Fur-

thermore, D� 1

O W and D� 1

I WT represent the transition matrices of the diffusion and reversed

processes, respectively, when considering both flows of people. Our machine learning method

uses both directions; it learns different parameters for each transition matrix. These two direc-

tions might affect the epidemic situation in regions with different strengths of impact; thus,

the input graph must be directed.

However, computation of the convolution operation defined in Eq (2) may be expensive.

To localize the filter and reduce the number of parameters, the first part of Eq (2), including

D� 1

O W, can be rewritten as

XK� 1

k¼0

ykTkðX:;mÞ ð3Þ

As Tkþ1ðxÞ ¼ D� 1

O WTkðxÞ and D� 1

O W are sparse, the computational cost can be reduced by

recursively computing K-localized convolutions [54].

Regarding the convolution operation defined in Eq (2), a diffusion convolutional layer

maps M-dimensional features to Q-dimensional outputs, where Q is the number of output fea-

tures. The diffusion convolutional layer is described as

O:;q ¼ a
XM

m¼1

X:;m
?GfYq;m;:;:

 !

q 2 f1 . . .Qg ð4Þ

Table 1. Main notations.

Notation Definition or Description

X(t) epidemiology information at time t
W weighted matrix

DO out-degree diagonal matrix

DI in-degree diagonal matrix

Θ filter parameter tensor

O output of DGCN

H1,H2 output of GRU

X̂ t predicted influenza volume at time t

Ẑ t total prediction uncertainty at time t
I number of input features

N number of nodes (regions)

M number of input features for DGCN

Q number of output features for DGCN

T0 input length

T output length

K number of diffusion steps

https://doi.org/10.1371/journal.pone.0250417.t001
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where O 2 RN�Q
represents the output, Y 2 RQ�M�K�2

consists of all θ parameters in the

parameter tensor, and a represents the activation function (e.g., ReLU and sigmoid).

Sequence-to-sequence architecture of GRU and DGCN. Our model employs a

sequence-to-sequence architecture to provide forecasts more than two weeks ahead of time;

these are composed of RNNs to model the temporal dependence and a GCN to model the spa-

tial dependence. In particular, a GRU [55], which is a simple and powerful variant of an RNN,

was first used. The GRU considers Xt and Ht−1 as inputs and outputs Ht in accordance with

the following formulae:

rt ¼ sðUrXt þWrHt� 1Þ f t ¼ tanhðUhXt þHt� 1 �WhrtÞ

zt ¼ sðUzXt þWzHt� 1Þ Ht ¼ ð1 � ztÞ �Ht� 1 þ zt � f t
ð5Þ

where zt and rt represent the reset gate and update gate at time t, respectively. Uz;Ur;Uh 2

RI�M
and Wz;Wr;Wh 2 R

M�M
are parameters for the respective gates, and M is the output

dimension of the GRU. We can consolidate Eq (5) as follows:

H1

t ¼ GRUðXtÞ; t 2 fði � T 0 þ 1Þ; . . . ; ig ð6Þ

where H1

t 2 R
N�M

, which is the hidden state of the GRU, is applied by the DGCN, as described

in Section 4.1. We can then represent Eqs 1–4 as follows:

Ot ¼ DGCNðH1

t ;WÞ ð7Þ

The DGCN is used between the two GRU layers to achieve feature squeezing, as described

in [56]. Subsequently, we apply the output of the DGCN to the second GRU layer, as follows.

H2

t ¼ GRUðOtÞ ð8Þ

where H2

t 2 R
N�S. For the inference of the influenza volume in each region, we apply the out-

put of the second GRU layer in the decoder to the multilayer perceptron (MLP), which has

two layers. Finally, X̂ðtþ1Þ
n , which is the final output, represents the number of influenza patients

in n regions at time t + 1:

X̂ðtþ1Þ
n ¼ MLPðH2

t;nÞ ð9Þ

During training, we feed the historical time series of patient numbers into the encoder.

Next, we use its final states to initialize the decoder, which generates the prediction from previ-

ous ground-truth values. However, the discrepancy between the input distribution of training

and testing data can decrease the performance, as because ground-truth values are replaced by

predictions generated by the model. To solve this problem, we use scheduled sampling [57],

which is a process that feeds the model either ground-truth values with probability � or model

predictions with probability 1−�.

Uncertainty estimation

Our model incorporates a method to estimate the uncertainty of the model prediction, i.e., a

prediction interval suitable for a cyclic time series. Estimating prediction intervals is important

for public health organizations when making decisions.

However, it is difficult to apply neural networks that conduct point estimation, such as our

prediction model. Therefore, we propose a method for estimating prediction intervals that are

suitable for cyclic time series after explaining Zhu’s method [9], which is the basis of our

method.
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Algorithm 1 Inference (from [9])
Input: data x�, encoder g(�), prediction network h(�), dropout proba-
bility p, number of iterations B
Output: prediction ŷ�mc, uncertainty η
//Model uncertainty and model misspecification

1: ŷ�, η1  MCdropout (x�,g,h,p,B)
// Inherent noise

2: for x0v in validation set fx0
1
; . . . ; x0Vg do

3: ŷ0 v  hðgðx0vÞÞ
4: end for
5: Z2

2
 1

V

PV
v¼1
ðŷ0 v � y0vÞ

2

// Total prediction uncertainty
6: Z 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1
þ Z2

2

p

7: return ŷ�; Z
Algorithm 2 Inference considering periodicity

Input: data x�m, time cyclic point m, encoder g(�), prediction network h
(�), dropout probability p, number of iterations B, window width W
Output: prediction ŷ�mc, uncertainty η
//Model uncertainty and model misspecification

1: ŷ�, η1  MCdropout ðx�m; g; h; p;BÞ
// Inherent noise

2: for x0w in fx0m� ðW� 1Þ=2
; :::; x0mþðW� 1Þ=2

g do

3: ŷ0w  hðgðx0wÞÞ
4: end for
5: Z2

2
 1

W

PW
w¼1
ðŷ0w � y0wÞ

2

// Total prediction uncertainty
6: Z 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

1
þ Z2

2

p

7: return ŷ�; Z
Base method. We describe the method proposed by Zhu et al. (referred to as Zhu’s

method), which provides time-series prediction and uncertainty estimation. This method

quantifies the standard error η of the prediction. Therefore, an approximate α-level prediction

interval can be constructed using [y�−zα/2 η, y�+zα/2 η]. Here, the model prediction

y� ¼ f Ŵ ðx�Þ, x� is a new input, f Ŵ ð:Þ is a trained neural network, and zα/2 is the upper α/

2-quantile of the standard normal distribution. The method accounts for three sources of pre-

diction uncertainties for quantifying the prediction standard error η: model uncertainty,

inherent noise, and model misspecification.

Model uncertainty and misspecification are calculated using MC dropout, which was

derived from the property of dropout-approximate Bayesian inference [50]. Specifically, MC

dropout proceeds to randomly drop out each hidden unit in a model with a certain probability

p. This stochastic feed-forward process is repeated B times to obtain an output fŷ�
ð1Þ

. . . ; ŷ�
ðBÞg.

Using this output, we can approximate the model uncertainty as

dVarðf Wðx�ÞÞ ¼
1

B

XB

b¼1

ðŷ�
ðbÞ �

�̂y�Þ2 ð10Þ

where �̂y� ¼ 1

B

PB
b¼1

ŷ�
ðbÞ. To incorporate this uncertainty into the encoder–decoder model, we

apply MC dropout to all layers in both the encoder g and final prediction network h. Estima-

tion of the model uncertainty and misspecification using MC dropout is described in [9].

The inherent noise ŝ2 is estimated via the residual sum of squares evaluated on an indepen-

dent validation set X0 ¼ fx0
1
; . . . ; x0Vg;Y

0 ¼ fy0
1
; . . . ; y0Vg. We estimate the inherent noise via

the residual sum of squares for the validation set as we do not know the correct noise level a
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priori.

ŝ2 ¼
1

V

XV

v¼1

ðy0v � f Ŵðx0vÞÞ
2

Uncertainty estimation is presented in Algorithm 1.

Proposed method for cyclic time series. We incorporate Zhu et al.’s uncertainty estima-

tion method into our model for flu prediction. Fig 6(a) shows the time series of our model

using Zhu’s method for the Okayama prefecture. This figure shows the method applied to our

model for the prediction interval. Specifically, it shows a tendency to provide a larger than nec-

essary prediction interval in a non-epidemic period, where there is only a slight variation in

the number of flu patients. This tendency, which originates from the method of calculating the

inherent noise, can complicate decision making for health authorities.

The inherent noise in Algorithm 1 is assumed to be constant in all periods. However, inher-

ent noise strongly depends on the season in a year-long periodic time series (such as the num-

ber of influenza patients). Therefore, we replace Algorithm 1 with Algorithm 2, and

subsequently incorporate it into our model with this uncertainty estimation for cyclic time

series. In Algorithm 2, the one-period validation set is used to calculate the inherent noise, as

periodicity must be considered. In particular, we prepare the one-period validation set X0 ¼
fx0

1
; . . . ; x0Mg;Y

0 ¼ fy0
1
; . . . ; y0Mg in the time series (e.g., one-year validation set for flu predic-

tion). Next, we calculate the inherent noise using window width W of the validation set

fx0m� ðW� 1Þ=2
; . . . ; x0mþðW� 1Þ=2

g around January, when a new input is in the January data x�m. Here,

m is the time cyclic point, and M is the number of one-period data points.

Experiments

We evaluated the predictive capabilities of our spatiotemporal model and prediction

interval estimation on the 47 prefectures of Japan. The proposed model is referred to as

“GCN+Seq2seq w/ PF” hereinafter, where PF indicates that the model considers the flow of

people.

We aimed to answer the following research questions:

• (RQ1) Does commuting data improve the accuracy of influenza prediction?

• (RQ2) When and in which area does our model produce good results?

• (RQ3) How effective is our uncertainty estimation method in real-world epidemic

prediction?

Datasets

Influenza data. We used data based on the weekly number of patients with influenza

symptoms for each prefecture in Japan, as reported by the National Institute of Infectious Dis-

eases (NIID). NIID reports aggregated information related to influenza in its weekly reports

[58] to provide warnings regarding infection outbreaks. These reports are delayed by approxi-

mately seven days from the date of the original clinical reports by physicians (because of the

time necessary to aggregate clinical information from different health authorities in each pre-

fecture). We mixed all subtypes of influenza data and accumulated the number of influenza

patients from the 37th week of 2012 to the 30th week of 2020. We accessed the data, which was

provided fully anonymized, on 21 Oct 2020.
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Commuting data. Spatiotemporal models typically use adjacency and distance between

observation points to model geographical information. However, human mobility is strongly

linked with the transmission of infectious diseases (such as droplets and contact infections).

Therefore, this study used commuting data instead of AD as geographical information (Fig 1).

Adding commuting data to our model can better capture the epidemic situation in a region,

which is important for public health organizations.

To consider inter-regional flows of people, we used commuting data from the 47 prefec-

tures of Japan. The data were provided by the national census report [59] of 2015. The pro-

vided data include the single daily average numbers of commuters from one prefecture to

another over all days of the weeks. We accessed the data, which was provided fully anon-

ymized, on 21 Oct 2020. In the experiment in each year, we represented the data of each year

as a graph G ¼ ðV; E;WÞ in the proposed model because the national census report only pro-

vides only the number of commuters, regardless of the year. We divided the number of com-

muters by the maximum number of commuters between every prefecture pair, which is

known as min-max normalization to graph-edge information, such as W. The maximum

number of commuters (270,000) travels from Kanagawa prefecture to Tokyo prefecture. More-

over, 135,000 commuters travel from Osaka to Nara. The edge weight, representing commut-

ers traveling from Osaka to Nara, is shown as 0.5 (=135,000/270,000) in the graph, after

applying min-max normalization.

Models for comparison

Vector autoregression. Vector autoregression (VAR) [60] is an extension of autoregres-

sive models that allow for more than one evolving variable. We selected observation values in

all regions, which are up to T0 weeks before, as multiple variables. We set T0 as five weeks in

the experiment. To make the model more robust, we adopted an L2-regularization term for

training.

LSTM. The LSTM model captures temporal dependence in data and preserves backpropa-

gated error through time and layers. LSTM has been successfully used in natural language and

sound signal processing [61] as well as influenza prediction [8, 22]. Specifically, LSTM has

input, output, and forget gates, which are used to compute the new states in the memory cell

given old values. Our baseline architecture is the same as that reported in [8].

CNNRNN-Res. The CNNRNN-Res model was developed by [6] for influenza prediction.

The model structure comprises three parts: a CNN to capture regional relations; an RNN to

capture time dependencies; and residual links for fast training with no overfitting. The CNN

uses the adjacent information of the respective regions. The residual links bypass some inter-

mediate layers, which can mitigate overfitting [62].

GCN+Seq2seq w/ AD. To validate the effectiveness of PF as spatial information compared

with other geographical relations between prefectures, we used our model with AD instead of

commuting data. Note that AD comprise a matrix that represents whether two regions are

adjacent (1) or not (0) without a specified direction, as shown in Fig 1(a). We term this model

with AD between the 47 prefectures “GCN+Seq2seq w/ AD,” for contrast with the propo-

sed“GCN+Seq2seq w/ PF” model.

GCN+Seq2seq w/ DD. To validate the effectiveness of PF as spatial information, com-

pared with other geographical relations between prefectures, we considered the distance

between prefecture regions. We assume that the inter-region distance is an important factor in

estimating the strength of the interaction between regions along with geographical adjacency.

We prepared the data by measuring the straight-line distance between the locations of the gov-

ernment offices of each prefecture. In our model, we substituted the graph weighted by the
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inverse distance between regions after min-max normalized for commuting data. The closest

distance’s edge weight is given as 1, and smaller values indicate longer distances. We term this

model with inverse distance data (DD) between the 47 prefectures “GCN+Seq2seq w/ DD.”

Evaluation metrics

Two evaluation metrics were used to compare each model’s predictive performance: coeffi-

cient of determination R2 and mean absolute error (MAE). The R2 coefficient represents how

well the predicted values conform to true values; the higher, the better. The MAE is the average

magnitude of differences between the predicted and true values; the lower, the better.

Settings

We predicted influenza epidemics in the 47 prefectures of Japan with a spatiotemporal model.

The model was validated as follows. The influenza patient numbers from week 1 to week 5

(“Nowcasting” and “Forecasting”) were predicted using the proposed model, GCN+Seq2seq

w/ PF, and the five models for comparison, i.e., VAR, LSTM, CNNRNN-Res, GCN+Seq2seq

w/ AD, and GCN+Seq2seq w/ DD. We assessed the predictive performance using data from

four flu seasons in Japan (31st week of 2016—30th week of 2017, 31st week of 2017—30th

week of 2018, 31st week of 2018—30th week of 2019, 31st week of 2019—30th week of 2020);

these were year-long periods. We set 156 weeks (three years) as the training period using past

data, and then set 52 weeks (one year) as the validation period for the prediction interval esti-

mation before each testing period. In other words, we used 7332 training samples (156

weeks × 47 prefectures), 2444 validation samples, and 2444 test samples.

We used the influenza data for 26 weeks before a specific week as inputs for all models,

except the VAR model, for which we set T0 as five weeks. The L2-regularization of the VAR

model was searched from the set of (0.01, 0.1, 1) in the validation period. Moreover, we used

two hidden layers in the LSTM. The size of the hidden layer was selected as (5, 20, 50, 80, 150,

200) for the validation period. For CNNRNN-Res, the hidden dimension for the RNN was (5,

10, 20, 40), and the number of residual links was selected as (4, 8, 16), as described in [6]. For

GCN+Seq2seq w/ PF, w/ DD, and w/ AD, we set the number of diffusion steps K as 3. We sub-

sequently selected the learning rate and hidden layer sizes of the GRU, M and S, as (0.001,

0.01, 0.1, 1.0) and (32, 64, 128, 256) for the validation period, respectively. During training, all

model parameters were updated using gradient descent with the Adam update rule, with a

dropout value of 0.5. The dropout was applied to hidden layers to avoid overfitting and esti-

mate model uncertainty.

Results and discussions

Experimental results

The results are presented in Table 2. Our GCN+Seq2seq w/ PF model outperformed all other

models in terms of MAE and R2 when predicting the number of influenza patients two to five

weeks in advance.

In immediate-future predictions, such as one or two weeks in advance, the predictive per-

formance of VAR, a statistical model, had no significant difference from that of the machine-

learning model. However, when predicting more than three weeks in advance, the perfor-

mance of the statistical model declined sharply. LSTM, a neural network, achieved high R2 and

MAE values considering temporal dependency. CNNRNN-Res, which combines a CNN and

RNN using prefecture information, also achieved high performance similar to that of LSTM.

However, the prediction performances of the two comparative models based on machine
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learning at more than four weeks ahead were insufficient. GCN+Seq2seq w/ PF, based on a

GCN using commuting data, had a slightly better prediction performance for the number of

influenza patients at one and two weeks as compared with the other models; it especially

achieved much better performance for predictions more than four weeks in advance. These

results indicate that our GCN model based on commuting data was the best model among var-

ious epidemic prediction models for regions and countries.

RQ1: Effectiveness of commuting data

To answer RQ1 (Does commuting data improve the accuracy of the influenza prediction?), we

compared GCN+Seq2seq w/ PF with the GCN+Seq2seq w/ AD and GCN+Seq2seq w/ DD

models, which used adjacency and distance data instead of commuting data, respectively.

GCN+Seq2seq w/ PF outperformed both variants. Specifically, as shown by the comparison

between GCN+Seq2seq w/ PF and other baselines, such as the LSTM and CNNRNN-Res mod-

els, the effect of the commuting data on advanced predictions (such as the four or five week

prediction) was higher than that on immediate future predictions (such as the one week pre-

diction). The results demonstrate the advantages of considering PF between prefectures to

improve predictions of the numbers of patients that might be affected by infectious diseases.

Such flow and movement of people leads to the spread of influenza from person to person.

Fig 3 shows examples of trained filters by GCN+Seq2seq w/ AD, w/ DD, and w/ PF centered

at the Nara prefecture. The weights represent the importance of using inputs from other

Table 2. Regional prediction model performances (averaged across all 47 prefectures in Japan).

Season Model 1-week 2-week 3-week 4-week 5-week

MAE R2 MAE R2 MAE R2 MAE R2 MAE R2

VAR 181.18 0.936 248.07 0.816 314.34 0.690 456.05 0.511 607.31 0.294

2016/31st LSTM 149.76 0.939 259.34 0.820 375.67 0.693 513.66 0.537 713.20 0.240

– CNNRNN-Res 163.24 0.918 332.83 0.750 375.44 0.616 396.16 0.542 458.51 0.460

2017/30th GCN+S2s w/ AD 142.08 0.931 214.89 0.828 266.42 0.616 320.02 0.530 384.38 0.540

GCN+S2s w/ DD 133.78 0.931 216.11 0.745 279.27 0.615 312.18 0.599 389.78 0.576

GCN+S2s w/ PF 148.76 0.936 211.30 0.864 265.85 0.760 305.77 0.667 313.29 0.635

VAR 237.94 0.902 420.40 0.781 699.27 0.362 663.41 0.131 987.73 -0.396

2017/31st LSTM 216.64 0.866 366.58 0.678 451.27 0.580 517.39 0.541 595.47 0.415

– CNNRNN-Res 210.29 0.891 343.49 0.733 440.64 0.621 498.01 0.532 610.81 0.423

2018/30th GCN+S2s w/ AD 197.20 0.918 341.72 0.791 402.10 0.704 448.38 0.628 553.52 0.619

GCN+S2s w/ DD 201.53 0.915 322.87 0.779 399.76 0.697 479.11 0.648 480.35 0.619

GCN+S2s w/ PF 215.31 0.918 338.03 0.795 399.42 0.723 442.31 0.666 459.12 0.648

VAR 239.21 0.916 341.35 0.834 579.81 0.433 822.02 -0.112 1034.90 -0.695

2018/31st LSTM 167.08 0.912 263.39 0.815 310.94 0.620 368.73 0.673 417.39 0.562

– CNNRNN-Res 168.01 0.917 375.27 0.652 422.63 0.528 512.72 0.437 615.29 0.400

2019/30th GCN+S2s w/ AD 130.31 0.967 237.31 0.907 266.94 0.882 290.93 0.852 362.65 0.737

GCN+S2s w/ DD 146.09 0.961 256.22 0.895 306.38 0.859 335.03 0.830 398.36 0.745

GCN+S2s w/ PF 117.40 0.974 196.45 0.918 228.85 0.884 230.85 0.887 224.62 0.890

VAR 126.56 0.942 326.09 0.420 544.50 -0.803 686.64 -1.901 856.59 -3.459

2019/31st LSTM 124.62 0.842 263.39 0.581 286.15 0.409 369.28 0.188 433.53 -0.316

– CNNRNN-Res 100.91 0.922 283.58 0.571 333.94 0.357 399.31 0.151 501.02 -0.402

2020/30th GCN+S2s w/ AD 83.95 0.955 193.15 0.667 274.65 0.395 345.11 0.095 408.42 -0.255

GCN+S2s w/ DD 96.82 0.959 209.93 0.704 313.72 0.472 395.97 0.164 447.38 -0.074

GCN+S2s w/ PF 76.26 0.954 164.05 0.707 227.57 0.473 288.72 0.230 343.89 0.006

https://doi.org/10.1371/journal.pone.0250417.t002
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prefectures. Moreover, the weights by GCN+Seq2seq w/ PF reflect commuting data, as

opposed to w/ AD and w/ DD. For example, the visualization by GCN+Seq2seq w/ PF indi-

cates significant weights for Osaka (second-largest metropolitan prefecture in Japan) and rela-

tively significant weights for Tokyo (capital of Japan) and Aichi (third-largest metropolitan

prefecture in Japan), although these prefectures are far from Nara.

RQ2: Effectiveness of spatiotemporal model

To answer RQ2 (when and in which areas does our model produce good results?), we divided

it into two questions: “for which areas does our model produce good results” and “when does

our model produce good results?”

For which areas does our model produce good results?. For almost all prefectures, our

model outperformed LSTM in terms of MAE. The model also provided a better performance

over a wider space. We demonstrated the improvement of our model’s predictive performance

compared with LSTM in terms of MAE in the best five and least five improved prefectures,

as shown in Table 3. Their locations are presented in Fig 4. These results demonstrate that

Fig 3. Visualization of the weights of learned localized filters of Eq (2) for (a) GCN+Seq2seq w/ PF, (b) GCN+Seq2seq w/ DD, and (c) GCN

+Seq2seq w/ AD against the prediction target node (Nara prefecture, as shown by a star). The colors represent the weights, i.e., strength of influence

of each prefecture on the prediction of the target prefecture. The red prefectures are given assigned larger weights, i.e., they contribute significantly for

to predicting the epidemics of in the target prefecture, while blue prefectures are given assigned smaller weights. Note that most prefectures are

represented in white for visibility, as their weights are less than 5% of the maximum.

https://doi.org/10.1371/journal.pone.0250417.g003

Table 3. Improvement percentage of our predictive performance compared with LSTM in terms of MAE in the five most and least improved prefectures. Lower val-

ues indicate greater improvement because a lower MAE indicates better performance.

Rank 2016/31st–2017/30th 2017/31st–2018/30th 2018/31st–2019/30th 2019/31st–2020/30th

Prefecture Improve ment (%) Prefecture Improve ment (%) Prefecture Improve ment (%) Prefecture Improve ment (%)

1 Tokushima -79.5 Aomori -46.1 Oita -50.7 Kochi -61.1

2 Kagawa -75.0 Nigata -45.5 Gunma -48.2 Kagoshima -60.5

3 Hiroshima -74.0 Fukui -39.9 Okayama -47.8 Wakayama -60.4

4 Okayama -69.8 Ishikawa -39.6 Ehime -47.6 Miyazaki -58.7

5 Yamaguchi -66.9 Toyama -38.7 Kagawa -47.2 Saga -55.7

43 Gifu -34.0 Okinawa -14.9 Shizuoka -17.3 Akita 9.1

44 Shiga -32.3 Kyoto -12.5 Tokyo -14.5 Hukushima 10.6

45 Fukushima -27.8 Kochi -11.6 Okinawa -13.1 Nagano 14.4

46 Yamagata -24.2 Okayama -11.5 Yamaguchi -5.0 Aomori 15.9

47 Okinawa -17.5 Shiga -9.1 Miyazaki 1.6 Hokkaido 20.5

https://doi.org/10.1371/journal.pone.0250417.t003
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GCN+Seq2seq w/ PF had a strong positive effect, such as maximizing the reduction in MAE
by up to approximately 80%, for prediction of influenza patient numbers in any prefecture.

The flow of people between different prefectures was the main factor that improved the accu-

racy of infection predictions.

The next important question we want to address is “what factors lead to different results of

our model, compared with LSTM, in different prefectures?” Fig 4 reveals a strong relationship

between locations of top-ranked prefectures (enclosed in red frames). These include four pre-

fectures in 2016–2017, four in 2017–2018, and three in 2018–2019, which are contiguous.

Hence, the GCN ensures a synergistic effect between contiguous regions. In contrast, Fig 4

reveals that the locations of prefectures with the lowest ranks (blue frames) are unrelated,

except for Okinawa. Okinawa has the lowest rank of improvement (MAE) compared with

LSTM for almost every year. We assumed that this is due to the location of Okinawa, which is

the southernmost prefecture and is surrounded by sea (rightmost island in Fig 4), implying

that few commuters travel there from other prefectures. Therefore, the GCN does not affect

the improvement of the predictive performance for Okinawa as much as other prefectures.

When does our model produce good results?. Fig 5 shows the time series for Okayama

with a relative MAE improvement compared with LSTM in four years. According to these

results, GCN+Seq2seq w/ PF can identify the beginning of epidemics in specific regions. This

is because it uses the GCN to learn the effects of influenza epidemics from other prefectures.

Fig 4. Prefecture maps that illustrate the improvements of prediction accuracy measured by MAE in each

prefecture, where the improvement ratios of GCN+Seq2seq w/ PF against LSTM are represented by colors. Red

denotes improved prefectures and blue denotes degraded prefectures. Prefectures enclosed in red and blue frames

denote the five best and worst prefectures in each year, respectively. The small square at the corner of each map shows

Okinawa prefecture.

https://doi.org/10.1371/journal.pone.0250417.g004
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All model predictions were lower than the true values at the peak of trends in 2018. In con-

trast, the results for 2020 seem to show the inverse; all model predictions were higher than the

true values at the peak of trends. We assume that this tendency is due to the characteristics of

machine-learning methods, which are designed to learn the data of most recent years. Evi-

dently, in the seasons when epidemics grew much larger than in the previous years (as in

2018), these prediction models tended to underestimate the peak value. Furthermore, for

Fig 5. Time series for Okayama prefecture: (a) two weeks in advance, (b) three weeks in advance, (c) four weeks in

advance, and (d) five weeks in advance prediction time series in Okayama. The blue and green dotted lines indicate

the prediction values of compared models. The red line indicates the prediction values of the proposed GCN+Seq2seq

w/ PF model. The black Line indicates the actual influenza patients.

https://doi.org/10.1371/journal.pone.0250417.g005
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seasons when the epidemics remained on a smaller scale than in the previous years, the models

overestimated the peak value (as in 2020).

RQ3: Effectiveness of the proposed prediction interval estimation method

We evaluated the quality of our interval estimation method for epidemic prediction and com-

pared it with Zhu’s method to answer RQ3 (How effective is our uncertainty estimation

method in real-world epidemic prediction?) We measured the average bandwidth, which indi-

cates the number of patients included between the upper and lower limits of the prediction

interval. We set the empirical coverage of the 95% prediction interval of each method as the

validation of the prediction interval quality. This method aimed to provide good interval esti-

mation, with a narrow average bandwidth and high empirical coverage. To search for a suit-

able window width W, we attempted to use various values (1, 3, 5, 7) in the experiment.

The results are presented in Table 4. The proposed method reduced the average bandwidth

mark by 25%–32% compared to the conventional method; the empirical coverage was approxi-

mately 85%–91%, compared with that of Zhu’s method, which was approximately 89%–91%.

These results demonstrate the effectiveness of our proposed method. Regarding the search for

a suitable window width W, the average bandwidth and empirical coverage tended to increase

as the window width increased. The value of the window width should be determined based

on the problem characteristics. This is because there is a trade-off between the average band-

width and empirical coverage. In this scenario, a window width (W) of 5 caused a 29%–34%

reduction in the average bandwidth and approximately 1% reduction in the empirical coverage

compared with those in Zhu’s method. Therefore, we assumed that a window width of 5 was

sufficient.

We present a time series with a prediction interval using the proposed method in Fig 6(b);

the settings are the same as shown in Fig 6(a) using the conventional method in our model.

The prediction interval’s width in Fig 6(b) decreases in a non-epidemic period when the true

values do not escape from the interval; this increases the epidemic period. This study demon-

strated applications of the proposed method to infection epidemics. Furthermore, this method

can be useful for other periodic time series (such as traffic and sales volume). However, a

shortcoming of this method is the requirement for periodicity in terms of validation. For

example, for the application of the proposed method to influenza prediction, we require at

least one year of validation data because the data have a periodicity of one year. This leads to

the possibility of more validation data being required than in Zhu’s method.

Table 4. Average bandwidth and empirical coverage of the 95% prediction interval found using the proposed method and Zhu’s method.

Zhu’s Proposed (numbers correspond to W)

1 3 5 7

Average band width 1-week 966.64 619.76 652.87 675.33 696.09

2-week 1472.79 918.57 974.97 1016.89 1054.74

3-week 1798.09 1069.76 1136.20 1190.87 1240.26

4-week 2051.89 1224.23 1302.95 1371.27 1434.28

5-week 2151.01 1351.16 1443.91 1529.80 1610.46

Empirical coverage (%) 1-week 91.14 88.97 90.37 90.79 91.40

2-week 90.07 85.96 88.87 89.11 89.49

3-week 90.00 86.34 87.11 88.68 88.85

4-week 89.89 86.45 86.70 88.45 89.29

5-week 89.87 85.30 86.26 88.23 88.38

https://doi.org/10.1371/journal.pone.0250417.t004
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Conclusion

This study proposed a model for regional influenza prediction with uncertainty estimation by

incorporating commuting data between regions. We conclude by emphasizing the following

points: (1) We validated the use of PF as spatial information in a GCN for epidemic prediction.

Our GCN-based model outperformed other baseline models. To the best of our knowledge,

this is the first study to apply a GCN model to an epidemic prediction problem. (2) We pro-

posed an uncertainty estimation method for periodic time series data, which reduced the pre-

diction interval bandwidth.

The proposed model with uncertainty estimation will contribute to the infection control

measures of public health organizations. Nevertheless, more research could be conducted; spe-

cifically, future work can examine the use of user-generated content in neural networks to elu-

cidate the dynamics of other geographically evolving epidemics.

Supporting information

S1 Fig. Boxplots of the distribution of the prediction scores in each prefecture. This figure

shows the boxplots of the distribution of the prediction scores (MAE and R2) in each

Fig 6. Time series with prediction interval of influenza patients (black line). Predictive values of the two weeks in advance prediction by our

proposed model (red line) in the Okayama prefecture. Prediction intervals by (a) Zhu’s method and (b) proposed method. Light blue and dark blue

sections show the 95% and 50% prediction intervals, respectively.

https://doi.org/10.1371/journal.pone.0250417.g006
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prefecture for the compared models. Each colored box indicates a different model; from left to

right: VAR (cyan), LSTM (green), CNNRNN-Res (blue), GCN+S2s w/ AD (pink), GCN+S2s

w/ DD (brown), and GCN+S2s w/ PF (red). The black center line in each box indicates the

median value; the top and bottom of each box indicate the upper and lower quartiles, respec-

tively; the whiskers indicate the maximum and minimum values; and the other points indicate

outliers. For visualization, only MAE scores from 0 to 2000 and R2 scores from -1.0 to 1.0 are

shown.
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