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Abstract: Anorexia nervosa represents a severe mental disorder associated with food avoidance
and malnutrition. In patients suffering from anorexia nervosa, cardiovascular complications are
the main reason leading to morbidity and mortality. However, the origin and pathological mechanisms
leading to higher cardiovascular risk in anorexia nervosa are still unclear. In this aspect, the issue of
exact pathological mechanisms as well as sensitive biomarkers for detection of anorexia nervosa-linked
cardiovascular risk are discussed. Therefore, this review synthesised recent evidence of dysfunction
in multiple neuroendocrine axes and alterations in the immune system that may represent anorexia
nervosa-linked pathological mechanisms contributing to complex cardiovascular dysregulation.
Further, this review is focused on identification of non-invasive biomarkers for the assessment of
increased cardiovascular risk in anorexia nervosa that can be linked to a clinical application. Complex
non-invasive assessment of cardiovascular autonomic regulation—cardiac vagal control (heart rate
variability), sympathetic vascular activity (blood pressure variability), and cardiovascular reflex
control (baroreflex sensitivity)—could represent a promising tool for early diagnosis, personalized
therapy, and monitoring of therapeutic interventions in anorexia nervosa particularly at a vulnerable
adolescent age.

Keywords: anorexia nervosa; neuroendocrine dysregulation; cytokines; heart rate and blood
pressure variability; cardiovascular diseases

1. Introduction

Anorexia nervosa (AN) is an eating disorder defined as abnormally low body weight associated
with intense fear of gaining weight and distorted cognition regarding weight, shape, and drive for
thinness [1]. The highest incidence rate subgroup for AN includes adolescent girls aged 15–19 years,
which accounts for about 40% of all identified cases [2]. Moreover, patients suffering from AN are
characterised by neuroendocrine, immune, and autonomic nervous system (ANS) dysregulation resulting
in cardiovascular complications and potentially leading to increased morbidity and mortality [3–5].
Cardiovascular complications occur in up to 80% of patients with AN, and account for up to 30%
of mortality [6]. For example, sinus bradycardia (i.e., resting heart rate less than 50 beats per minute),

Int. J. Mol. Sci. 2020, 21, 7302; doi:10.3390/ijms21197302 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-1116-6917
http://dx.doi.org/10.3390/ijms21197302
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/19/7302?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 7302 2 of 19

relatively low arterial blood pressure (hypotension usually lower than 100/50 mmHg), prolonged QT
interval, atherosclerosis, etc. are associated with AN even at adolescent age [5]. Despite the fact that
some of these changes could represent adaptation to poor nutrition, the origin and pathogenesis are not
absolutely clear (according to reviews by Mazurak et al. [7] and Giovinazzo et al. [5]). Thus, we suggest
that the issue of precise and sensitive cardiovascular risk assessment is crucial, especially in adolescence.

The aims of this review were (1) to summarize neuroendocrine, immune, and autonomic nervous
system pathological mechanisms that contribute to higher cardiovascular risk in AN and (2) to
identify potential non-invasive biomarkers for assessment of increased AN-linked cardiovascular risk,
representing a promising tool for personalized therapy.

2. Neuroendocrine System—The Role in AN-Linked Cardiovascular Diseases

Anorexia nervosa, a condition of profound undernutrition, is associated with global dysregulation
in multiple neuroendocrine axes (hypothalamic–pituitary–adrenal/–gonadal/–thyroid axis, growth
hormone/insulin-like growth factor-1 axis), and disturbances in appetite-regulating hormones
and adipokines. Although most of these disturbances are an adaption to the low energy state as
a consequence of chronic starvation and are reversible with an appropriate treatment, neuroendocrine
alterations can exert deleterious effects on cardiovascular functioning (e.g., [3,8]).

2.1. Anorexia Nervosa-Linked Hypothalamic–Pituitary–Adrenal (HPA) Axis Dysfunction

The hypothalamic–pituitary–adrenal (HPA) axis describes complex mechanisms modulating
various physiological processes such as the body’s response to stress, glucose metabolism, and immune
functioning mediated by release of key regulatory molecules, corticotropin-releasing hormone (CRH),
adrenocorticotropic hormone (ACTH), and cortisol, to maintain homeostasis [9]. Stress has been
shown as a potential factor contributing to the development and progression of eating disorders,
including anorexia nervosa [10]. Continuous stress of nutritional deprivation in AN leads to chronic
HPA axis stimulation, resulting in hypercortisolaemia [11]. Additionally, patients suffering from
eating disorders show a blunted HPA axis reactivity to stress exposure resulting in AN-linked health
complications [10]. Prolonged dysregulation of the HPA axis associated with enhanced glucocorticoid
production is also linked to adverse cardiovascular functioning. However, whether cardiovascular
health complications arise from the direct deleterious effects of stress-related HPA axis activation or
develop secondarily from the accompanying metabolic changes leading to glucocorticoids excess is
still under intensive debate [12].

2.2. Abnormalities in the Hypothalamic–Pituitary–Gonadal (HPG) Axis Related to Anorexia Nervosa

AN-linked dysregulation of the hypothalamic–pituitary–gonadal (HPG) axis is characterised
by functional hypothalamic amenorrhea (FHA) associated with relative oestrogen and androgen
deficiency leading to anovulation and infertility. FHA results from suppression of gonadotropin
releasing hormone (GnRH) in the hypothalamic–pituitary–ovarian axis leading to decreased release
of the follicle stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary,
and subsequently reduced oestradiol production. Therefore, endometrial thickening does not occur
during the follicular phase, resulting in amenorrhea [13].

Hypoestrogenemia associated with menstrual cycle irregularities in young women leads to
increased risk of cardiovascular diseases (CVD). The Nurses’ Health Study of over 82,000 women
demonstrated that the more irregular the menstrual cycle is, the greater the risk for future CVD [14].
Moreover, menstrual cycle irregularities have been linked to accelerated uterine atherosclerosis
leading to early menopause (defined as menopause ≤45 years old), which is associated with increased
cardiovascular morbidity [13].
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2.3. Hypothalamic–Pituitary–Thyroid (HPT) Axis Dysregulation in Anorexia Nervosa

The hypothalamic–pituitary–thyroid (HPT) axis is responsible for the regulation of metabolism,
fluid balance, cardiovascular system functioning, and responding to stress through the production of
thyroid hormones [15]. In this aspect, the thyroid hormones play a crucial role in the cardiovascular
system homeostasis by stimulating diastolic relaxation and systolic contraction in the myocardium
and have a pro-angiogenic effect. However, AN-linked severe weight loss is associated with
non-thyroidal illness syndrome characterised by abnormalities in thyroid function tests. Specifically,
the level of total triiodothyronine (T3) is low (an adaptive mechanism to lower resting energy
expenditure and conserving energy for vital functions), reverse T3 is elevated (increased peripheral
deiodination of thyroxine (T4) to reverse T3), and free T4 and thyroid stimulating hormone vary from
normal to low-to-normal [16]. These AN-linked abnormalities normalize during weight gain [16], but
long-term thyroid axis dysfunction is associated with impaired myocardial bioenergetic status that
may contribute to increased CVD incidence [17].

2.4. Growth Hormone (GH)/Insulin-Like Growth Factor 1 (Igf-1) Axis

Growth hormone (GH) represents a proteohormone secreted by the pituitary gland that is involved
in metabolic functions. Specifically, GH via stimulating insulin-like growth factor 1 (IGF-1) production
increases the concentration of glucose and free fatty acids [18]. Moreover, the GH/IGF-1 axis contributes
to normal cardiovascular functioning—stimulation cardiac growth, contractility, and regulation of
the vascular tone and peripheral resistance. Thus, prolonged GH excess as well as GH deficiency
are associated with increased cardiovascular morbidity [19]. From this aspect, AN is associated with
acquired GH resistance: increased GH secretion but decreased IGF-1 levels. Several mechanisms of
GH resistance in AN have been proposed: increased fibroblast growth factor 21 inhibiting STAT-5,
a mediator of intracellular GH effects; low levels of insulin due to downregulation of the expression of
hepatic GH receptors; or increased levels of ghrelin leading to stimulation of GH secretion [3].

2.5. Adipokines And Appetite-Regulating Hormones—Leptin, Adiponectin, Ghrelin, Peptide YY (PYY)

Leptin, an anorexigenic adipokine secreted by adipose tissue, play an important role in body
weight homeostasis and psychophysiological processes that are associated with AN [20]. Leptin has
been shown to exert pleiotropic effects by influencing haematopoiesis, thermogenesis, reproduction,
angiogenesis, and most importantly neuroendocrine and immune homeostasis. In this context, leptin
can influence HPA axis by regulating the secretion of HPA hormones in the hypothalamus. Leptin
regulates the minute-to-minute oscillations in the luteinizing hormone and oestradiol levels. Nocturnal
leptin increase determines the change in the nocturnal luteinizing hormone profile in the mid-to-late
follicular phase that precedes ovulation. In this context, decrease in circulating levels of leptin is
probably responsible for the disruption of HPG function (reduction in LH oscillations and hence
oestrogen deficiency) in AN patients [21]. Moreover, leptin can affect innate and adaptive immunity
by inducing a proinflammatory response [22]. Serum leptin levels have been repeatedly found to be
decreased in AN patients compared to that of controls (e.g., [23,24]), however, it seems to be reversible,
and leptin levels increase during weight recovery [25].

Adiponectin represents the most abundant peptide secreted by adipocytes, playing an important
role in the metabolism, regulation of anabolic pathways, reduction of oxidative stress, prevention
from inflammatory processes, and vascular function improvement [26]. Misra et al. [27] reported
unchanged levels of adiponectin in AN women compared to that of normal-weight controls, however,
other studies revealed elevated adiponectin levels [28] or decreased adiponectin levels (e.g., [29]). Thus,
further research on this issue is needed.

Ghrelin is a centrally acting appetite-stimulating peptide produced by multiple organs (e.g.,
endocrine cells in the stomach, pancreas, intestine, etc.) implicated in various functions. Specifically,
ghrelin has stimulatory effects on food intake, gastrointestinal motility, lipogenesis, and blood glucose
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levels and inhibitory effects on blood pressure and LH and FSH release [30]. Impairments in ghrelin
secretion may play an important role in the development of anorexia nervosa [31]. Several studies
reported increased plasma levels of ghrelin in AN patients [32]. Moreover, elevated ghrelin levels,
which usually decrease with weight recovery, are inversely correlated with body mass index (BMI) [33].
Notably, impaired ghrelin signalling and modulation indexed by a delayed or absent postprandial
ghrelin decrease [34], the inability to adequately suppress the secretion of growth hormone after
glucose digestion [35], or the insufficiency of glucose elevation after exogenous ghrelin application [36]
suggest AN-linked ghrelin resistance [30].

Peptide YY (PYY) as an anorexigenic hormone that supresses appetite and is secreted by intestinal
L cells. Serum levels of PYY are shown to be increased in AN patients compared to that of controls,
contributing to decreased nutrient intake and disordered eating psychopathology [37].

Dysregulation in appetite-regulating hormones and adipokines may contribute to increased risk
of CVD. Specifically, experimental studies suggested that leptin deficiency contributes to cardiac
contractile dysfunction, impaired intracellular Ca2+ homeostasis, and ultrastructural derangement
in ventricular myocytes [38]; decreased adiponectin levels are associated with the development of
obesity and subsequent adverse cardiovascular functioning [39]; pathophysiological concentration
of ghrelin was shown to increase the expression of endothelial adhesion molecules involved in
vascular inflammation [40]; and PYY could adversely affect cardiac structure/function by activating
cardiac fibroblasts [41].

3. Immune System Abnormalities Related to Cardiovascular Risk in Anorexia Nervosa

The important role of the immune system in the pathogenesis of various diseases, including mental
diseases, is being increasingly accepted. However, the influence of inflammation in the development
and maintenance of anorexia nervosa is still under intensive debate. Importantly, functioning of
the immune system is controlled by the neuroendocrine system. In this context, the above mentioned
AN-linked hormonal imbalances may result in uncontrolled immune system changes (e.g., altered
cytokines production) and, vice versa, released cytokines can influence neuroendocrine functioning
via their direct action on the brain [42,43]. Potential contributors to the dysregulated immune system
(proinflammatory state) in AN include increased oxidative stress, a stress-related chronically activated
HPA axis and sympathetic nervous system, and changes in the intestinal microbiota, all of which are
present in anorexia nervosa [44].

3.1. Cytokines—Their Role in AN Psychopathology

Cytokines represent a broad group of secreted proteins that are important in cell signalling.
These messenger molecules include chemokines, interferons (IFN), interleukins (IL), lymphokines,
and tumour necrosis factors (TNF). Cytokines as intercellular signalling molecules with particular
importance in the immune system are supposed to play a mediatory role in the complex
neuroendocrine–immune relationship [43]. From a psychoimmunological aspect, the cytokines
are divided according to their immunological function into four categories [45]:

(1) TH1 cytokines (IL-2, IL-12, IFN-γ) promoting the TH1 branch of the immune system and leading
to cytotoxic cell contacts,

(2) TH2 cytokines (IL-4, IL-5, IL-13) stimulating the TH2 branch and induction of antibodies production,
(3) The proinflammatory cytokines (IL-1, IL-6, IL-8, IL-17, IL-21, IL-22, IFN-α, TNF-α) that

promote inflammation,
(4) The anti-inflammatory cytokines (IL-10, TGF-ß) that are influenced by regulatory T cells, preventing

inflammatory processes.

Recent meta-analysis has shown that AN is associated with elevated levels of certain
proinflammatory cytokines including TNF-α and IL-6 [43]. In addition, elevated IL-6 serum
concentrations in AN normalize during the twelve weeks of specialised AN treatment [46].
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From a psychophysiological perspective, cytokines have been implicated in emotional/cognitive
regulation. Specifically, cytokines produced in the body’s periphery can access the brain via
humoral, neural and cellular pathways, influencing the mental state through the modulation of
neurotransmitters metabolism and signal transduction, modulation of the HPA axis, induction of
appetite-regulating hormones release, and impact on neural plasticity and neurogenesis [42,43].
Moreover, a proinflammatory state in the periphery may lead to chronic neuroinflammation.
Specifically, peripherally synthesized TNF-α may cause microglial activation and subsequent
proinflammatory expression (e.g., TNF-α, IL-1β, etc.) in the brain [47] leading to an amplification of
the neuroinflammatory response with detrimental effects on neural, cognitive, and behavioural
functions [48]. Thus, altered cytokines (e.g., TNF-α) production associated with chronic
neuroinflammation may contribute to mood and cognitive impairments [49,50] that are commonly
reported in AN patients.

3.2. Cytokines—The Role in AN-Linked Increased Cardiovascular Risk

Generally, primary mediators of inflammation are macrophage-derived cytokines, e.g., IL-1β
and TNF-α. These cytokines activate nuclear factor κB, which in turn increases the production of
IL-6 and IL-8 and induces T cells to produce IFN-γ [51]. Notably, inflammation is considered to play
a key role in increased CVD risk [52]. Specifically, increased production of cytokines, chemokines,
and endothelial adhesion molecules were observed in affected cardiac tissues [53], thus, altered
cytokines production may contribute to the inflammation-linked increased risk of CVD in AN patients.
From this point-of-view, persistent TNF-α-activated signal transduction pathways are associated
with vascular dysfunction, atherogenesis, hypertension, and adverse cardiac remodelling [54]; both
chronically elevated IL-6 levels and IL-6 receptor protein overexpression may lead to continuous
activation of glycoprotein 130, resulting in myocardiac hypertrophy [55].

The complex neuroendocrine–immune dysregulation associated with AN-linked increased
cardiovascular risk is summarized in Figure 1.

Figure 1. The complex neuroendocrine–immune pathways leading to a higher risk of cardiovascular
diseases in anorexia nervosa. HPA, hypothalamic–pituitary–adrenal; HPT, hypothalamic–pituitary–thyroid;
HPG, hypothalamic–pituitary–gonadal; GH, growth hormone; IGF-1, insulin-like growth factor 1; CRH,
corticotropin-releasing hormone; ACTH, adrenocorticotropic hormone; T3, triiodothyronine; GnRH,
gonadotropin-releasing hormone; LH, luteinizing hormone; PYY, peptide YY; TNF-α, tumour necrosis
factor α; IL-6, interleukin 6; LDL, low-density lipoprotein; HDL, high-density lipoprotein; AN, anorexia
nervosa; up-arrow, increased levels; down-arrow, decreased levels.
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In terms of cardiovascular risk, previous studies referred to a connection between the autonomic
nervous system (ANS) and the immune system - “the cholinergic anti-inflammatory pathway” -
that represents a neural inhibitory mechanism of the peripheral release of TNF, IL-1, and other
proinflammatory cytokines through parasympathetic (vagal) outflow [56,57]. Recently, this model has
been modified to the sympathetic-cholinergic anti-inflammatory pathway, which emphasizes the role
of the sympathetic output in the anti-inflammatory response [58]. It seems that future research would
be interesting to detect ANS non-invasive biomarkers with respect to the inflammatory profile for early
diagnosis of cardiovascular diseases and personalized therapy in anorexic patients.

4. Autonomic Nervous System Dysregulation as A Potential Mechanism Leading
to Cardiovascular Diseases in Anorexia Nervosa

The autonomic nervous system plays a crucial role in the maintenance of homeostasis.
Both divisions—parasympathetic and sympathetic—are tonically active, and their close cooperation is
known as a dynamic sympathovagal balance. Importantly, proper sympathovagal balance functioning at
rest and in response to stress is important for organism flexibility, adaptability, and physical/mental health.
In contrast, a lack of dynamic adaptability characterized by autonomic imbalance (i.e., the sympathetic or
parasympathetic nervous system dominates over the other) is associated with a higher risk of cardiovascular
and other health complications [59–61]. In addition, inter-individual differences in the stress response
system to long-term stress exposition associated with altered autonomic regulation may contribute to
the risk for development of mental and other disorders [62].

4.1. Heart Rate Variability—An Index of Cardiac Vagal Regulation

Cardiac function is extremely sensitive to autonomic regulatory inputs. With respect to cardiac
vagal control, Mazurak et al. [7] in their review identified three distinct responses of cardiac vagal
control in AN: a dominance of parasympathetic activity (e.g., [63,64]), lower cardiovagal control
(e.g., [65]), or no differences (e.g., [66]). Although the majority of the studies indicated parasympathetic
dominance as an adaptive response to conserve energy and caloric deprivation [67–69], other
mechanisms should be taken into account. Recent neuroimaging studies revealed anorexia-linked
abnormalities in central brain structures (e.g., reductions in subcortical volumes, cortical thickness),
or the neural alteration of AN-linked reward processing, suggesting dysfunctions in fronto-striatal
and insular brain regions [70–74]. Moreover, Gorwood et al. [75] proposed that AN results from
dysregulations of regulatory centres involved in the balance between input (feeding/hunger) and output
(excessive exercise), including genetic and epigenetics factors (e.g., dopamine genes involved in
the reward circuitry located in the ventral striatum and the food regulatory mechanisms located in
the hypothalamus). These brain structures overlap with regions of the central autonomic regulatory
network of the heart rate (HR).

Mean HR is determined by dynamic interaction of acceleratory sympathetic nervous activity
(especially to stress), and dominant deceleratory parasympathetic nervous system activity results in
rhythmical beat-to-beat oscillations—heart rate variability (HRV) [60]. With respect to neurocardiac
integrity, Benarroch [76] described the central autonomic network (CAN) as an integrated regulatory
mechanism through which the brain controls complex visceromotor, neuroendocrine, and behavioural
responses. Structural cortical and subcortical components of CAN (e.g., prefrontal cortex, amygdala) are
included in the regulation of sympathetic and parasympathetic outputs to sinoatrial nodes, producing
the complex HRV indicative of a healthy and adaptive organism [60,77]. In contrast, rigid system
functioning without brisk adaptation to stress results in low HRV that is associated with higher risk of
morbidity and mortality [60,78]. Thus, the autonomic imbalance might be the final common pathway
linking the disorders and conditions to death and disease [79]. From this perspective, the therapeutic
interventions that improve the autonomic imbalance toward a more salubrious profile may serve to
prevent or at least minimize the risk for cardiovascular diseases and death [79]. Given the intrinsic
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connection between the brain and the heart, a recent review pointed to cardiovascular and ANS activity,
confirming a potential pathogenic brain–heart pathway to cardiovascular diseases [80].

HRV can be quantified by various methods: The HRV linear analysis was recently recommended
for clinical practice and psychophysiological research [81]. Specifically, the linear (spectral) HRV
short-term analysis allows for the faster isolation of the high-frequency respiratory-linked influences
on HRV (HF-HRV: 0.15–0.4 Hz). In other words, the HF-HRV reflects physiological rapid HR
oscillations according to breathing (i.e., HR increases during inspiration, and HR decreases during
expiration)—respiratory sinus arrhythmia (RSA). Importantly, RSA is mediated mainly by the cardiac
vagal nerve traffic originating in the nucleus ambiguous and therefore provides a non-invasive
biomarker of cardiac vagal regulation indexed by the HF-HRV [82,83].

4.2. Blood Pressure Variability—An Index of Sympathetic Vascular Regulation in Anorexia Nervosa

While resting HR is predominantly under vagally-mediated cardiac control, the vascular tone
is sympathetically regulated [84]. Mean arterial blood pressure (BP) as a critical hemodynamic
factor depends on two hemodynamic parameters: cardiac output and total peripheral resistance;
both parameters are under regulation and are mediated by the baroreflex mechanism and ANS.
The deficiency of proper regulatory mechanisms included in the BP modulation can have important
pathophysiological consequences, e.g., low BP results in inadequate blood flow to organs, resulting in
syncope or shock, and high BP is associated with increased oxygen demand by the heart, ventricular
remodelling, or vascular injury [84].

Blood pressure variability (BPV) is characterized by marked spontaneous oscillations over
short-term or long-term time periods depending on the interplay of different cardiovascular control
systems, such as the baroreceptor reflex, the vascular myogenic response, as well as changes in
behavioural and emotional mechanisms [85]. The ability to monitor short-term instantaneous BP
changes in time is based on the non-invasive “volume-clamp” method by Peňáz in the early 1970s [86,87].
Consequently, through the spectral analysis of the BP biosignal, information can be obtained about
dominant sympathetically-mediated Mayer waves at a low-frequency band (LF-BPV: 0.04–0.15 Hz). Two
basic mechanisms are responsible for these oscillations: central and baroreflex. While the autonomic
oscillators within the central nervous system generate periodic fluctuations in autonomic nerve
activity that are translated into corresponding oscillations in BP, influencing vascular sympathetic
activity [88,89], the arterial baroreceptor reflex exhibits a resonance at the frequency of spontaneously
occurring Mayer waves [88–91]. Thus, the index LF-BPV (especially systolic BP) is considered as
a biomarker of sympathetic vascular regulation.

The arterial baroreflex plays a crucial role in short-term arterial BP control, haemodynamic
stability and cardioprotection. The baroreflex evokes reciprocal responses of the ANS: When afferent
baroreflex nerve traffic intensifies (this happens when BP increases), the efferent sympathetic traffic
decreases while the efferent parasympathetic traffic increases, the inverse response occurs when BP
decreases [84,92–94].

The arterial baroreflex is usually quantified by baroreflex sensitivity, which is defined as the change
in the interbeat interval in milliseconds per unit change in BP (in mmHg). In this aspect, the baroreflex
efferents to the sinoatrial node translate BP variability into HRV [84,92]. Furthermore, altered baroreflex
sensitivity (BRS) contributes to the reciprocal reduction of parasympathetic activity and an increase of
sympathetic activity—this shift in sympathovagal balance is associated with development and progression
of cardiovascular diseases [95]. Thus, baroreflex sensitivity assessment is considered as a potential
biomarker of proper cardiovascular reflex functioning, mediated by autonomic neural control between
both parameters: HR and BP.

It is important to note that “cardiac baroreflex” and “sympathetic baroreflex” are different.
Cardiac baroreflex is determined by assessment of the relationship of the RR intervals (i.e., HR)
to a given change in arterial BP. The sympathetic baroreflex represents the relationship between



Int. J. Mol. Sci. 2020, 21, 7302 8 of 19

diastolic arterial BP and vasoconstrictor sympathetic nerve activity (it is determined by muscle
sympathetic activity) [84].

With respect to anorexia nervosa, several studies revealed insufficient sympathetic
cardiovascular control [96,97]. Specifically, decreased mean BP (hypotension) is a typical finding
for AN (e.g., review by Sachs et al. [68]). In this perspective, both sinus bradycardia and hypotension can
have consequences in the maladaptive response to physiological load (e.g., orthostasis—posture change
from lying to standing, in which haemodynamic adaptation is mediated through the baroreflex) resulting
in cardiovascular adverse outcomes, such as a syncope. For example, the dramatic cardiovascular
changes in AN have similar features to postural orthostatic tachycardia syndrome [68]. This assumption
is confirmed by the studies revealing sympathetic hypofunction in both the resting and the standing
positions in patients suffering from AN based on BPV analysis [96,97].

Additionally, a recent study found increased BRS associated with higher HRV, indicating
an enhanced parasympathetic reflex of HR control in AN. This study referred to the BRS and the
HRV as two major negative prognostic indicators of anorexia-associated arrhythmic death [98].
Notably, bradycardia—lower heart rate as a result of higher parasympathetic regulatory influences on
the sinoatrial node in the heart—itself causes QT prolongation and increases the risk for the development
of early after depolarizations, which are the causal event leading to torsades de pointes ventricular
tachycardia and sudden death [99,100]. In this aspect, bradycardia associated with the presence of QT
prolongation may result in increased risk of sudden cardiovascular death in anorexia nervosa [101,102].
Thus, we suggest that non-invasive biomarkers used for assessment of complex cardiovascular reflex
control functioning could represent a highly sensitive methodological approach for early diagnosis
and prevention of cardiovascular morbidity in AN.

Importantly, arterial properties evaluated using the carotid intima-media thickness, parameters of
arterial stiffness, and endothelial function are interrelated with the autonomic regulation, particularly
with sympathetic vascular control [103–107]. In this aspect, the studies on early atherosclerotic
damage in patients with AN presented the evidence of endothelial dysfunction, selective peripheral
vasoconstriction, and accelerated aortic arteriosclerosis [68,108–110]. Therefore, simultaneous
assessment of these indices with the non-invasive autonomic biomarkers such as LF-BPV could
offer clinically significant information about the cardiovascular risk associated with the effects of
ANS dysregulation.

Table 1 summarizes the latest studies regarding neuroendocrine, immune, and ANS dysregulation
in anorexia nervosa.

Table 1. Recent studies of neuroendocrine, immune, and autonomic nervous system dysregulation in
anorexia nervosa.

Recent Studies Measured Parameters Main Findings

Neuroendocrine dysregulation

Het et al., 2020 [111]

Salivary cortisol and sAA were
measured before, during, and after
exposure to the Trier Social Stress

Test pre- and post-treatment.

HPA hyporeactivity, blunted
cortisol stress response associated

with attenuated sAA levels at
pre-treatment were found in ED
patients compared to controls.
After treatment, the blunted

cortisol stress response persisted
and sAA responses were

normalized in ED patients.
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Table 1. Cont.

Aulinas et al., 2020 [112]
Leptin, IGF-1, total T3, total T4,

free T4 index, TSH, total T4/ total
T3 ratio, and cortisol.

Serum leptin, IGF-1, total T3 levels,
and total T3/total T4 ratio were
significantly decreased in AN

patients compared to that
of controls.

Mancuso et al., 2020 [113]
Ghrelin, PYY, and BDNF levels
were assessed before and after

standardized breakfast.

Fasting ghrelin and PYY were
higher and fasting BDNF was

lower in AN patients compared to
those of controls. After breakfast
(over 120 min), ghrelin and PYY

AUC were higher and BDNF AUC
was lower in AN patients

compared to those of controls.

Elegido et al., 2019 [114] Leptin, soluble leptin receptor,
adiponectin, and cortisol.

Leptin level was decreased,
soluble leptin receptor, cortisol,

and adiponectin levels were
increased in AN patients

compared to those of controls.

Paslakis et al., 2019 [115] Ghrelin, leptin, cholecystokinin,
PYY, adiponectin, and visfatin.

Leptin was significantly decreased
and adiponectin significantly

increased in AN patients
compared to those of controls.

Podfigurna et al., 2018 [116] Kisspeptin, FSH, LH, oestradiol,
prolactin, testosterone.

Serum LH and oestradiol
concentrations in AN patients

were significantly lower compared
to those of the control group.

Brambilla et al., 2018 [117] GH and IGF-1.

GH was significantly increased
and IGF-1 decreased in AN
patients compared to those

of controls.

Immune dysregulation

Roczniak et al., 2020 [118] IL-15.
Serum level of IL-15 was

significantly higher in AN patients
compared to that of controls.

Caroleo et al., 2019 [119]
IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8,

IL-10, IFN-γ, TNF-α, MCP-1,
VEGF, and EGF.

IL-1α, IFNγ, and IL-10 were
significantly increased and EGF
significantly decreased in AN

patients compared to those
of controls.

Tanaka et al., 2019 [120] IL-18.
IL-18 was significantly decreased
in AN patients compared to that

of controls.

Elegido et al., 2019 [114] IL-1β, IL-2, IL-6, and TNF-α.

Serum TNF-α and IL-2 showed
significantly lower and higher

values, respectively, in AN
patients compared to those

of controls.
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Table 1. Cont.

Dalton et al., 2018 [121]

BDNF, bFGF, CRP, Eotaxin,
Eotaxin-3, sFlt-1, GM-CSF,

ICAM-1, IFNγ, IL-1α, IL-1β, IL-2,
IL-4, IL-5, IL-6, IL-7, IL-8, IL-10,
IL-12/IL-23p40, IL-12p70, IL-13,

IL-15, IL-16, IL-17A, IP-10, MCP-1,
MCP-4, MIP-1α, MIP-1β, PlGF,

SAA, TARC, TYK2, TNF-α, TNF-β,
VCAM-1, VEGF-A, VEGF-C,

and VEGF-D.

IL-6, IL-15, and VCAM-1
concentrations were significantly

elevated and concentrations of
BDNF, TNF-β, and VEGF-A were
significantly lower in AN patients

compared to those of controls.

Autonomic nervous system dysregulation

Het et al., 2020 [111]

HR and HF-HRV were measured
before, during, and after exposure
to the Trier Social Stress Test at pre-

and post-treatment.

ED patients showed significantly
lower HR and higher HF-HRV
before treatment compared to

those of controls. These changes
were reversible after treatment.

Tonhajzerova et al., 2020 [110] HRV and BPV.

LF-BPV was significantly lower in
AN adolescents compared to that
of controls, indicating insufficient

sympathetic cardiovascular
control in anorexia nervosa
already at adolescent age.

Billeci et al., 2019 [122]

HR and HRV indices were
measured at baseline, during light

physical exercise,
and during recovery.

HR, LF-HRV, and the LF/HF ratio
were significantly lower, while
SDNN, RMSSD, and HF-HRV

were significantly higher in
the AN group compared to those

of controls at baseline. During
light physical exercise, HR,

LF-HRV, and the LF/HR ratio
significantly increased followed by

significant decrease at recovery
among the AN group.

The opposite trend was found for
LF-HRV and HF-HRV associated
with no change in the LF/HF ratio
in controls. The AN group showed
no significant changes in SDNN
and RMSSD in contrast to those

values in the control group
(increased SDNN, RMSSD, during
light physical activity followed by

a decrease at recovery).

AN, anorexia nervosa; AUC, area under the curve; BDNF, brain-derived growth factor; bFGF, basic fibroblast growth
factor; BPV, blood pressure variability; CRP, C-reactive protein; ED, eating disorders; EGF, epidermal growth factor;
FSH, follicle-stimulating hormone; GH, growth hormone; GM-CSF, granulocyte-macrophage colony-stimulating
factor; HF-HRV, high frequency band of heart rate variability; HPA, hypothalamic–pituitary–adrenal; HR, heart
rate; HRV, heart rate variability; ICAM, intercellular adhesion molecule; IFN, interferon; IGF-1, insulin-like growth
factor; IL, interleukin; IP, interferon-induced protein; LF-BPV, low frequency band of blood pressure variability;
LF-HRV, low frequency band of heart rate variability; LH, luteinizing hormone; MCP, monocyte chemoattractant
protein; MIP, macrophage inflammatory protein; PlGF, placental growth factor; PYY, peptide YY; RMSSD, root
mean square of successive differences; sAA, salivary alpha-amylase; SAA, serum amyloid A; SDNN, standard
deviation of the NN intervals; sFlt-1, fms-like tyrosine kinase-1; T3, triiodothyronine; T4, thyroxine; TARC, thymus
and activation-regulated chemokine; TNF, tumor necrosis factor; TSH, thyroid-stimulating hormone; TYK2, tyrosine
kinase-2; VCAM, vascular cell adhesion protein; VEGF, vascular endothelial growth factor.
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5. Clinical Application

It is unknown whether the anorexia-linked cardiovascular dysregulation is reversible by specific
treatment based on weight gain. Lachish et al. [123], based on the HRV changes in anorectic patients
after short- and long-term weight gain, conclude that abnormal cardiac vagal control was presented
not only in malnourished patients, but also persisted following short-term and long-term weight
restoration. In contrast, a recent study referred to a shift toward parasympathetic dominance indicated
by HRV parameters in children with AN that is improved after re-feeding, i.e., cardiovagal regulation
indexed by HRV decreased. This effect could be explained by an increase of the intrinsic pacemaker
rate as well as central–peripheral autonomic rapid response to the increased caloric intake during
re-feeding [69]. Notably, re-feeding syndrome, which occurs during the first days of re-feeding, can be
associated with a critically increased risk of acute, life-threatening cardiac complications [5].

It is interesting to note that restrained eating (i.e., intentional restriction of food intake to prevent
weight gain or to promote weight loss) was associated with low cardiac vagal control [124]. As noted in
a recent review [125], the cardiovagal regulation is positively related to interoceptive sensitivity [126],
thus, the diet-related reductions in vagal modulation may diminish the ability to detect interoceptive
signals such as information about the current homeostatic state [127,128], contributing to mental
illnesses [129]. Thus, HRV may serve as a useful biomarker for identifying potentially beneficial or
detrimental aspects of diet [125]. This issue is particularly important in prevention of the potential
development of eating disorders including AN and related health complications as a result of life-style
modifications (dietary regimen, excessive physical activity) during adolescence.

Potential non-invasive biomarkers for detection of an AN-linked increase in risk of CVD are
summarized in Figure 2.

Figure 2. Potential non-invasive biomarkers for detection of the increased cardiovascular diseases
(CVD) risk in anorexia nervosa (AN). HF-HRV, high frequency band of heart rate variability; LF-BPV,
low frequency band of blood pressure variability.

6. Conclusions

Anorexia nervosa is associated with an altered neuroendocrine and inflammatory profile.
Although most of these disturbances are reversible with appropriate treatment, several persistent
neuroendocrine–immune alterations may contribute to the development and progression of AN
and to increased AN-linked cardiovascular risk. Moreover, the complex assessment of cardiovascular
neural control using non-invasive biomarkers could represent a promising tool for early diagnosis
and personalized therapy in AN. Simultaneous evaluation of parameters of autonomic control could
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bring novel clinically important information about the mechanisms of increased risk of cardiovascular
events in AN, especially in adolescence.
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