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Introduction
On the way to the medicine of the 21st century, person-
alized (also called individualized) medicine is a great and 
crucial step. It allows physicians to tailor therapy plans to 
the patient’s distinctiveness, providing better treatment out-
comes for patients and overall less drug use. This equates to 
faster recovery, less side effects, and lower expenses for the 
health care system.1

Personalized medicine is especially promising with 
regard to the treatment of neoplastic disorders. They are 
among the most complex diseases known. Individualized 
medicine helps in developing pharmaceuticals and treat-
ments that can efficiently eliminate cancer cells and at the 
same time cause the least amount of damage to the sur-
rounding tissues and the patient overall. For personalized 
medicine and the fight against cancer, disease-centered 
high-throughput data sets are ideal resources. They can 
be used to generate or verify hypotheses, to compare own 
findings with public data, and to find novel biomarkers 
and identify their functional contexts. To achieve this,  

a complex data processing pipeline is required, comprising  
(at least) the following steps2,3:

1. Searching and downloading a suitable public data set
2. Importing data into a statistical environment
3. Performing adequate data normalization
4. Performing quality control of data and normalization
5. Formulating and implementing a statistical analysis and
6. Interpreting the results

The realization of this workflow is very time consum-
ing and requires special know-how in bioinformatics and 
statistics.4 Physicians and biologists not experienced in high-
throughput data analysis can profit immensely from a tool 
that allows easy and intuitive access to cross-omics high-
throughput data sets, granting them firsthand access to this 
vast resource of knowledge.

The majority of biological high-throughput data sets are 
stored in public data repositories such as Gene Expression 
Omnibus (GEO)5 and ArrayExpress6 for microarray data, 
PRoteomics IDEntifications (PRIDE)7 for proteomics data, 
or Sequence Read Archive (SRA)8 of the National Center for 
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Biotechnology Information for next-generation sequencing 
data. These repositories provide data storage for a dedicated 
set of single “omic” data type but do not support linking of 
different types of omics data (cross-omics). GEO and PRIDE 
also provide mining tools to inspect their data sets and to per-
form some limited data analysis.9,10 Workflow management 
systems such as KNIME,11 TAVERNA,12 Orange4WS,13 
and Galaxy14 use graphical user interfaces to build complex 
multistep data-mining workflows. These tools are designed to 
grant some limited analysis capabilities but do not provide uni-
fied (cross-omics) access to data sets. Performing data analysis 
based on cross-omics data sets proves to be a challenging task, 
even for those experienced with data analysis. Table 1 presents 
a comparison of BioMiner with other systems.

In a joint effort, the partners of the binational SYSTHER 
(Systems Biology Tools Development for Cell Therapy and 
Drug Development – www.systher.eu) project successfully 
investigated the molecular mechanisms of different cancer 
types. To analyze cancer from multiple points of view, com-
plementary high-throughput data sets from transcriptomics, 
metabolomics, and proteomics were collected.15–18 To store 
these different “omics” data sets together with complementary 
data from public resources, we created SystherDB, resorting 
to previous work.19,20

A database can only be beneficial to the user if the stored 
data are well presented and easily accessible. The complex 
nature of biological high-throughput data makes this a chal-
lenging task. Rising to this challenge, we developed Bio Miner, 
a Web-based toolbox for mining and visualizing data stored in 
SystherDB. The main objective is to give all partners in the 
SYSTHER project a tool that they can use to obtain their own 
results from high-throughput data. Regardless of their exper-
tise, the partners can use BioMiner to interactively explore 
public and proprietary multiomics data sets.

A public instance of BioMiner is freely available online. 
It currently contains 18 different studies (Table 2), with 
almost 4,000 microarrays and more than 187 Mio measured 
values of genes, proteins, or metabolites. Because BioMiner 
was developed in the SYSTHER project, most of the studies 
are related to the focus of the project, glioblastoma multiforme 
(GBM). Most of them have been imported from different 
public resources. The large studies in particular highlight the 
potential of BioMiner to easily inspect and analyze huge data 
sets. We demonstrate the application by presenting typical use 
cases for the identification of cancer biomarkers. A graphical 
representation of the workflow can be found in Figure 1.

All analyses presented in the methods section can readily 
be reproduced and expanded using the public Web server http://
systherDB.microdiscovery.de/, with login and password “systher.”

Methods
BioMiner is designed as a Web application and uses Google 
Web Toolkit (GWT) for the graphical user interface. GWT 
functionality is enhanced by customized plot-applets tailored 

for interactive visualization of large data sets. Results are pre-
sented in two parallel views composed of a table and a plot. 
Both views are interactive and user-defined selections can be 
synchronized. Pathway visualization is achieved by extending 
the PathVisio library.21

Experimental data from genomics, proteomics and metab-
olomics are stored in a large manually curated MySQL‡ database 
(SystherDB). To ensure data consistency, data import has to be 
performed by a dedicated specialist. Specific indexing meth-
ods have been implemented to achieve good response times. 
Even when querying large studies comprising several millions 
of measurements, response times are typically within just a 
few seconds. Metabolite data are annotated using three differ-
ent identifier systems: Golm Metabolome Database,22 Human 
Metabolome Database (HMDB),23 and Kyoto Encyclopedia 
of Genes and Genomes (KEGG).24 Integrating the different 
data types into a single outcome requires a predefined cross-
omics relationship, eg, a mapping of metabolites onto genes 
or vice versa. Integration of semantic information is achieved 
by singular enrichment analysis.25 Especially, pathway and 
functional information from Reactome,26 KEGG,24 Wiki-
Pathways,27 and GeneOntology28 are supported. Enrichment  

table 1. Comparison of features between Biominer and equivalent 
tools.

featuReS BioMiner geo KniMe galaxY R

Interactive Plotting   ×  ×  ×  × 

easy access to 
omics data

  ×  ×  ×  × 

Contains data-
base with relevant 
information

  ×  ×  ×  × 

shared data / 
remote access

   ×  ×  × 

Import own/public 
data

 ×    

Programmable  ×  ×   

analYtiCal 
CaPaBilitieS

BioMiner geo KniMe galaxY R

Differential  
analysis

    

Correlation  
analysis

 ×   

Cross-omics 
mapping

 × × × ×

enrichment  
analysis

 ×   

anoVa, advanced  
modelling

× ×   

Clustering × ×   

notes: a “” indicates that the tool supports the feature. a “×” indicates that 
the feature is missing in standard installations. Please note that in KnIme, 
Galaxy, and R, advanced users may extend standard capabilities.

‡http://www.mysql.com
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statistics with multiple testing-corrected P-values are calcu-
lated as described in Bluthgen et al.29 Correlation analyses are 
based on Pearson correlation coefficients. To filter noise and 
improve response times, correlations are calculated for high-
variance genes (by default, the top 500 genes).

BioMiner complies with public data management stan-
dards such as Minimum Information About a Microarray 
Experiment (MIAME),30 Minimum Information About a 
Proteomics Experiment (MIAPE),31 and Minimum Informa-
tion About a Metabolomics Experiment (MIAMET).32

cross-omics mapping. For the mapping between genes 
and proteins, we use the relations provided by ENSEMBL#33 
database accessible via BioMart.34 This mapping is updated 
on a regular basis (coupled with new versions of ENSEMBL). 
For establishing relations between genes and metabolites, 
we use the combined information of ConsensusPathDB35 
and HMDB.23 These databases provide information about 
metabolites (compounds) and associated metabolic enzymes. 

table 2. studies in systherDB: overview of the studies currently available in the systherDB.

title tYPe faCtoRS geo-id SaMPleS PM-id BioMoleCuleS

Glioma-derived stem cell factor  
effect on angiogenesis in the brain

Glioma Cell type; tumor 
Grade

Gse4290 180 1661633436 Genes

High-grade gliomas (HG-U133B) Glioma Cell type; tumor 
Grade; necrosis;  
survival time

Gse4271 100 1653070146 Genes

Gliomas of grades III and IV Glioma Cell type; tumor 
Grade

Gse4412 85 1537496141 Genes

Expression profiles of human glioblastoma  
frozen tumors and cell lines

Glioma Cell type;  
Cell number

Gse9171 30 1839455847 Genes

Glioblastoma from a homogenous  
cohort of patients treated within  
clinical trial

Glioma Disease state;  
survival time

Gse7696 84 18565887 Genes

feedback circuit among InK4 tumor  
suppressors constrains human  
glioblastoma development

Glioma Cell type Gse9171 30 18394558 Genes

Gene expression analysis of glioblastomas  
identifies the major molecular basis for the  
prognostic benefit of younger age  
(HG-U133a)

Glioma tumor type;  
survival time

Gse13041 191 18940004 Genes

Transcriptome profile of human colorectal  
adenomas

CrC Disease state Gse8671 64 1817198443 Genes

Clinical significance of osteoprotegerin  
expression in human colorectal cancer

CrC Disease state;  
method

Gse21510 148 2127011048 Genes

Human colorectal cancer cell lines  
treated with several inhibitors of  
PI3Kinase–aKt signaling pathway

CrC Cell type;  
treatment

Gse18005 15 20546605 Genes

ras signaling in colon carcinoma: target 
gene deregulation and growth control  
through Y-box-binding protein 1

CrC Cell type;  
treatment

Gse18232 18 21170361 Genes

expression data from 290 primary  
colorectal cancers

CrC tumor Grade;  
survival time

Gse14333 226 19996206 Genes

NCI60 expression profiling using the  
agilent Whole Human Genome oligo  
microarray

Cancer Cell Line;  
Cell name

Gse22821 249 Genes, 
Proteins, 
metabolites

expression data from the Cancer  
Cell Line encyclopedia (CCLe)

Cancer tumor Location;  
tumor Histology

Gse36133 917 22460905 Genes

Gene expression profile of peripheral  
blood lymphocytes: comparison between  
melanoma patients and healthy controls

melanoma Disease;  
Cell type

Gse6887 46 1748818249 Genes

Global control of cell cycle transcription  
by coupled CDK and network oscillators

Cell Cycle Group; time Gse8799 60 1846363350 Genes

Human body index – transcriptional  
profiling

tissue; Disease;  
state

Gse7307 677 Genes

A genomic storm in critically injured  
humans

age; sex Gse36809 812 22110166 Genes

 

#www.ensembl.org 
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Genes coding for the metabolic enzymes are mapped to the 
corresponding metabolite. This mapping is updated with new 
versions of HMDB.

results
The main goal of BioMiner (beyond easily accessible storage of 
high-throughput cross-omics data) is to provide a set of tools 
that allow the performing of a number of statistical investiga-
tions. To demonstrate the intuitive usability of the applica-
tion, we present typical workflows used for the identification 
of genes and pathways associated with GBM. The presented 
use cases are mainly based on data of the GBM Study by Sun 
et al.36, containing data from 180 microarrays derived from 
tissues of patients with different brain tumor types and grades, 
as well as from tissues of nontumor controls. This study has a 
relatively simple experimental design with a large number of 
replications. The major analysis steps of BioMiner are shown 
in Figure 2, including study overview, detection of differen-
tially expressed genes, identification of pathways, visual path-
way inspection, comparison of gene expression with protein 
expression, and correlation of genes with survival times. These 
steps are demonstrated in more detail.

study selection and inspection. In order to access data, 
an experiment (study) is selected from an overview presenting 

key properties of all studies in the database (Fig. 2A). To find 
a study of interest, the table can be filtered using keywords 
such as “glioma” or biomolecule types such as “genes.” Once a 
study is selected, different biological and technical properties 
can be inspected, such as number and grouping of samples, 
experimental or clinical parameters, or the experimental tech-
nologies used.

differential analysis. The simplest and most common 
approach for the detection of tumor-associated biomarkers is a 
differential analysis based on statistical tests such as the t-test. 
Differential biomolecule identification can be configured 
using a drag-and-drop mechanism of the relevant samples. 
As an example, we compare GBM WHO grade IV samples 
versus nontumor control samples in the study of Sun et al.36 
The comparison is performed on the fly, and the resulting fold 
values and P-values are presented in a tabular view and can 
be displayed in interactive plots (eg, volcano plot: Fig. 2B). 
The two top upregulated genes between glioma WHO grade 
IV and nontumor samples are IGFBP2 and CHI3L1, both of 
which are described as important glioma-related markers in 
the literature.37–40 The table with the differential results can 
be filtered for a specific gene name or description. Searching 
for the ratio of cursive reveals a 2.6-fold upregulation in GBM 
WHO grade IV (Log2 ratio of 1.4).

Hypothesis/question

• Are there
biomarkers corre-
lated to survival
time in GBM?

Select appropriate
study

• GBM and healthy
samples

• Sun et al study

Analyze the data

• Correlation
analysis

• Analysis of
differential
expression

Identify biomarkers

• Genes with high
correlation

• Genes with signifi-
cant P-value

Functional analysis

• Pathway analysis

• GO-term analysis

Wet-Lab

• Investigate
Biomarkers experi-
mentally

• Generate
hypothesis

figure 1. Typical workflow in which BioMiner can be integrated. The yellow boxes represent steps within the field of bioinformatics (or in this case, done 
in BioMiner), the green box represents the wet-lab work, and the gray box represents the theoretical part (eg, study design) of the workflow.

http://www.la-press.com
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correlation analysis. Correlation is a general and ver-
satile tool to identify associations and predictive relation-
ships between biomolecules or experimental parameters. 
For example, if a study is annotated with survival times, 
the analysis of correlated events allows the identification of 
markers associated with survival. This association may be 
positive (high gene expression indicates long survival) or 
negative (high gene expression indicates short survival). Bio-
Miner implements different types of correlation analyses to 
search for an association between different biomolecules or 
between biomolecules and clinical parameters. As an example, 
Figure 2C shows the results of a correlation analysis between 
genes and survival time based on the study of Freije et al.41 
A ranked table of highly correlated genes is complemented 
by a scatter plot of the top gene OSBPL11. We included sev-
eral GBM- and colorectal cancer (CRC)-related studies with 
annotated survival times (Table 2).

working with gene groups. The user can define and 
store a specific group of biomolecules, eg, by selecting a set of 
genes with significant P-values or high fold changes. Defin-
ing a biomolecule group offers the possibility for cross-study 
analyses, addressing, for instance, the question: How do the 
top upregulated genes from the data set of Sun et al.36 behave 
in other data sets? To this end, a group of biomolecules can 
be loaded into existing plots. With this approach, the user 
can easily compare two studies. An example comparing two 
similar studies is given in Figure 3. This volcano plot visu-
alizes the differential biomolecule comparison for astrocy-
toma grade III versus GBM grade IV using the data set from 
Freije et al.41 Top upregulated genes identified with the data 
set from Sun et al.36 are highlighted in red (refer “Differen-
tial analysis” section earlier). The majority of the highlighted 
genes show a very good agreement between both GBM stud-
ies. This agreement even increases if the highlighted gene set 

A

C

E

D

F

B

figure 2. Data mining with Biominer. screenshots of different results from data mining with Biominer including the following: (a) study overview,  
(B) detection of differentially expressed genes, (C) correlation of gene expression and survival time, (d) identification of significantly enriched pathways, 
(e) visual pathway inspection based on predefined layouts, and (f) biomolecule comparison of gene and protein expression. results are typically 
presented in synchronized, parallel views composed of a table and a plot. the pathway inspection is shown in more detail in figure 4.

BioMiner
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is created from the comparison of tumor grade III with tumor 
grade IV in the study by Sun et al.36 (data not shown). The 
top upregulated gene in both studies is MIR21 (rightmost 
red point), which has been identified recently as a useful bio-
marker for GBM.42 But there are also some disagreements 
between both data sets. Especially, the gene MALAT1 
(leftmost point in Fig. 3) is downregulated in the data based 
on Freije et al.41 while showing an upregulation in the data 
set from Sun et al.36

Beyond comparing closely related studies, this approach 
can also be used to investigate relations between more het-
erogeneous studies. By highlighting the top genes from Sun 
et al.36 in the differential comparison of adenoma versus 
normal mucosa,43 we detect general and more specific can-
cer markers. IGFBP2 (already reported above) and TGFBI 
are upregulated in both tumor types, while the gene PLOD2 
shows upregulation only in GBM but not in CRC.44

Functional characterization and interactive pathway 
plot. Typically, the result of a differential analysis is not a 
single gene but rather a set of up- or downregulated genes 
that may be related in a systemic context (such as a biochemi-
cal pathway). The contextual interpretation of a given set of 
genes can be challenging, especially considering the multitude 
of different gene functions and involvements in biochemical 

pathways. BioMiner provides a straightforward way to iden-
tify biochemical pathways, Gene Ontology terms, or chro-
mosomal regions significantly related to a given set of genes 
(Fig. 2E). Pathways from WikiPathways and KEGG can be 
displayed and interactively inspected based on predefined lay-
outs. Integrating results from differential analyses in the path-
way graph allows the investigation of genes and metabolites  
in their systemic contexts. This is illustrated for the “cell 
cycle” pathway in Figure 4 using the differential biomolecule 
identification of GBM tumor grade 4 versus control (refer 
“Differential analysis” section).

cross-omics analysis. The system internally contains 
cross-omics mappings between genes and proteins or between 
genes and metabolites. The complexity of the different cross-
omics mappings is hidden from the user. For studies containing 
cross-omics data, the user can easily correlate different omics 
data types, eg, by creating a scatter plot comparing differential 
gene expression with differential protein expression (Fig. 2F).

discussion
In this article, we demonstrate that the Web-based applica-
tion BioMiner is well suited to perform statistical analyses in  
cancer-related high-throughput experiments. The studies 
selected for illustration are related to GBM. All presented 
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figure 3. Volcano plot for cross-study comparison. Volcano plot visualizing the differential comparison of astrocytoma grade III versus GBm grade IV  
using the data set from Freije et al.41 Top upregulated genes identified with the data set from Sun et al.36 (GBm grade IV vs control) are highlighted to 
investigate the relation between different studies. The majority of the highlighted genes show a good agreement between both brain tumor experiments.

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


61CanCer InformatICs 2015:14

analyses can be reproduced using the publicly available 
instance of the application.

In order to create a tool useful for a broad spectrum 
of life science users, our major goal was to keep BioMiner’s 
usage as simple as possible while offering substantial flexibil-
ity in answering biological questions. Simplicity is achieved by 
following several different guiding principles. First, technical 
details are hidden from the user: ready-to-use normalized 
data are provided together with information on experimental 
design and clinical parameters. Second, experimental data are 
complemented by public knowledge on pathways and gene 
functions. Third, instead of providing an extensive repertoire 
of data analysis algorithms, we rather focus on a limited set 
of proven methods. To perform analyses beyond this set, it 
may be necessary to download result tables or complete study 
data and run analyses in more advanced statistical frameworks 
such as R/BioConductor.45 Fourth, we model key aspects of 
the experimental design so that the main questions can be 
addressed rapidly. For instance, the case–control branches of 
a study are explicitly represented so that differential analysis 
can be achieved straightforwardly. More sophisticated analyses 

deviating from the default design are possible but may result in 
slower response times.

Of course, easy accessibility comes at a price: performance- 
optimized queries with response times of a few seconds are 
available only for predefined groups. All preprocessing steps, 
notably data normalization, have to be performed before data 
import and cannot be changed during an analysis. At the 
current state of development, there is no option for users to 
import own data sets. The predefined cross-omics mappings 
cannot be changed or individualized by the user. They have 
to be updated by the system administrator on a regular basis. 
Given the benefit of a fluent and straightforward usability, we 
think these limitations are acceptable.

The true potential of BioMiner is revealed when look-
ing at the huge studies with several hundreds of microar-
rays. It takes only seconds and a few mouse clicks to compare 
165 lung cancer samples with 56 breast cancer samples from 
the Cancer Cell Line Encyclopedia (CCLE) study compris-
ing .900 microarrays. The interactive result presentation  
makes it very easy to inspect the results, search for additional 
information, or identify functional relations.

figure 4. Pathway visualization. Interactive pathway visualization of the cell cycle pathway from WikiPathways repository. 
notes: the pathway graph can be scaled and exported as a png image. additional information on genes and metabolites is available via selection. 
Color code refers to P-values of differential expression comparing GBm grade IV vs control using the sun et al.36 study (blue = significant differential 
expression).

BioMiner
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The system is able to represent personalized data such 
as high-throughput data (genomics, epigenomics, proteom-
ics, and metabolomics) in combination with clinical param-
eters. If used in a clinical context, BioMiner is well suited 
to address the needs of personalized medicine. Interfac-
ing with tumor biobanks or clinical data management sys-
tems, the system will enable clinicians to directly evaluate 
patient-related high-throughput data and draw therapeutic 
conclusions.

conclusion and outlook
BioMiner is a resource that enables rapid identification and 
assessment of relevant features in complex biological exper-
iments. It provides clinicians and physicians a platform 
integrating high-throughput data together with clinical 
parameters. Straight design and ease of use make BioMiner 
perfectly suited for those who are not experts in bioinformat-
ics and statistics. The application enables experimentalists 
to directly assess data, validate hypotheses, draw biologi-
cal conclusions, and plan further experimental procedures. 
With an increasing number of experiments available for data 
analysis, the usefulness of BioMiner will still expand.

Given its intuitive usability, BioMiner may also serve as a 
platform for education, with instructors using the application 
for hands-on demonstration of high-throughput data analysis.

In the future, additional analytical capabilities of Bio-
Miner will augment the use of this platform in the context of 
personalized medicine even further. Researchers will be able 
to submit their patients’ molecular profiles to BioMiner and 
receive information about the patients’ disease status and opti-
mal course of treatment.
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