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ABSTRACT

The current report extends the facilitated diffusion
model to account for conflict between the search
and recognition binding modes adopted by DNA-
binding proteins (DBPs) as they search DNA and sub-
sequently recognize and bind to their specific bind-
ing site. The speed of the search dynamics is gov-
erned by the energetic ruggedness of the protein–
DNA landscape, whereas the rate for the recognition
process is mostly dictated by the free energy bar-
rier for the transition between the DBP’s search and
recognition binding modes. We show that these two
modes are negatively coupled, such that fast 1D slid-
ing and rapid target site recognition probabilities are
unlikely to coexist. Thus, a tradeoff occurs between
optimizing the timescales for finding and binding the
target site. We find that these two kinetic properties
can be balanced to produce a fast timescale for the
total target search and recognition process by op-
timizing frustration. Quantification of the facilitated
diffusion model by including a frustration term en-
ables it to explain several experimental observations
concerning search and recognition speeds. The ex-
tended model captures experimental estimate of the
energetic ruggedness of the protein–DNA landscape
and predicts how various molecular properties of
protein–DNA binding affect recognition kinetics. Par-
ticularly, point mutations may change the frustration
and so affect protein association with DNA, thus pro-
viding a means to modulate protein–DNA affinity by
manipulating the protein’s association or dissocia-
tion reactions.

INTRODUCTION

DNA-binding proteins (DBPs) possess a remarkably effi-
cient ability to search and recognize their specific binding
sites embedded within the genomic DNA. Early experi-
ments showed that DBPs can find their target site at a rate
two-orders of magnitude faster than the 3D diffusion limit

(1). Following these results, it was suggested that DBPs ac-
celerate the search for their target site via a mechanism of
facilitated diffusion in which 1D diffusion alternates with
3D diffusion during the search (2,3). 1D diffusion itself
comprises two distinct search modes, sliding and hopping,
which differ in the degree to which translocation and rota-
tion along the DNA are coupled as well as in the depen-
dency of their corresponding diffusion coefficients on salt
concentration (4–6). The understanding that DBP search
of DNA proceeds through a combination of diffusions in
different dimensional spaces is referred to as the facilitated
diffusion model. This model is well supported by numerous
experimental and theoretical studies and is able to explain
the high target association rates observed in vitro and in the
cell (7–13).

The biophysical characteristics of DNA search may de-
pend on the molecular properties of the searching proteins.
For example, the dimensions of the protein, its oligomeric
state, electrostatic potential and degree of flexibility may af-
fect the relative usage of the different search modes (14–
19). The DNA sequence may also affect search speed by
producing different DNA geometries and consequently af-
fecting the protein’s ability to interact with the DNA ma-
jor groove and thus its ability to perform coupled rotation-
translation diffusion (20,21). The energy landscape for 1D
diffusion along DNA may also be affected by the DNA se-
quence, which can affect the ruggedness of the potential en-
ergy landscape and, consequently, friction in protein–DNA
interactions (9,22,23).

The 1D diffusion coefficient of proteins on DNA has
been expressed as D = G(T,R,η)·F(σ ), where G is a term
that depends on the temperature, T, the size of the protein,
R, and the viscosity of the solution, � (10). F is a term that
represents the ruggedness of the potential energy landscape.
Assuming that the ruggedness of the potential energy fol-
lows a Gaussian distribution, then F(ε) = exp[–(σ/kBT)2],
where σ denotes the variance in the protein–DNA sliding
potential and is related to the average energetic barrier for
sliding (9,10,23). It was estimated that the ruggedness of the
protein–DNA landscape must be low (σ < 2kBT) to achieve
reasonable association rates (9).

Although many studies aimed to biophysically charac-
terize the mechanism of facilitated diffusion that proteins
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adopt when searching for their target sites (2,7,24–31), it is
clear that the kinetics of many protein–DNA recognition
interactions does not depend solely on the search speed.
Recognition requires not only finding the target site, but
also specifically binding to it. The time-scale for specific
binding may affect the kinetics of protein–DNA recogni-
tion because finding the site does not guarantee immedi-
ate binding. The discrepancy between finding and binding
the target site is related to the different types of interactions
used for the search and recognition modes. In the search
mode (designated here as the S state), a DBP interacts with
DNA non-specifically through mostly electrostatic interac-
tions between positively charged protein residues and neg-
atively charged phosphates on the DNA backbone (32,33).
Specific binding upon reaching the target site requires the
protein to switch to its recognition mode (designated here
as R state) by forming sequence specific contacts with the
DNA, supported by hydrogen bonding between the protein
residues and the DNA bases (34). Thus, the full search ki-
netics involves not only searching in the non-specific bind-
ing mode, S, but also switching to the specific binding mode,
R, upon recognition of the cognate binding site (11,23,35–
39). It was argued that the existence of the S and R bind-
ing modes is necessary to solve an apparent conflict be-
tween speed and stability whereby the conditions for fast
search (which requires σ < 2kBT) are incompatible with sta-
ble protein–DNA interactions (which requires σ > 5kBT)
(9,23). This two-state model is supported by various experi-
mental approaches (including X-ray crystallography, NMR
and single-molecule techniques) indicating that numerous
DBPs adopt different conformations for their specific ver-
sus non-specific interactions with DNA (8,14,23,40–44).
The existence of two states can also be inferred from the
low roughness for sliding that was found for various pro-
teins (10,45), which is unlikely for the R states.

The existence of the S and R binding modes suggests the
presence of an energetic barrier governing the transition
between them and therefore a separation of time scale be-
tween finding and binding the target site. This implication
is supported by single-molecule experiments conducted in
living cells on the lac repressor, which displays facilitated
diffusion characterized by a low sliding energy barrier of
ε ∼ 1.0 kBT and a scanning length of 45 ± 10 base pairs
for each 1D search round (8). Surprisingly, the lac repressor
was found to slide numerous times over its promoter before
target recognition is achieved, which reflects the existence of
a barrier that needs to be overcome for specific recognition
to occur.

Despite being insightful, the two-state model for protein–
DNA recognition is still not quantitative. In particular, the
interplay between the speed of sliding (via the S mode) and
the recognition rate (transition from the S to R mode) is un-
clear. While some crystal structures of protein–DNA com-
plexes reveal conformational changes associated with the
transition from non-specific to specific binding (32,33,46),
other structures indicate high similarity between the non-
specific and the specific binding modes (47,48). The latter
scenario describes reactions with much smaller barriers for
recognition in comparison with the former scenario. One
may therefore ask: what are the kinetic consequences for
sliding dynamics and what is the overall kinetics when the

Figure 1. Schematic representation of the search and recognition modes
of a DNA-binding protein on DNA. The degree of similarity between
the search and recognition binding modes (designated as S and R, respec-
tively) is governed by the extent of overlap between the surface patches the
DNA-binding protein uses to interact with non-specific and specific DNA
residues. Non-specific binding is dictated by electrostatic interactions (in-
dicated by the blue ellipse), whereas specific binding is dictated by a set of
hydrogen bonds that can be identified from the X-ray structures (indicated
by the green ellipse). The overlap between the S and R binding modes is
quantified by the similarity index, χ . A smaller overlap between the non-
specific and specific patches (i.e. χ << 1) corresponds to high frustration
and suggests that the protein needs to undergo a conformational change
(which potentially involves a change in the DNA conformation as well) to
make the S → R transition and so bind its DNA target site (left). A high
value of χ (∼ 1) reflects less frustration between the S and R states and
suggests that these two states are very similar (right).

barriers between the S and R binding modes are small? Fur-
thermore, is the rate limiting step in protein–DNA recogni-
tion the search kinetics or the transition barrier from S to
R?

In recent studies, we introduced the concept of molecu-
lar frustration denoted � between the non-specific and spe-
cific protein–DNA binding modes (40,41,49). Frustration is
quantified as the degree of overlap between the protein sur-
face patches that are used for the S and R binding modes.
For a given protein, the S mode is represented by the largest
positively charged patch on the protein surface and the R
mode is given by its X-ray structure. Greater frustration cor-
responds to a smaller overlap between the S and R binding
modes (Figure 1). Frustration between the protein residues
forming specific versus non-specific contacts with the DNA
creates means that the two binding modes represent dif-
ferent energetic and conformational states, so creating the
two-state model (40,41). It was shown that numerous DBPs,
and particularly enzymes, have a medium to high degree of
frustration between their S and R binding modes. Further-
more, coarse-grained molecular dynamics simulations qual-
itatively showed that frustration strongly influences the ki-
netics of the protein–DNA search process, such that high
(low) frustration is associated with fast (slow) sliding but a
poor (high) target recognition probability (41).

In this paper, we show how frustration links together two
of the most prominent aspects of the protein–DNA recog-
nition process, namely, the kinetics of finding the target site
via the facilitated diffusion mechanism and the kinetics of
binding the target, which depend on the target recognition
probability. We extend Slutsky and Mirny’s (9) facilitated
diffusion theory by introducing the concept of frustration
between the non-specific and specific binding modes and its
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effect on DNA recognition kinetics. Utilizing the new theo-
retical model, we elucidate and enable quantification of var-
ious factors influencing protein–DNA recognition kinetics.

MATERIALS AND METHODS

Theoretical model

We study the kinetics of protein–DNA recognition by build-
ing on Slutsky and Mirny (9,50) facilitated diffusion theory
by introducing explicit terms for the S to R transition. In the
framework of this theory, a single DBP searches for its tar-
get site on a long DNA of M bps through rounds of 1D and
3D diffusion. The mean durations of the 1D and 3D diffu-
sion are τ 1D and τ 3D, respectively. The number of 1D and
3D rounds needed to find the target site can be estimated as
M/<n>, where <n> is the mean number of sites scanned
in each 1D round (i.e. 〈n〉 = 2

√
D1Dτ1D, where D1D is the

diffusion coefficient of sliding). The mean total search time
is then:

τ s = M
〈n〉 (τ 1D + τ3D) (1)

The expression in Equation (1) assumes that the target is
recognized (i.e. S to R transition occurs) in the first search
round that visits the cognate site. However, it is possible for
the DPB to miss the target site and then additional 1D and
3D rounds might be needed. Accordingly, the total search
time, τS, must be multiplied by 1/Pf, where Pf is the proba-
bility of recognizing the target site and, thus, the efficiency
of the search. Given that, in a single round of 1D diffusion,
the protein covers ∼n sites and makes n2 steps, each site is
revisited ∼ n times. Thus, the overall probability of the DPB
locating the target site, once the protein associates inside a
region of size ∼n that contains the site, is Ploc = min [1,
<n>·Pf]. The total recognition time is therefore estimated
by:

τR = τS/Ploc (2)

The value of Pf depends on the rate, kres, to move a single
step while searching using the S state (i.e. high kres impli-
cates small residence time and will reduce the probability for
S → R transition) and the transition rate, kS→R, for switch-
ing from the S to the R state. Pf thus can be expressed by:

P f = kS→R

kS→R + kres
(3)

The transition rate, kS→R, is dictated by the energy barrier
�G‡

s→R between the two binding modes (Figure 2):

kS→R = 1
τ 0

· exp

(
−�G‡

s→R

kB T

)
(4)

Where � 0 represents the characteristic time to move be-
tween non-specific site. It is suggested that for very small
energy barrier (i.e. �G‡

s→R ∼0), the kinetics of target recog-
nition will be dictated by the diffusion speed. We can define
kres as the inverse of the average time the protein spends on
a given DNA site during 1D sliding (i.e. kres = τ res

−1, being
the inverse of the residence time in the S state and is ob-
tained by having n = 1 in the relation 〈n〉 = 2

√
D1Dτ1D )

(Figure 2B):

kres = 4D1D/BP2 (5)

The diffusion coefficient for protein sliding on a rugged
DNA potential energy surface is expressed by:

D1D = B P2

τ 0
exp

(
−

(
σ

kBT

)2
)

(6)

Where τ0 expresses the typical time it takes the protein
to hop to a neighboring site. For a protein undergoing spin
coupled diffusion (51):

τ 0 =
(

6πηR + ( 2π
10BP

)2 (
8πηR3 + 6πηRROC

2)) B P2

kBT
(7)

Where R is the protein’s radius, ROC is the distance be-
tween the center of mass of the protein and the DNA, BP
is the distance between two base pairs along the DNA axis
and η is the solution viscosity. In our model, we assumed
ROC = R and a protein radius of R = 3 nm. The average
amount of time the protein stays bound to DNA for each
1D search round is dependent on the non-specific protein–
DNA binding strength, which is given by the inverse of the
dissociation rate, koff, of the protein from non-specific DNA
site obtaining:

koff
−1 = τ 1D = τ 0 exp

(
Ens

kBT
+ 1

2

(
σ

kBT

)2
)

(8)

Where Ens denotes the non-specific binding energy and
is mostly governed by the electrostatic interactions between
the positively charged residues and the negatively charged
backbone of the DNA. The energetic contribution of state
S may include a contribution from the formation of semi-
specific interactions between the protein and sequences that
share some similarity to the target site. The formation of
such occasional hydrogen bonds that depend on the DNA
sequence is captured by the roughness of the protein–DNA
energy landscape, σ (Figure 2A). Combining the above
equations with the diffusion law, n̄ = 2

√
D1Dτ 1D, the τR

term can be expressed in terms of σ , Ens, �G‡
s→R, τ0 and

T. We note that in our model, the transition S → R can
take place at any DNA site although it is likely that some
unknown DNA features may support the transition state of
the S → R transition.

In this study, we argue that the roughness of the protein–
DNA energy landscape for sliding, σ , and the energetic bar-
rier for the transition between the search and recognition
modes, �G‡

s→R , are linked. For example, a protein having a
high probability of interacting with semi-specific sites while
in the S state is expected to transition faster from state S to
R, simply because the S state already shares some similarity
to the R state even prior to the transition. Accordingly, σ

and �G‡
s→R are expected to be anti-correlated. Namely, the

S and R states are linked and the relationship between them
can be quantified by the degree of frustration. The molecu-
lar frustration between the S and R binding modes can be
quantified through the degree of overlap between the non-
specific and specific binding patches on the DBP (Figures
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Figure 2. A schematic representation of the presented model for a DBP finding and binding its DNA target site. (A) DBP search of the DNA via 1D
diffusion, during which the protein is in the S binding mode, is governed by the ruggedness of the protein–DNA energy landscape, σ . The energetic
ruggedness is related to the DNA sequence and to the ability of the protein to form specific hydrogen bonds; thus, it is correlated with the similarity index, χ .
The ruggedness and frustration are linked by the relation σ = χ · σmax where σmax is the variation of the sliding energy potential in the recognition mode.
The target site (marked green) is illustrated by a deep energy well in the recognition model. (B) Schematic presentation of the transition from the search (S)
to the recognition (R) mode at the target site with a typical transition rate of kS→R while having to cross an energy barrier of �G‡

s→R. The term τ res ( =
kres

−1) is the average time the protein spends on one base pair during sliding. The free energy barrier �G‡
s→R depends on the similarity index through the

relation �G‡
s→R = �Gmax(1 − χ ), where �Gmax represents a maximal barrier for highly frustrated protein–DNA binding. (C) The total time to recognize

the target site, τR, is affected by the time scale of both 1D diffusion and the transition from S to R. These two process have opposite dependencies on
the similarity index. Accordingly, � and �G‡

s→R are negatively correlated. The dotted line expresses the values of �G‡
s→R and of σ when they are linked

through frustration according to the proposed model, and various χ values are marked. The total recognition times for different values of χ and �G‡
s→R

are indicated by the color bar. This plot was calculated for �Gmax, σmax and Ens of 10, 5 and 9kBT, respectively.

1 and 2) (40,41). As the degree of overlap between the S
and R binding modes (also known as the similarity index,
χ ) increases, additional residues may interact with DNA;
thus σ increases. To model the relationship between �G‡

s→R
and χ , we use a coarse-grained model to simulate the rate
of binding a target site for a set of six DBPs having vary-
ing χ values. The kinetics of recognizing the binding site
can be estimated to depend exponentially on χ (see Supple-
mentary Data). We therefore define linear relationships for
σ and �G‡

s→R with the overlap or similarity index χ and
obtain:

σ = χ · σ max (9)

�G‡
s→R = �Gmax (1 − χ ) (10)

Where σmax and �Gmax are the maximal ruggedness and
transition energy barrier, respectively. A schematic repre-
sentation of the proposed model is shown in Figure 2. The
maximal sliding roughness, σmax, corresponds to the rough-
ness in the recognition mode, R, in which all the protein
residues participate in specific contacts with the DNA. Suf-
ficient stability at the target site can be achieved for σmax ∼
5kBT and therefore this value is used throughout this study
(9). An estimate of the value of �Gmax is, however, less
straightforward as it can be influenced by various factors,
including loss of non-specific contacts and strain, such as
bending and deformation upon formation of the DNA–
protein complex. We therefore evaluate the influence of var-
ious �Gmax values on the target recognition rate. We note
that the search time of the target site by DBPs may be in-

fluenced by other factors not included in the current study
such as roadblocks and crowders (12,13,52), the geometric
properties of the searched DNA and the locations of the tar-
get genes (25,53–55), DBP’s concentration and sequence ef-
fects of the DNA (20,39,56). Furthermore, the search kinet-
ics might be characterized not only by the mean search time
but also by the full distribution of reaction times (57,58).
Despite the simplicity of the model, it quantitatively high-
lights the tradeoff between the search and recognition ki-
netics.

Calculation of the frustration between the two-state binding
modes

The similarity between the S and R states is estimated as the
overlap between the binding modes. The residues that inter-
act with DNA in the R mode can be obtained from crystal
structures and those that interact in the S mode are linked
to a positively charged patch on the protein surface. To es-
timate the overlap between S and R, we first define χi for
each protein residue forming specific contacts with DNA in
the complex according to the equation:

χi =
(∑

j q j · exp
(
−a ri j

rc

))
(∑

j exp
(
−a ri j

rc

)) (11)

Where j denotes any protein residue closer than a cutoff
distance of rc = 8 Å to residue i; q j is the point charge of
residue j and takes values of −1, 0 or 1; ri j is the cutoff dis-
tance between residues i and j; and a = 5 is an exponential
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Figure 3. Contribution of the quantified two-state model to understand-
ing the kinetics of DNA recognition. The existence of two states, S and R,
are manifested by the similarity index, χ . The larger the value of χ (i.e. the
lower the frustration) the greater the similarity of the S and R states. (A)
The time scale of 1D diffusion, τ 1D, is plotted as a function of the simi-
larity index for three different values of non-specific DNA binding energy,
Ens, using a value for the free energy barrier for recognition of �Gmax =
5kBT. (B) Transition time from S → R as a function of χ for various values
of ΔGmax (τS→R is estimated by kS→R

−1). (C) Total recognition time as a
function of χ for different values of �Gmax and σmax (Ens = 5kBT and M
is 5 × 106).

decay constant. We then average all χi values of the pro-
tein to obtain its similarity indexχ . The values of χ lie be-
tween (−1) and (+1) and depend on the parameters a and rc.
The larger the value of χ (i.e. the lower the frustration) the
greater the similarity between the S and R states. The sim-
ilarity indices can be evaluated by considering all the posi-
tively charged residues in the structure or by selecting those
that support the S state. The latter subset can be elucidated
from coarse-grained simulations that were applied to study
the sliding of proteins along DNA (4,5). We find strong cor-
relation between the values of χ calculated using these two
approaches.

RESULTS

Trade-off between sliding rate and recognition rate

We first address how frustration (which impedes a protein’s
ability to switch from its searching mode to its recogni-
tion and binding mode) influences the different components
of target recognition kinetics; namely, 1D diffusion and S
→ R transition. Such frustration is associated with a posi-
tive effect on the search kinetics by reducing the energetic
roughness for sliding, σ , and maximizing the number of
BPs scanned in each 1D search round. Figure 3A plots
the elapsed time for a single 1D search round as a func-
tion of the similarity index (being negatively correlated with
frustration) for three different non-specific binding energies.
Overall, increased frustration (i.e. decreased χ ; Figure 3A)
reduces the amount of time spent in each 1D search round
by reducing the number of energetic traps for the searching
protein on the DNA (i.e. σ is smaller for more frustrated
interfaces, Equations 6 and 9). In addition, the 1D search
time is highly sensitive to the magnitude of the non-specific

Figure 4. The effect of non-specific binding energy and transition barrier
height on the total recognition time. (A) Total recognition time, τR, as a
function of non-specific binding energy, Ens, for two values of �Gmax plot-
ted for frustration indices χ = 0.2 (solid lines, high frustration) and χ =
0.4 (dashed lines, low frustration). (B) Total recognition time as a function
of the maximal energy barrier for transition, �Gmax, for two Ens values
plotted using χ = 0.2 (solid lines) and χ = 0.4 (dashed lines).

binding energy, showing a four orders of magnitude differ-
ence when raising Ens from 5 to 15 kBT.

Frustration also has a negative effect on the search kinet-
ics by increasing the transition time from the S to R binding
mode and thereby decreasing the probability of the protein
recognizing the target DNA sequence (Equation 10). The
overall transition rate for a given protein also depends on
the value of �Gmax (Figure 3B), which accounts for inter-
action variability in different protein–DNA complexes. For
a moderate similarity index value of χ = 0.3, a two-order
of magnitude increase in transition time is observed upon
increasing the free energy barrier for recognition, �Gmax ,
from 5kBT (red line) to 10kBT (green line).

Figure 3C plots the total mean search time as a func-
tion of similarity index under three conditions: the two ex-
treme search kinetics settings for a smooth sliding land-
scape (i.e. σmax = 0) and an immediate transition S → R
(i.e. � Gmax = 0). The figure shows that, for cases with
low transition barriers (Figure 3C, red line), the DBP favors
high frustration and exhibits fast 1D diffusion. At the other
extreme, where the protein lacks sliding roughness but the
transition barrier is high, the protein favors low frustration
(Figure 3C, green line). In the presence of both an energy
barrier and sliding roughness (Figure 3C, black line), there
exists an optimal frustration value at which both sliding and
target recognition proceed at an adequate speed. The opti-
mal frustration value between the S and R states may vary
for different proteins depending on their electrostatic energy
to bind DNA (i.e. Ens) and the free energy barrier for recog-
nition (i.e. �Gmax).

To understand better how the molecular properties of
the recognition process affect its kinetics, we study the re-
lationship between the non-specific (electrostatic) binding
energy (Ens), the magnitude of the transition energy bar-
rier (�Gmax) and the total recognition time (τR) for two
different similarity index values (χ ) as a protein shifts be-
tween the S and R states. Figure 4A plots τR as a function
of Ens. Changing the value of Ens can be viewed as equiva-
lent to changing the salt concentration, which is well known
to tune the strength of non-specific protein–DNA binding.
At high non-specific binding energies, the total recognition
time is long (Figure 4A). This is due to the sluggish 1D dy-
namics at high values of Ens (Equation 8). At low values of
Ens, 1D scanning in each round of 1D and 3D search is less
efficient, as the time spent in the sliding mode is shorter and
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consequently the number of scanned sites in each round is
smaller as 〈n〉 = 2

√
D1Dτ1D. As <n> decreases, the total

recognition time, τR, becomes longer (Equation 1). The de-
pendency of the total recognition time on Ens, as obtained
from our theory, therefore supports one of the hallmarks
of the facilitated diffusion model regarding the existence
of an optimal combination of 1D and 3D search modes
(2,4,9,24). It can be seen that proteins with a high S to
R transition barrier (Figure 4A, red curves) prefer greater
frustration, that is, a lower similarity index (Figure 4A, solid
versus dashed lines) in order to reduce the sliding barrier
and maximize the number of target binding attempts re-
quired in each 1D search round. However, proteins with
lower transition barriers (black line) do not require multiple
target recognition attempts and therefore prefer lower frus-
tration, that is, a higher similarity index (Figure 4A, dashed
versus solid lines). The effect of Ens on the recognition rate
has been shown experimentally; increasing the salt concen-
tration markedly affects the association rate while the dis-
sociation rate is hardly affected (59).

Figure 4B plots the total recognition time as a function
of the maximal transition energy barrier, �Gmax. The figure
shows that, for a given non-specific binding energy, Ens, the
recognition timescale reduces as �Gmax decreases until the
value of �Gmax is low and the probability for S → R tran-
sition is very high (i.e. Pf = 1). Figure 4B also shows that
faster recognition is achieved for more frustrated proteins
(lower similarity index; solid compared to dashed lines).

Frustration is linked with the diffusion coefficient for sliding

Our group has previously calculated molecular frustration
for a dataset of 125 DBPs on the basis of the crystal struc-
ture of their complexes with DNA and with the goal of es-
timating the degree of frustration for various protein struc-
tures and functions (40,41). Here, we quantify the frustra-
tion indices for nine DBPs (Equation 11) whose linear dif-
fusion coefficient, D1D, was measured experimentally and
whose crystal structures with DNA are known. Figure 5A
shows pictorially the overlap between the R state (repre-
sented by the green spheres) and the S state (represented
by the blue surface and corresponding to an electrostati-
cally positive patch). As can be seen in Figure 5A, proteins
with low frustration (top row) obtain high overlap (i.e. high
χ values) and vice versa for proteins with low frustration
(bottom row). The similarity index can explain the linear
diffusion coefficient of different DBPs, because χ is linked
to the roughness of the protein–DNA energy landscape, σ .
Recently, experimental data have shown architectural bind-
ing proteins to be associated with relatively high energetic
roughness compared with other DBPs (60). According to
our model, we expect these proteins to be characterized by
low frustration (i.e. high χ values). Figure 5B plots the frus-
tration indices of these nine DBPs and the experimental σ
values, which were derived from their corresponding D1D
values. The correlation between χ and σ , shown in Figure
5B, strongly supports our model regarding the linkage be-
tween frustration and sliding (Equation 9). It is shown that,
indeed, architectural binding proteins are associated with
high χ values. We therefore hypothesize that, while tran-
scription factors are optimized for fast search and therefore

Figure 5. Relationship between the ruggedness of the protein-DNA energy
landscape and the frustration between the S and R states. (A) Schematic il-
lustration of the electrostatic potential surface (color bar on the right) and
residues that are found to participate in specific contacts with the DNA
(green beads) for several proteins whose linear diffusion coefficients were
measured experimentally. The calculated similarity index, χ , is shown be-
low each structure. (B) Correlation between the calculated similarity in-
dex and the experimentally estimated roughness of the energy landscape
(σ ) obtained from the linear diffusion coefficient (60). The three DNA-
binding proteins (DBPs) that are marked in red were classified as archi-
tectural binding proteins. The correlation between χ and σ suggests that
greater energetic barriers to sliding are related to low frustration (high χ )
and also points to the molecular difference between architectural and non-
architectural DNA-binding proteins.

high frustration (low χ value), architectural binding pro-
teins are less frustrated and diffuse more slowly, as required
for their function.

Frustration can explain the effect of mutations on recognition
kinetics

The effect of point mutations on the kinetics of the S → R
transition can be predicted by the frustration between these
two states. Experiments measuring the association and dis-
sociation rates of mutated proteins are routinely performed
to shed light on the mechanism of protein–DNA kinetics
(59,61,62). Generally, these experiments measure the bind-
ing kinetics of DBPs with short DNA oligonucleotides con-
taining the target site and therefore they do not involve
significant 1D sliding on DNA. Accordingly, we postulate
that mutations that change the level of frustration will also
modify the protein–DNA association rates by shifting the
transition energy barrier, �GS→R. The transition barrier
is expected to increase for larger frustration (i.e. for lower
χ ; Equation 10).

To test our hypothesis, we calculate the change in the sim-
ilarity index for six different mutants of the p53, TUS and λ
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Figure 6. The effect of mutations on the kinetics of DNA recognition can
be explained by a change in the frustration. The kinetics of binding to a
specific site on DNA was analyzed for six mutants of three different pro-
teins (P53, TUS and λ repressor proteins). The electrostatic potential of
each of the three proteins is shown. In each protein, the residues that par-
ticipate in specific contacts with DNA (green beads) as well as the mutated
sites (yellow and magnetite beads) are shown. The mutants are analyzed
in terms of the change in the similarity index, �χ , in comparison with
the wild-type protein and with respect to the association rate relative to
the wild-type protein, ka

Mut/ka
WT. Association rate values are taken from

(59,66,68). The PDB codes used to calculate the similarity index: P53RF
(4MZRa), P53wt (3Q05), TUS (1ECR) and λ repressor (1LMB).

repressor proteins and for the corresponding wild-type pro-
teins. Then, the experimentally measured association rates
are compared to the change in χ . The results are summa-
rized in Figure 6. For the p53 protein, we studied frustration
in the R248Q mutant, which has been shown to be inacti-
vate (63,64), and for the p53FG mutant, which contains two
substitutions, S121F and V122G in the Loop L1 and is as-
sociated with high activation rates (65,66). The similarity in-
dex of the wild-type p53 is χ = 0.26 whereas that of R248Q
is lower (indicating increased frustration) at χ = 0.21 and
that of the p53FG mutants is higher at χ = 0.32. These
results support our hypothesis by suggesting that inactiva-
tion of the R248Q protein results from an increased ener-
getic barrier for the S → R transition, which is manifested
in a 19% decrease in the similarity index. The increased ac-
tivation rates of the p53FG mutant can be attributed to a
decreased barrier, which is characterized by a 23% increase
in the similarity index.

Similar results are obtained for the TUS and λ repressor
proteins. In the case of the TUS protein, both the K89A
and the R198A mutants are characterized by decreased as-
sociation rates (59) and accordingly show frustration in-
dices decreased by 20% and 43%, respectively. The λ repres-
sor K4Q mutant is characterized by a significant reduction
in activity (67,68) and a decrease in the similarity index of
28%, accordingly. In contrast, the E34K mutant, which is
a secondary mutant that also contains the K4Q mutation,
is characterized by a substantial increase in the similarity
index from 0.13 for the K4Q mutant to 0.22 for the E34K
mutant, which corresponds to a 22% increase with respect
to the wild-type and is accordingly associated with an in-

creased association rate. In all of the above cases, apart from
the p53FG mutant, the mutations are associated with sub-
stitutions of charged residues that alter frustration by influ-
encing the degree of overlap between specific protein–DNA
contacts and the positively charged residues. In the case of
the p53FG mutant, the variation in frustration is a result of
modification to specific protein–DNA contacts.

CONCLUSIONS

In this study, the facilitated diffusion model of DNA search
by proteins for their target sites is revisited in order to con-
sider explicitly not only the timescales for finding the tar-
get sites, but also the timescales for recognizing that site
after it was identified. We show that these two processes
of finding and binding the target sites are coupled via pro-
tein frustration between the non-specific and specific bind-
ing modes (i.e. the search, S, and recognition, R, states).
Low frustration means that the non-specific and specific
binding modes of the protein to the DNA are very simi-
lar, so recognition can occur relatively easily after the tar-
get is identified. Nonetheless, low frustration suggests hin-
dered 1D diffusion because semi-specific protein–DNA in-
teractions can be formed with higher probabilities. Accord-
ingly, low frustration defines a low barrier for recognition
but a more rugged protein–DNA energy landscape. High
frustration, on the other hand, implies that a conforma-
tional change will be required during the transition from
non-specific association with the specific complex. Indeed,
in many protein–DNA complexes, either or both the pro-
tein and the DNA change conformation to affect specific
binding (32–34). Our theory predicts that the magnitude of
the conformational change depends on the similarity index.
Consistently with this perspective, an NMR study of home-
odomain HoxD9 that reported high similarity between the
non-specific and specific binding modes (47,69) can be ex-
plained by the high similarity measure (i.e. low frustration)
of this system (χ = 0.37). The experimentally estimated D1D
of HoxD9 (70) corresponds to an energetic ruggedness of
∼2kBT, again in agreement with low frustration. Lac repres-
sor, on the other hand, is characterized by a lower similarity
index (χ = 0.08) that explains the lower energetic rugged-
ness of <1 kBT for its 1D diffusion as was deduced exper-
imentally (10). This high frustration may result not only in
faster 1D diffusion but also in high transition barrier that
may cause to unsuccessful recognition after finding the tar-
get site, as was indeed concluded experimentally for the lac
repressor (8).

The concept of frustration between the S and R bind-
ing modes is utilized to successfully predict several exper-
imentally measured phenomena. We show that the degree
of frustration explains differences in the linear diffusion co-
efficients for sliding along DNA and thus provides a molec-
ular interpretation for the experimentally reported barrier
to sliding (10,60). In particular, we argue that architectural
proteins slide along DNA with a smaller diffusion coeffi-
cient due to lower frustration. Furthermore, the concept of
frustration has practical implications in predicting varia-
tions in recognition kinetics, particularly the effect of point
mutations on recognition rates. Although mutations that
change specific hydrogen bonds with the target DNA sites
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often affect the dissociation rates (i.e. koff), some mutations
that involve positively charged residues are found to affect
the association rate (i.e. kon). The latter can be rationalized
as a change in the molecular frustration between the S and
R states upon mutation. This also implies that the protein–
DNA binding affinity can be modulated via kon and not
only via koff, as is often found. Our study explains the ori-
gin of the experimentally observed changes in association
rate with salt concentration while the dissociation rates are
hardly changed (59). Changing the energy of the specific
complex (for example, by mutating the DNA target site) is
expected to have a much greater effect on the dissociation
rates than on the association effects, as was reported earlier
for several proteins using comprehensive kinetic measure-
ments (61).

Our study illustrates that there is a trade-off between the
speed of sliding diffusion during the search process and
the kinetics of the transition from the search mode to the
recognition mode. Accordingly, our model suggests that the
speed of sliding dynamics and the speed of recognition are
tightly coupled. Most importantly, this trade-off is modu-
lated by frustration between the non-specific and specific
protein–DNA interactions and therefore there is an optimal
degree of frustration that minimizes the total time for recog-
nition (i.e. search plus recognition). The concept of frustra-
tion suggests that it is not only the search process that dic-
tates the overall recognition time but also the energetic bar-
rier for the specific complex. The magnitude of the trade-off
depends on various parameters of the protein-DNA system
such as the nature of the conformational change and the
protein structures (e.g. existence of multi domains (14)). Fi-
nally, we show that our model is supported by experimental
results, which find a strong correlation between the similar-
ity index and the kinetic properties of protein–DNA recog-
nition. Our model advances understanding and quantifies
the relationship between protein characteristics and the fa-
cilitated diffusion mechanism and thus can be utilized to
assist in the design of mutations to engineer and control the
kinetic search process of DBPs.
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