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Simple Summary: One of the major problems regarding hepatocellular carcinoma (HCC) is the devel-
opment of metastasis and recurrence, even in patients with an early stage. Recently, circulating tumor
cells (CTCs) enumeration has been intensively studied as a diagnostic and prognostic biomarker in
HCC. Nevertheless, increasing evidence suggests the role of metastasis-associated CTC phenotypes,
including epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs).
We performed a systematic review to investigate the correlation of different CTC subtypes with
HCC characteristics and their prognostic relevance to clinical outcomes. A preliminary meta-analysis
found that CTC subtypes had prognostic power for predicting the probability of early recurrence.
This study highlights the potential of CTC subtyping analysis as a biomarker for HCC management
and provides information on metastasis-associated CTCs for a deeper molecular characterization of
specific CTC subtypes.

Abstract: Circulating tumor cells (CTCs) play a key role in hematogenous metastasis and post-
surgery recurrence. In hepatocellular carcinoma (HCC), CTCs have emerged as a valuable source
of therapeutically relevant information. Certain subsets or phenotypes of CTCs can survive in the
bloodstream and induce metastasis. Here, we performed a systematic review on the importance
of epithelial–mesenchymal transition (EMT)-CTCs and circulating cancer stem cells (CCSCs) in
metastatic processes and their prognostic power in HCC management. PubMed, Scopus, and Embase
databases were searched for relevant publications. PRISMA criteria were used to review all studies.
Twenty publications were eligible, of which 14, 5, and 1 study reported EMT-CTCs, CCSCs, and both
phenotypes, respectively. Most studies evaluated that mesenchymal CTCs and CCSCs positivity were
statistically associated with extensive clinicopathological features, including larger size and multiple
numbers of tumors, advanced stages, micro/macrovascular invasion, and metastatic/recurrent
disease. A preliminary meta-analysis showed that the presence of mesenchymal CTCs in pre- and
postoperative blood significantly increased the risk of early recurrence. Mesenchymal-CTCs positivity
was the most reported association with inferior outcomes based on the prognosis of HCC recurrence.
Our finding could be a step forward, conveying additional prognostic values of CTC subtypes as
promising biomarkers in HCC management.
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1. Introduction

Hepatocellular carcinoma (HCC) is the major malignancy of the liver, causing morbid-
ity and mortality, in which the incidence rate of HCC continually increases worldwide [1].
Over the last few decades, advances in locoregional and systemic treatments for HCC treat-
ment have been made, both in the early and advanced stages of patients [2]. In 2017, the
programmed death receptor-1 (PD-1) inhibitor, nivolumab, was authorized by the United
States Food and Drug Administration (FDA) for use as a second-line treatment for advanced
HCC [3]. Pembrolizumab is another anti-PD-1 agent that is approved for HCC patients
who have been previously treated with sorafenib [4]. However, the use of these checkpoint
inhibitors as a monotherapy does not significantly improve the clinical outcomes of patients.
A combination regimen with checkpoint inhibitors has shown very promising results in the
IMbrave150 trial, in which a longer median overall survival (OS) and median progression-
free survival (PFS) were observed in the atezolizumab–bevacizumab arm compared with
sorafenib in unresectable HCC patients [5].

Despite recent improvements in the therapeutic approach of HCC, there has been no
improvement in HCC biomarkers for prognosis, risk stratification, or therapeutic responses,
all of which might have a clinical role. The role of biomarkers is clearly demonstrated in
the biomarker used for predicting checkpoint inhibitor responses, which has been applied
to select the patients who will benefit from the treatment. These biomarkers include
PD-L1 expression, tumor mutational burden (TMB), specific gene mutations, and gut
microbiota [6]. However, these biomarkers have not settled into clinical practice for HCC
stratification.

Biomarkers associated with accurate prognostication are the key to improving the
clinical decision-making process and, ultimately, patient outcomes. A large number of
studies on the use of serum and tissue biomarkers have been investigated, but none of
them can be applied in the clinic. These limitations are mainly due to their low sensitivity
or different cutoffs with corresponding performances. Therefore, there is still a challenge in
identifying new prognostic biomarkers for clinical implication.

Circulating tumor cells (CTCs) play a significant role in the progression of HCC
since it is considered to disseminate by hematogenous spread via portal venous and
systemic circulations [7]. CTCs released from primary HCC tumors initially disseminate
in the portal branch of the hepatic lobule, then circulate to the central vein, connecting
to the hepatic vein system before spreading systemically throughout the body. A study
into CTCs characteristics, which have been described as a conduit for metastatic events,
provided detailed biological information on intrahepatic and extrahepatic recurrence in
HCC [8,9].

CTC analysis has been a research hotspot for several aspects of clinical biomarkers
for the screening, diagnosis, prognosis, and monitoring of cancer progression. The pres-
ence of CTCs has been shown to be a major early indication of poor clinical outcomes
in HCC [10]. Interestingly, a study of CTCs can provide more detailed tumor informa-
tion, including the epithelial–mesenchymal (EMT) process and stemness, which contribute
significantly to the metastasis of HCC. Furthermore, CTC subtypes represent many charac-
teristics of disseminated tumor cells, including invasiveness, anoikis resistance, the ability
to evade the host immune system, and a formation of secondary tumor at the distant
site [11].

Two major key events in HCC metastasis include the EMT and the cancer stem cell
(CSC). EMT is a process in which epithelial tumor cells lose their adhesion capacities due
to the downregulation of the epithelial cell adhesion molecule (EpCAM) expression and
acquire mesenchymal characteristics that promote cell motility and invasiveness [12,13].
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Furthermore, the cancer stem cell theory proposes that a fraction of malignant cells with
stem cell features might give rise to newly metastatic tumors [14,15]. CSC that intravasate
into the bloodstream, called circulating cancer stem cells (CCSCs), have a high propensity
to reside in distant organs or to recirculate to the primary site [16]. The diversity of
phenotypes of CTCs in a patient’s tumor may contribute to their tumor characteristics
and treatment resistance. It is therefore necessary to give importance to CTCs with the
phenotypic hallmark of EMT and CSC as paradigms of metastatic seed in individuals.

Much effort has been expended in developing CTC-based EMT and CSC markers
for the best prognostic classification in HCC patients. Beyond the conventional epithelial
markers of EpCAM and cytokeratin, other biomarkers and their expressions in CTCs were
experimentally observed to identify subtypes of CTCs [17]. However, the extent to which
those subtypes are clinically linked to clinical outcomes and recurrent HCC remained
unclear. Through a systematic analysis of the heterogeneity of CTCs with a focus on EMT
and CSC characteristics, we collected data on the clinical importance of those CTC subtypes
as predictive biomarkers for HCC metastasis and recurrence.

2. Materials and Methods
2.1. Literature Search and Data Sources

The PRISMA 2020 guidelines were applied to conduct a systematic literature re-
view [18]. The present protocol was registered on PROSPERO: CRD42022291736. PubMed,
Scopus, and Embase were systematically searched for the relevant clinical studies without
time and region restrictions. Briefly, the articles reporting information about phenotypic
subtypes of CTCs with EMT and cancer stem cell properties, liver cancer, metastasis, recur-
rence, and prognosis were included in our initial search. Both the eligibility assessment and
the decision were made independently by two independent reviewers (S.O. and P.C.) who
were blind to each other’s decisions. The specific key search terms are detailed in Table S1.

2.2. Inclusion and Exclusion Criteria

The titles and abstracts of relevant studies were screened for inclusion criteria as
follows: (1) limited to literature published in English; (2) those studies available as full text;
(3) conducted in humans with a peripheral blood sample. The results were combined and
duplicates were removed. The full-text articles were retrieved with the exclusion criteria
as follows: (1) short reports, letters, review articles, conference abstracts, and case reports;
(2) no description of the type of CTC enrichment technique used; (3) in vitro and in vivo
studies; (4) CTCs research without defining phenotypic subtypes of EMT and CSC; (5) not
relevant to metastasis or recurrence and insufficient data to be extracted.

2.3. Data Extraction

Two authors (S.O. and P.C.) extracted patient data from eligible studies. The fol-
lowing information was obtained: (1) general data: first author, year of publication,
source of publication, cohort size, treatment modalities, blood volumes, blood sampling;
(2) CTCs characteristics: enrichment platform, enrichment techniques, identification meth-
ods, marker; (3) patient characteristics: all significant data correlated with tumor extent,
tumor stage, pathological data; (4) outcome data: metastasis or recurrence rate, survival
analysis, univariate/multivariate analysis of relapse-free survival (RFS/DFS), progression-
free survival (PFS), overall survival (OS), and time to recurrence (TTR). Any conflicting
cases or data were carefully reviewed and resolved through discussion or consultation by a
minimum of two authors to reach a consensus.
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2.4. Quality Assessment

The quality of each eligible study was assessed by the Newcastle–Ottawa Scale (NOS)
criteria for cohort studies. The NOS criteria use a rating system to evaluate the quality
of methodologies based on three parameters, as follows: selection, comparability, and
outcome. Each study was scored from zero to nine. A score equal to or greater than six
indicates a good quality of study. The evidence of the certainty of the identified studies
for meta-analysis was rated according to the Grading of Recommendations Assessment,
Development, and Evaluation (GRADE) guidelines.

2.5. Statistical Analysis

Statistical analysis was performed with Review Manager (RevMan-Version5.3.). The
hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to evaluate the corre-
lation between the positivity of CTC subtypes and the recurrence of HCC patients. HRs
were derived from a multivariate analysis, followed by a univariate analysis. We examined
heterogeneity using the Cochran’s Q test and the I2 index. The p-value < 0.05 or I2 ≥ 50%
indicated that there was significant heterogeneity among the included studies.

3. Results
3.1. Study Characteristics

Initially, the search yielded 214 relevant articles in PubMed, Scopus, and Embase. Of
these, 100 duplicate studies were filtered out. We excluded 69 records after screening the
titles and abstracts. The 43 studies reviewed in the full-text format were then considered
for inclusion. Then, 20 studies were finally included in this study. The flowchart of
this study, with the number of articles included and excluded, as well as the criteria for
selection, is shown in the form of a PRISMA flow diagram (Figure 1). The overall number of
eligible studies encompassed 1754 HCC patients and the mean HCC sample size was 87.7
(range 10–165), published between 2011 and 2021. Regarding countries, all eligible studies
were conducted in China, except for two articles that were conducted in Germany and the
United States of America, respectively. Blood samples were collected from peripheral veins
in all studies, in which the volume ranged from 4–10 mL, though one study did not specify.
In terms of CTC enrichment approaches, 15 research used label-free strategies to isolate
CTCs based on size, density, and immuno-density negative selection. Five research projects,
on the other hand, used label-dependent approaches, including cell-surface-based positive
selection, immunomagnetic separation, and immunocapture microfluidics. The timing of
blood samples is critical for interpreting the results of CTC subtyping analysis. Twenty
records included 5 studies with longitudinal samples (pre- and postoperative samples),
14 studies with blood collections at the preoperative time, and 1 study with postoperative
samples. We subdivided our results into two categories according to the investigated
phenotypes of CTCs: EMT-CTCs and CCSCs, in which we will discuss the significance of
CTC subtypes according to blood collection time (Figure 2). The baseline characteristics of
included studies are summarized in Tables 1 and 2. The quality assessment was evaluated
by the NOS scale as high quality, with at least six points, which suggested that all studies
were relatively high quality (Table S2).
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Table 1. Summary of EMT-CTCs studies selected for review.

Author Year Country HCC
Cohort

Blood
(mL)

Time
Collection Treatment Enrichment

Platform
Category

Technique
Downstream

Methods EMT Marker Clinical
Significances Outcome

Li et al., 2013
[19] China 60 10 Preoperative - DG-IM Positive IF Twist,

vimentin

PVTT,
tumor size,

TNM
-

Schulze et al., 2013
[20] Germany 59 7.5 Preoperative Any therapies CellSearch Positive IF EpCAM

BCLC,
MaVI,
MiVI,

OS

Liu et al., 2016
[21] China 33 5 - - CanPatrol Negative,

FT FISH
EpCAM,

CK8/18/19,
twist, vimentin

Tumor number MET

Chen et al., 2017
[22] China 99 5 Preoperative

Surgical
resection,

radiochemical
CanPatrol Negative,

FT FISH
EpCAM,

CK8/18/19,
twist, vimentin

BCLC stages,
metastasis

Court et al., 2018
[23] USA 61 4 Preoperative Any therapies NanoVelcro Positive,

MF-IC IF Vimentin Tumor stage PVI
PFS,
OS,
TTR

Ou et al., 2018
[24] China 165 5 Preoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin

Tumor number,
TNM,
BCLC

RFS

Qi et al., 2018
[25] China 112 5 Preoperative,

Postoperative
Surgical
resection CanPatrol Negative,

FT FISH
EpCAM,

CK8/18/19,
twist, vimentin

BCLC MET,
ER

Wang et al., 2018
[26] China 62 5 Postoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19

twist, vimentin
- ER

Yin et al., 2018
[27] China 80 5 Preoperative

Surgical
resection,

TACE
CanPatrol Negative,

FT FISH
EpCAM,

CK8/18/19
twist, vimentin

Tumor number,
tumor size,

PVTT,
TNM

MET,
RECUR

Chen et al., 2019
[28] China 143 5 Preoperative,

Postoperative

Surgical
resection,
ablation

CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin
NS TTR
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Table 1. Cont.

Author Year Country HCC
Cohort

Blood
(mL)

Time
Collection Treatment Enrichment

Platform
Category

Technique
Downstream

Methods EMT Marker Clinical
Significances Outcome

Bai et al., 2020
[29] China 99 5 Preoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin

BCLC,
tumor size,

PVTT
PFS

Qi et al., 2020
[30] China 136 5 Preoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin
-

TFS,
INR,
EXR,

RECUR

Lei et al., 2021
[31] China 160 15 Preoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, bimentin

Tumor size,
BCLC ER

Xie et al., 2021
[32] China 56 5 Preoperative,

Postoperative
Liver

transplant CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin
- RECUR

ER

Zhang et al., 2021
[33] China 105 5 Preoperative Surgical

resection CanPatrol Negative,
FT FISH

EpCAM,
CK8/18/19,

twist, vimentin
CK19 -

Enrichment platform: DG, density gradient centrifugation; FACS, Fluorescent-activated cell sorting; IM, immunomagnetic (positive enrichment). Categories technique: FT, filtration; IC,
immunocapture; MF, microfluidic; Downstream methods: FISH, fluorescence in situ hybridization; IF, immunofluorescent staining. Clinical significances: BCLC, Barcelona Clinic Liver
Cancer; MaVI, macroscopic vascular invasion; MiVI, microscopic vascular invasion; NS, not significant; PVI, portal vein invasion; PVTT, portal vein tumor thrombus. Outcome: DFS,
disease-free survival; ER, early recurrence (risk factor); EXR, extrahepatic recurrence; INR, intrahepatic recurrence; MET, metastasis; OS, overall survival; PFS, progress-free survival;
RECUR, recurrence; RFS, recurrence-free survival; TFS, tumor-free survival; TTR, time to recurrence.
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Table 2. Summary of CCSCs studies selected for review.

Author Year Country HCC
Cohort

Blood
(mL)

Time
Collection Treatment Enrichment

Platform
Category

Technique
Downstream

Methods CCSC Marker Clinical
Significances Outcome

Fan et al., 2011
[34] China 82 10 Preoperative Surgical

resection DG-FACS Positive - CD90,
CD44 -

INR,
EXR,
RFS,
OS

Liu et al., 2013
[35] China 60 - - - FACS Positive - ICAM NS DFS,

OS

Guo et al., 2018
[36] China 130 5 Preoperative,

Postoperative
Surgical
resection RosetteSep Negative qRT-PCR

EpCAM,
CD133, CD90,

CK19
- TTR,

RECUR

Wan et al., 2019
[37] China 42 10 Preoperative - Labyrinth Negative,

MF IF CD44 TNM -

Yao et al., 2019
[38] China 10 10 Preoperative,

Postoperative
Surgical
resection RosetteSep Negative,

DG-IC RT-LAMP CD90,
CD133

Vascular
invasion MET

Lei et al., 2021
[31] China 160 15 Preoperative Surgical

resection CanPatrol Negative,
FT FISH Nanog Tumor size,

BCLC ER

Enrichment platform: DG, density gradient centrifugation; FACS, Fluorescent-activated cell sorting. Categories technique: FT, filtration; IC, immunocapture. IM, immunomagnetic
separation; MF, microfluidic. Downstream methods: FISH, fluorescence in situ hybridization; IF, immunofluorescent staining; RT-LAMP, reverse transcription loop-mediated isothermal
amplification; qRT-PCR, quantitative reverse transcription polymerase chain reaction. Clinical significances: BCLC, Barcelona Clinic Liver Cancer. Outcome: DFS, disease-free survival;
ER, early recurrence (risk factor); EXR, extrahepatic recurrence; INR, intrahepatic recurrence; NS, not significant; PFS, progress-free survival; OS, overall survival; RFS, recurrence-free
survival; TTR, time to recurrence.
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3.2. EMT-CTCs Phenotype
3.2.1. Types of EMT Markers on CTCs in HCC

To investigate the EMT phenotypes of CTCs, they were further subclassified into three
subtypes by categorical markers: epithelial CTCs, mesenchymal CTCs, and biphenotypic
(hybrid) CTCs that express both epithelial and mesenchymal markers. In the fifteen EMT-
CTC subtyping investigations reviewed here, EpCAM and cytokeratin (CK) were the most
commonly used markers to identify epithelial CTC subtypes [20–22,24–33], whereas vi-
mentin and twist were used to detect mesenchymal CTCs in most of the studies [19,21–33].
Eleven studies performed a CTC analysis of all EMT-CTC subtypes, including epithelial,
mesenchymal, and hybrid phenotypes [21,22,24–26,28–33]. Intriguingly, one study specifi-
cally enumerated both hybrid and mesenchymal subtypes [22]. Four studies investigated
individual EMT-CTC subtypes [19,20,23,27]. The summary is provided in Figure 2. Differ-
ent techniques were applied for EMT-CTC subtype detection, including the fluorescence in
situ hybridization of EMT-specific RNA sequence recognition (12/15 studies; 1250 cases, or
87.4%) and the immunofluorescent staining technique (3/15 studies; 180 cases, or 12.6%).

3.2.2. Association of EMT-CTC Subtypes with Clinicopathological Factors in
Preoperative Studies

For preoperative studies, ten studies performed a CTC analysis of all EMT-CTC sub-
types (epithelial, mesenchymal, and hybrid subtypes) [21,22,24,25,28–33]. The CTCs were
enriched from blood samples through a filtration method with 8 µm diameter pores, and
the CTC subtypes were identified by the RNA-ISH technique. Three studies determined
an association of mesenchymal CTCs with clinical outcomes using different CTC enrich-
ment and subtype identification techniques [19,23,27]. In addition, one study performed
epithelial CTC analysis with the CellSearch method [20].

Most of the studies reported an association between the positive mesenchymal subtype
detection and key clinicopathological factors, including tumor number [21,24,27,29], Barcelona
Clinic Liver Cancer (BCLC) stages [24,25,29,31], metastasis [21,25], TNM stages [19,24],
tumor size [27,29,31], and portal vein tumor thrombus (PVTT) [19,29], while the hybrid sub-
type was mainly linked to BCLC stages [21,24,29,31]. In some studies, the hybrid subtype of
CTCs was also found to have a correlation with tumor number [21], metastasis [21], as well
as tumor size [29,31] and PVTT [29]. When hybrid and mesenchymal CTC percentages were
combined, Chen et al. (2019) observed that a higher proportion of hybrid and mesenchymal
CTCs relative to the epithelial subtype (H + M > C) was associated with aberrant AFP levels
(>20 ng/mL), metastasis, and BCLC stages [22]. Furthermore, Court et al. (2018) revealed
that quantifying mesenchymal CTCs effectively distinguished early stage HCC from locally
advanced and metastatic HCC (p < 0.001). Individuals with radiographic evidence of portal
vein invasion (PVI) were shown to have considerably higher vimentin-positive CTCs [23].

Besides the previously indicated clinical characteristics, Qi et al. (2018) discovered that
a percentage of mesenchymal CTC >2% was significantly associated with early recurrence,
multi-intrahepatic recurrence, and lung metastasis [25]. Moreover, they recently demon-
strated the association between recurrence rate and CTC phenotypes based on recurrence
types following resection. Patients with mesenchymal CTCs had a considerably higher
risk of extrahepatic recurrence, multi-intrahepatic recurrence, and solitary intrahepatic
recurrence, whereas patients with hybrid CTCs had a significantly higher rate of extra-
hepatic recurrence [30]. Zhang et al. (2021) discovered a link between the proportion of
mesenchymal CTCs and CK19 expression, with higher mesenchymal CTCs reported in
CK19-positive patients, which was linked with a worse prognosis in HCC patients [33]. In
several investigations, epithelial CTCs were observed to be linked with AFP levels [20,29],
the size of the tumor [21], and BCLC stage [20]. Furthermore, Schulze et al. (2013) studied
the clinical importance of epithelial subtypes in terms of invasive tumoral patterns of HCC,
the majority of patients with positive CTC had macroscopic and microscopic vascular
invasion [20].
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On the contrary, Chen et al. (2019) reported that none of the investigated clinico-
pathological variables, such as AFP concentration, tumor number, tumor size, vascular
invasion, or BCLC stage, was substantially linked with any of the preoperative EMT-CTC
subtypes [28].

3.2.3. Association of EMT-CTC Subtypes with Clinicopathological Factors in Longitudinal
and Postoperative Studies

Three studies examined longitudinal blood sample collection (pre- and postoperative
samples) [25,28,32]. As observed by Qi et al. (2018), the percentage of mesenchymal CTCs
significantly increased in the 8–10 days after tumor resection, in which HCC patients
with an increased percentage of mesenchymal CTCs had a worse tumor-free survival rate
(p = 0.033, n = 112). Furthermore, postoperative CTC monitoring in 10 patients revealed
that 8 of them had an elevated mesenchymal percentage 1 to 2 months before detectable
recurrence or the emergence of metastatic tumors [25]. Xie et al. (2021) revealed a similar
conclusion, which is that the proportion of mesenchymal CTCs (7–10 days after LT) with
tumor recurrence was higher than that before surgery (p = 0.021). Additionally, an increase
in mesenchymal CTCs was highly detected in patients with recurrent HCC (p = 0.029). The
1-, 2- and 3-year recurrence rates of patients with postoperative mesenchymal CTC-positive
groups were statistically higher than those of the negative group (positive group: 21.7%,
37.5%, and 55.5% vs. negative group: 10.8%, 10.8%, and 10.8%), n = 56 (p = 0.044) [32].

Chen et al. (2019) on the other hand, found that the EMT phenotypes of CTCs in HCC
patients before and after curative therapy were not predictive of recurrence. Furthermore,
dynamic changes in EMT-CTC subtypes were unrelated to HCC recurrence following
curative therapy [28]. Wang et al. (2018) explored the role of all EMT-CTC subtypes in
postoperative blood analysis. The results showed that CTC subtypes may be used to
monitor postoperative HCC, with patients with recurrence having a considerably higher
frequency of mesenchymal and hybrid CTCs than patients with nonrecurrent HCC [26].

3.2.4. Pooled Data from All EMT-CTC Subtype Analysis Reporting on Prognostic Factors
for Relapse after the Curative Resection and Meta-Analysis Results

The prognostic effect of all EMT-CTC subtype analysis was reported in ten studies,
including eight studies with preoperative sample analysis [20,23–25,28–31] and two studies
with postoperative sample analysis [26,32]. Individual studies reported a variety of prog-
nostic outcomes, including OS [20,23], PFS [23,29], RFS [24], TFS [30], and TTR [23,28]. Six
studies experimentally observed a univariate Cox regression analysis, by which only three
studies further reported a multivariate Cox regression analysis [23–26,31,32]. All extracted
data are summarized in Table 3.

Court et al. (2018) demonstrated that CTCs expressing a mesenchymal marker
(vimentin) was highly linked with poorer overall survival (OS) (HR: 2.21, 95% CI: 1.38–3.56,
p = 0.001), n = 61 and shorter PFS (HR: 2.16, 95% CI: 1.33–4.42, p = 0.002), n = 23. The
presence of this subtype was also strongly associated with earlier TTR (HR: 3.14, 95% CI:
1.50–6.57, p = 0.002) in curable individuals with no residual disease following therapy
(n = 30) [23]. With a median follow-up period of 14.0 months, Ou et al. (2018) reported
that the presence of mesenchymal CTCs predicted the shortest RFS (HR: 4.546, 95% CI:
2.203–9.381) followed by hybrid CTCs (HR: 2.368, 95% CI: 0.808–6.937), and epithelial CTCs
(HR: 1.446, 95% CI: 0.667–1.133, p = 0.006), respectively [24]. Bai et al. (2020) revealed
that patients with high mesenchymal CTCs had a significantly worse median PFS, n = 99.
Mesenchymal subtype positivity in CTCs had shorter PFS than did that negativity (median
months [95% CI]: 3.3 [9.1–17.4] vs. 5 [3.5–6.5], p < 0.05) [29]. Qi et al. (2020) observed similar
findings, in which the presence of mesenchymal or hybrid CTCs was related to a worse
prognosis and a shorter TFS than those of the negative subtype (median months (positive
vs. negative); 7 vs. 24.5, hybrid CTCs and 5 vs. 17, mesenchymal CTCs, n = 136) [30]. By
an OS analysis, Schulze et al. (2013) assessed the clinical relevance of the epithelial CTC
subtype. The median OS of HCC patients with EpCAM+ CTCs was shorter than patients
without CTCs (median months [95% CI]: 15.3 [2.3–28.3] vs. 24.9 [19.1–30.6], p = 0.017),
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n = 59 [20]. However, there was no significant difference in median TFS between the pa-
tients with and without the presence of epithelial CTCs subtype (median months (positive
group vs. negative group); 10 vs. 8) [30]. Chen et al. (2019) found no substantial evidence
from a representative cohort. There was no significant difference in mean TTR between
CTCs-positive and CTCs-negative patients in any of the EMT-CTCs subgroups [28].

A pooled analysis of preoperative studies by Qi et al. (2018) and Lei et al. (2021) re-
vealed that patients with mesenchymal CTCs had a higher risk of recurrence
(HR = 1.02, 95% CI: 1.01–1.03; p < 0.00001) with no significant between-study heterogeneity
(I2 = 0%) (Figure 3a). A pooled analysis of studies by Qi et al. (2018) and Lei et al. (2021) on
the relationship between CTC subtype positivity and HCC recurrence (within 6 months)
revealed that the presence of epithelial CTCs was rarely associated with early recurrence
(HR = 1.03, 95% CI: 0.88–1.20; p = 0.73) (Figure 3b), with no significant between-study
heterogeneity (I2 = 22%) [25,31]. Furthermore, Wang et al. (2018) and Xie et al. (2021) found
that patients with mesenchymal CTCs had a considerable high risk of early recurrence
(HR = 4.56, 95% CI: 2.19–9.48; p < 0.0001), with no significant between-study heterogeneity
(I2 = 0%) (Figure 3c). GRADE approach to rate the certainty of evidence was provided
in Table S3.
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Table 3. The relationship between EMT-CTCs subtypes and measuring outcomes. * Multivariate analysis.

Study

Outcomes

Preoperative Analysis Postoperative Analysis

Schulze, 2013
[20]

Court, 2018
[23]

Ou, 2018
[24]

Qi, 2018
[25]

Chen, 2019
[28]

Bai, 2020
[29]

Qi, 2020
[30]

Lei, 2021
[31]

Wang, 2018
[26]

Xie, 2021
[32]

Epithelial-CTCs

TFS
Median

pos 10

neg 8

p-value 0.6745

ER

HR 1.000 1.295

95% CI 0.993–1.007 0.827–2.026

p-value 0.970 0.258

OS
Median

pos 15.3

neg 24.9

p-value 0.017

TTR
RFS

HR 1.446

95% CI 0.667–3.133

p-value 0.006

Means/SD
pos 11.32 ± 2.83

neg 12.7 ± 3.1

p-value 0.523

Hybrid-CTCs

TFS
Median

pos 6 7

neg 7 24.5

p-value 0.692 0.003

ER

HR 1.068 2.935

95% CI 0.577–1.976 1.306–6.594

p-value 0.835 0.009
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Table 3. Cont.

Study

Outcomes

Preoperative Analysis Postoperative Analysis

Schulze, 2013
[20]

Court, 2018
[23]

Ou, 2018
[24]

Qi, 2018
[25]

Chen, 2019
[28]

Bai, 2020
[29]

Qi, 2020
[30]

Lei, 2021
[31]

Wang, 2018
[26]

Xie, 2021
[32]

TTR
RFS

HR 2.368

95% CI 0.808–6.937

p-value 0.006

Median
pos 14

neg NR

p-value 0.006

Means/SD
pos 12.14 ± 2.29

neg 10.82 ± 4.42

p-value 0.638”

Mesenchymal-CTCs

PFS
TFS

HR 2.16 *

95% CI 1.38–4.42

p-value 0.002

Median
pos 5 5

neg 13.3 17

p-value 0.009 <0.0001

ER

HR 1.019
1.019 * 1.182 4.740

3.453 * 4.039

95% CI 1.010–1.027
1.006–1.032 * 0.764–1.83 2.041–11.01

1.393–8.559 * 0.921–17.703

p-value <0.001
0.003 * 0.452 <0.001 0.064

OS

HR 2.21 *

95% CI 1.38–3.56

p-value 0.001
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Table 3. Cont.

Study

Outcomes

Preoperative Analysis Postoperative Analysis

Schulze, 2013
[20]

Court, 2018
[23]

Ou, 2018
[24]

Qi, 2018
[25]

Chen, 2019
[28]

Bai, 2020
[29]

Qi, 2020
[30]

Lei, 2021
[31]

Wang, 2018
[26]

Xie, 2021
[32]

TTR
RFS

HR 3.14 4.546

95% CI 1.50–6.57 2.203–9.381

p-value 0.002 0.006

Median
pos 6.4

neg NR

p-value <0.006

Means/
SD

pos 9.21 ± 3.16

neg 13.8 ± 2.6

p-value 0.654
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3.3. CCSCs Phenotype
3.3.1. Types of CSC Markers on CTCs in HCC

Herein, we identified six studies evaluating the stem cell-like properties of CTCs in
HCC patients. The label-free method was the most commonly used for isolating CCSCs in
HCC including density gradient centrifugation [34,35], size-based [31,37], immune-density
negative selection [36,38]. The strategic methods to detect CCSCs in these observational
studies were varied, including fluorescence-activated cell sorting: FACS [34,35], immunoflu-
orescent staining technique [37], reverse-transcription PCR [36,38], and fluorescence in situ
hybridization [31].

Several of the most often used cancer stem cell markers in the recruited studies,
including ICAM-1 [35], CD133 [36,38], CD90 [34,36,38], CD44 [34,37], CK19 [36], and
Nanog [31], were evaluated to determine whether CCSCs may possibly be employed for
HCC prognostic prediction.

3.3.2. The Clinical Significance of CCSCs Subtype Associated with Clinicopathological
Factors, Metastasis, and Recurrence

Cancer stem cell subtype characterization of CTCs has been performed in both preop-
erative and postoperative investigations. Despite the fact that the research used diverse
CSC markers to define CSC in HCC samples, the majority of the studies identified a connec-
tion between high CSC and the worst clinical outcomes, including tumor stages [31,34,37],
tumor size [31,34], tumor recurrence [31,34,36], as well as metastatic risk and vascular
invasion [38].

Among these studies, we found that using CD90, CD44, CD133, and Nanog as CSC
markers exhibited a comparable tendency in an association between CCSCs and clinical
outcomes. Fan et al. (2011) showed that HCC patients with detectable CD90- and CD44-
positive CTCs had strong correlations with tumor size and TNM stage [34]. Most HCC
patients who were detected with CD90- and CD44-positive CTCs had higher recurrences
comparing to the patients with negative CSC. Wan et al. (2019) also discovered that the
positive incidence of CSC occurrence with the CD44 marker was significantly higher in
HCC patients with more advanced TNM stages [37]. Furthermore, Lei et al. (2021) found a
strong association between Nanog expression in CTC and poor clinical outcomes, including
tumor size and BCLC stage [31]. In comparison to nonrecurrent HCC patients, the majority
of patients with high Nanog (+) experienced early recurrence after resection (p = 0.001),
n = 160. In contrast, utilizing ICAM-1 as a CSC-CTC marker, Liu et al. (2013) discovered that
ICAM-1-positive CTCs were detected in 50% of all cases (n = 30/60), which was unrelated
to any tumor characteristics or even patterns of tumor invasion [35].

In the longitudinal blood sample analysis, Guo et al. (2018) investigated the relation-
ship between the rate of recurrence and their multi-CCSC markers panel. Based on the
dynamic change in perioperative blood, patients with persistent positive CCSCs exhibited
a significantly higher recurrence rate (78.9%) than patients with negative persistent CCSCs
(11.1%) and those who had complete clearance (47.8%), n = 60 (p < 0.05) [36].

3.3.3. Pooled Data from CCSC Subtype Analysis Reporting on Prognostic Factors for
Relapse after the Curative Resection

The studies of CSC subtype analysis showed that the presence of CSC-positive CTCs
was a significant prognostic marker predicting RFS [34], DFS [35], OS [34,35], and TTR [36]
in HCC patients (Table 4). Fan et al. (2011) reported that the median RFS period of patients
with CSC-positive CTCs was significantly shorter (6.0 months vs. >46.5 months), with a
lower 2-year RFS rate than those CCSC-negative at 22.7% vs. 64.2% (p < 0.0001). As a result,
the OS duration and 2-year survival rate were remarkedly shorter (30.0 months vs. >57.1
months and 58.5% vs. 94.1%, p = 0.0005). Furthermore, CSC-positivity was a significant
predictor of RFS (relative risk: 4.175, 95% CI: 2.143–8.133, p < 0.0001) and OS (relative
risk: 4.735, 95% CI 1.709–13.12, p = 0.003) [34]. Liu et al. (2013) revealed that HCC
patients showing a large number of circulating ICAM-positive CTCs had a shorter DFS
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(p < 0.0001) with a prognostic power (HR: 7.15, 95% CI: 2.99–17.09, p = 0.000) [35]. In
particular, with an overall survival analysis, ICAM-positive CTCs exhibited a significantly
inferior OS (p = 0.013). However, its prognostic power indicated no statistical significance
(HR: 2.28, 95% CI: 0.95–7.82, p = 0.062) [35]. Guo et al. (2018) reported the prognostic
significance of their stem-cell-like CTCs panel in predicting tumor recurrence (HR: 3.127,
95% CI: 1.360– 7.190, p = 0.007) [36]. Additionally, Lei et al. (2021) introduced Nanog as a
biomarker for identifying CCSCs, by which it could also indicate a poor outcome in HCC
patients. The Nanog-positive CTCs was potentially a clinical indicator for early recurrence
as an independent prognostic factor (HR: 2.33, 95% CI: 1.476–3.679, p = 0.000282) [31].

Table 4. The relationship between CCSCs subtypes and measuring outcome. * Multivariate analysis.

Study

Outcomes

Preoperative Analysis

Fan, 2011 [34] Liu, 2013 [35] Guo, 2018 [36] Lei, 2021 [31]

RFS
DFS
TTR

HR 7.15 3.127

95% CI 2.99–17.09 1.360–7.190

p-value 0.0001 0.007

RR 4.175

95% CI 2.143–8.133

p-value <0.0001

Median
pos 6

neg 46.5

p-value <0.0001

RR 4.175

95% CI 2.143–8.133

p value <0.0001

ER

HR 2.33 *

95% CI 1.476–3.679

p-value 0.000282

OS

HR 2.28

95% CI 0.95–7.82

p-value 0.062

RR 4.735

95% CI 1.709–13.12

p-value 0.003

Median
pos 30

neg >57.1

p-value 0.0005

4. Discussion

The current biomarkers used in the clinical setting of HCC are limited. Serum alpha-
fetoprotein (AFP) is a well-established and valuable HCC marker for predicting prognosis.
The significant association between AFP and progressively poorer HCC outcomes has
been previously reported [39,40]. However, it is still controversial due to the prognostic
efficacy of AFP being heavily influenced by patient gender, underlying liver disease, and
the severity of HCC [41,42]. These limitations have been markedly considered, and the
evaluation of more effective biomarkers might improve the prognostic assessment of HCC.

Various CTC enrichment platforms have been evaluated, with many attempting to
broaden the clinical usage of CTCs. The enumeration of CTCs has been systematically
validated for its prognostic value for predicting poor survival and high risk of recurrence in
HCC patients [43–45]. Most of these reports use the EpCAM-enrichment approach to isolate



Cancers 2022, 14, 3373 18 of 24

CTCs from blood samples, which might limit the detection of mesenchymal subtypes of the
CTCs. With a growing number of studies, the results demonstrate a significant association
between CTC subtypes and clinical outcomes that is not solely based on the quantity of
CTCs but also the phenotypes of the CTCs.

In the present study, we systemically recruited and extracted data from publications
to reveal the relationship between the phenotypic heterogeneity and the prognosis of HCC
patients. The presence of mesenchymal CTCs and CCSCs was found to be associated with
poor survival outcomes and tumor relapse in HCC patients, including multiple surrogate
endpoints such as OS, DFS/RFS, or PFS and TTR. Furthermore, a meta-analysis revealed
that the presence of mesenchymal CTCs in HCC patients’ blood samples before and after
surgery was strongly related to an increased risk of early recurrence of intrahepatic and
extrahepatic metastases.

Hepatocellular carcinoma cells are epithelial in origin, in which cells are tightly held
together via lateral cell–cell junctions, and anchor themselves to the basement membrane
by hemidesmosomes [46]. Complex proteins of cell adhesion molecules, such as EpCAM,
cytokeratin, E-cadherin, zonula occludens (ZO)-1, claudins, and occludins, regulate these
cell junctions to maintain apical–basal polarity as an epithelial state [47]. Once the primary
tumor becomes expansive, epithelial tumor cells can be forced by mechanical stimuli such
as outward pushing of the tumor during rapid tumor proliferation, causing them to be
squeezed through the basement membrane. Moreover, the cells might be pulled by the
leakiness of tumor vessels during angiogenesis as well as the microtracks generated by
other tumor cells [48,49]. As a result, passively shed epithelial CTCs can retain their original
phenotype and reflect the proliferation rate of HCC cells [50]. The presence of epithelial
CTCs with a large number of CTC enumerations would be a surrogate marker for more
advanced disease progression that might not be linked to metastasis. In accordance with
the conclusion from several reports included in this systematic review, levels of epithelial
CTCs were substantially related to tumor size and BCLC stages, but not with recurrence
or metastasis.

During the initiation of EMT, epithelial cancer cells adapt their phenotype to resemble
motile cells that can spontaneously escape from the primary site [51]. The expression
of EMT-transcription factors (twist, ZEB, Snail) is induced, whereas the expression of
genes associated with epithelial state is suppressed, leading to an accumulation of spe-
cific proteins associated with mesenchymal characteristics such as vimentin, fibronectin,
fibroblast specific protein 1 (FSP-1), α-smooth muscle actin (α-SMA), and N-cadherin. The
progressive alteration results in the loss of epithelial cellular characteristics by (i) breaking
apico–basolateral polarity, (ii) weakening cell–cell adhesion owing to junction protein
downregulation, and (iii) actin cytoskeleton rearrangement and spindle-shaped morphol-
ogy [52]. These mesenchymal cells infiltrate the extracellular matrix (ECM) by releasing
proteolytic degradation enzymes and transmigrating the basement membrane. Once in
the circulation, CTCs must overcome the anoikis mechanism, a mechanically stressful
environment, and immune attack. These CTCs can eventually extravasate and initiate
secondary micrometastases [53]. It shows that the mesenchymal characteristic is required in
the multistep invasion–metastasis cascade process. Most studies agree with our observation
that the presence of mesenchymal CTCs in patients correlates with advanced tumor stage,
pathological vascular invasion, and a relatively poor prognosis with an elevated chance of
recurrence in HCC.

Notably, EMT is frequently characterized by incomplete activation in the transitional
axis. As an intermediate stage of the invasion–metastasis cascade, the subtype is well-
known for its hybrid phenotype. Interestingly, with partially preserved cell–cell adhesion
(epithelial), the phenotype can stimulate cells to travel collectively and survive in blood
circulation (mesenchymal) [54]. As multicellular aggregation was observed in blood sam-
ples from breast, colon, lung, and prostate cancer patients, it was discovered that hybrid
CTCs might facilitate cluster formation [55–57]. Nevertheless, the number of CTCs cluster
is not examined in our eligible studies. The significant challenge of CTCs cluster separa-
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tion is their possibility to dissociate during blood sample processing. Although there are
numerous separation techniques and devices efficient for isolating CTCs, these platforms
are rarely capable of capturing clusters intact. The technology designed for specifically
capturing CTCs cluster needs to be further developed [58].

In the meantime, the intersection between EMT and stemness has also been suggested.
CTCs bearing stemness can be found both in partial and complete EMT states [59,60].
Nonetheless, recent theoretical and experimental studies have reported that cells under-
going partial EMT are more likely to acquire stemness than cells undergoing complete
EMT due to their high plasticity to switch between proliferative and invasive pheno-
types [56,61,62]. The stemness is maintained somewhere within a window between fully
epithelial and mesenchymal traits, or in other words, at the midway point of the EMT
gradient. In line with one of our eligible studies, Lei et al. (2021) described that EMT-CTCs
were concomitantly found with Nanog-cancer stem cell markers, especially in hybrid and
mesenchymal CTC subtypes [31]. It is therefore believed that those features enable hybrid
CTCs as the most effective subtype, having highly metastatic potential and thus being
involved in the recurrence of HCC. The transition state along the epithelial–mesenchymal
axis may be context-dependent according to the continuum of stress environment where the
cells have been induced [63]. Not every hybrid CTC expands stemness, nor is it expected
to be shed as a cluster. That may be some explanation of those contradictory results. Hence,
studying the dynamic change of EMT-CTCs in HCC should be further extended.

In this respect, CTCs expressing CSC markers also had an association with overt
clinical outcomes, including advanced tumor stages, early recurrence, metastatic risk, and
vascular invasion as well as prognostic markers predicting RFS, DFS, OS, and TTR in HCC
patients. This is consistent with the hypothesis that cancer stem cell existing in primary
tumor are capable of forming metastatic spread and relapse. The origin of CSC and how
they become circulated in the circulated bloodstream are yet to be elucidated. CTCs with
stemness may arise by two nonexclusive mechanisms. Migrating CSCs from primary tumor
cells might give rise to CCSCs by passive shedding. On the other hand, the mechanism
engaged in CTCs (originally nonmetastatic) converting into CCSCs is proposed by the
obligatory gain of an additional feature to survive in the bloodstream and subsequently
form metastases [64]. As mentioned previously, compelling evidence shows that CSCs also
bear cellular plasticity for transitional change between epithelial-like and mesenchymal-like
states. Those cells might certainly be relevant sources of metastatic recurrence. However, a
lack of uniform expression markers might restrict CCSCs characterization, and thus lead to
a resulting discrepancy.

Due to the complex biological characteristics, HCC is highly heterogeneous in nature,
which makes it more difficult to identify an accurate staging system to predict the prognosis
of HCC [65]. With regard to HCC staging, radiological diagnosis has become standard,
which sometimes underestimates HCC tumor grading by the performance of imaging
techniques [66]. Performing tissue biopsy in HCC is rarely done due to the high-risk of
severe complications [67]. There is a great prospect for CTCs to be used as an alternative
to tissue biopsy or as a combinatorial biological marker with modalities. The baseline
phenotypic detection of CTC subtype could support the establishment of HCC staging.
The subclassification of mesenchymal CTCs in preoperative blood has tendency to be
implicated in prognosis prediction, hence allowing more information in making decision
on the therapy.

Expert Opinion

The presence of the CTC subtype can represent the progression and state of the
disease and can be used as a prognostic marker. The metastatic potential and dissemina-
tion associated with early recurrence are represented by the mesenchymal CTC subtype.
We postulated here that the presence of mesenchymal CTCs in resectable patients with
early HCC may indicate an underlying factor of metastases for which surgical resection
is not effective. Individual patients with intermediate-stage HCC (BCLC-B) who may
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benefit from tumor excision may be reliably stratified using CTC subtyping. In this sce-
nario, BCLC-B patients with detectable epithelial CTCs may be eligible for liver resec-
tion, but those with detectable mesenchymal CTC positivity may not have a satisfactory
surgical outcome.

Considering recent advances in systemic treatment, neoadjuvant targeted molecular
therapies might be used to downgrade the tumor, making it removable and eliminating
micrometastasis. Sorafenib and lenvatinib are multikinase inhibitors that have been shown
to slow the progression of advanced HCC and allow for curative intervention in such
patients [68–70].

The combination of cabozantinib (VEGF-targeted treatment) and nivolumab (check-
point inhibitor) efficiently turns locally progressed HCC to resectable disease while also
inducing a robust immune response [71]. Recently, atezolizumab plus bevacizumab was
shown to be an effective first-line treatment option for advanced HCC. This combined treat-
ment enables unresectable patients to undergo hepatectomy while still achieving long-term
remission [72].

Mesenchymal CTCs detected postoperatively would also be an excellent surrogate
marker for predicting recurrent HCC. A combination of an immune-checkpoint inhibitor
and a drug targeting blood vessels is being investigated in ongoing trials to prevent HCC
recurrence following curative resection [73].

5. Conclusions

In conclusion, detecting the phenotype of CTCs is important in determining tumor
prognosis, predicting metastatic recurrence, and assessing therapeutic outcomes in HCC
patients. Differences in enrichment and identification methods utilized for the detection
of EMT- and stem-cell-like CTCs, as well as small sample numbers due to inadequate
extracted data, may result in inconsistencies between research works. Understanding the
involvement of CTC subtypes in blood-borne dissemination may enable us to understand
tumor progression behavior differences. For that purpose, additional phenotypic or genetic
characterization of the identified CTCs may provide useful information for predicting
HCC prognosis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14143373/s1, Table S1: Search strategy in different databases
based on EMT and CSC markers expression in CTCs, Table S2: Risk of bias assessment (Newcastle–
Ottawa Quality Assessment Scale criteria), Table S3: GRADE evidence profiles for studies in
the meta-analysis.
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