
Frontiers in Microbiology 01 frontiersin.org
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response of Hypomyces 
chrysospermus to cadmium 
stress
Yunan Wang , Chunze Mao , Yujia Shi , Xuejing Fan *, 
Liping Sun * and Yongliang Zhuang 

Faculty of Food Science and Engineering, Kunming University of Science and Technology, 
Kunming, China

Hypomyces chrysospermus is a fungal parasite that grows on Boletus species. 

One isolated strain of H. chrysospermus from B. griseus was obtained and 

proved of strong ability to tolerate and absorb cadmium (Cd) by previous 

research. However, the molecular mechanisms of underlying the resistance 

of H. chrysospermus to Cd stress have not been investigated. This study 

aimed to assess the effect of Cd stress on the global transcriptional regulation 

of H. chrysospermus. A total of 1,839 differentially expressed genes (DEGs) 

were identified under 120 mg/l Cd stress. Gene ontology (GO) enrichment 

analysis revealed that large amounts of DEGs were associated with cell 

membrane components, oxidoreductase activity, and transport activity. KEGG 

enrichment analysis revealed that these DEGs were mainly involved in the 

translation, amino acid metabolism, transport and catabolism, carbohydrate 

metabolism, and folding/sorting and degradation pathways under Cd stress. 

Moreover, the expression of DEGs encoding transporter proteins, antioxidant 

enzymes, nonenzymatic antioxidant proteins, detoxification enzymes, and 

transcription factors was associated with the Cd stress response. These results 

provide insights into the molecular mechanisms underlying Cd tolerance in 

H. chrysospermus and serve as a valuable reference for further studies on the 

detoxification mechanisms of heavy metal-tolerant fungi. Our findings may 

also facilitate the development of new and improved fungal bioremediation 

strategies.
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Introduction

In the early 19th century, fungi were found to adsorb heavy metals. For instance, 
filamentous fungi, red mold, brewer’s yeast, and edible fungi were found to exhibit good 
heavy metal adsorption and tolerance (Isildak et al., 2007). The intensification of heavy 
metal pollution in the environment has resulted in a large number of fungi with high 
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tolerance to heavy metal hazards. The high tolerance allows fungi 
to maintain their growth in the presence of heavy metals. Such 
heavy metal-tolerant fungi have become predominant in some 
areas with severe heavy metal pollution. At present, the main 
methods for controlling heavy metal pollution are chemical 
precipitation (Chen et al., 2018), ion exchange (Wong et al., 2014; 
Khanmohammadi et  al., 2019), membrane separation, and 
adsorption (Adewale et al., 2018). Hence, much attention has been 
paid to highly effective and low-cost adsorption techniques using 
fungi for pollution remediation.

Cadmium (Cd) is one of the most concerning elements 
causing heavy metal pollution. Its main sources came are mining, 
electroplating, batteries, smelting and other industrial wastewater, 
waste gas, sludge, and agricultural fertilizers and pesticides, 
among others. Cd is ingested and absorbed by plants and animals 
and deposited in their bodies. Cd can enter the human body 
through the contaminated food chain and pose a threat to human 
health. Many studies have reported that several fungi, such as 
Trichoderma asperellum, Funalia trogii, Penicillium sp., and 
Fusarium sp., have a significantly higher ability to enrich Cd than 
to enrich other heavy metals (Zheng and Hou, 2019; Zhang et al., 
2022). A previous study also revealed that Cd stress in Lentinula 
edodes could induce the selective expression of genes involved in 
transmembrane transport, glutathione (GSH) transport, and 
cytochrome P450 pathways and that these selectively expressed 
genes could increase the resistance of L. edodes to Cd stress 
(Yu H. et al., 2020). Cd resistance in Morchella spongiola may 
be related to catalytic activity, cell cycle control, and ribosomes 
assembly. Moreover, the expression of genes involved in major 
metabolic pathways, such as MAPK signaling, oxidative 
phosphorylation, pyruvate metabolism, and propionate 
metabolism pathways, in M. spongiola could be upregulated under 
Cd stress (Xu et al., 2021). Studies have revealed that T. harzianum 
could remove metals from the soil through bioremediation. In 
addition, in previous research, several upregulated spliceosome 
components of T. harzianum were found to cling to the fungus 
under Cd stress; the results unraveled the inhibition of 
carbohydrate-related proteins for the first time and demonstrated 
the susceptibility of the fungal parasite T. harzianum to Cd stress 
(Oshiquiri et al., 2020). Therefore, research on the identification 
of functional genes involved in Cd uptake and metabolism will 
be beneficial for application in genetic engineering to develop new 
technologies to treat Cd pollution.

Hypomyces is a genus of the most characteristic mycoparasites 
of diverse fungal hosts of agarics, boletes, russules, thelephores, 
and polypores in the family Hypocreaceae (Douhan and Rizzo, 
2003). The parasites of Hypomyces usually cause systematic 
infection and mummification of the host fruiting bodies (Ouzhan 
et al., 2018). However, a symbiotic association of H. chrysospermus 
and B. griseus was found and identified by our previous study 
(Tian et al., 2022). We also confirmed that B. griseus had strong 
Cd-accumulated ability, even from natural habitats with low Cd 
contents (Bao et al., 2017; Sun et al., 2017; Xiao et al., 2021). A 
strain of H. chrysospermus was isolated from B. griseus. The 

isolated strain had a strong ability to tolerate Cd. The minimum 
inhibitory concentration of Cd of fungal growth was 200 mg/l. The 
Cd bioaccumulation capacity of the fungus reached 10.03 mg/g. 
The immobilization effects of the cell wall and acid compounds 
and antioxidant enzymes were employed by the fungus to alleviate 
the toxic effects of Cd. The fungus might be  a potential 
bioremediation fungus for Cd contamination (Tian et al., 2022). 
However, the specific mechanism underlying Cd tolerance in 
H. chrysospermus remains unknown. In this study, the 
transcriptome of H. chrysospermus grown under 0 and 120 mg/l 
Cd stress was analyzed to identify differentially expressed genes 
(DEGs) associated with Cd adsorption and tolerance and to 
unravel the Cd stress response of H. chrysospermus in terms of the 
transcriptional expression of genes. Our findings would provide a 
theoretical basis for exploring the molecular mechanisms 
underlying Cd tolerance in H. chrysospermus.

Materials and methods

Mycelial culture and cd treatment

Fresh B. griseus was picked from the wild mushroom trading 
market in Shilin City, Yunnan Province, China, and an endophytic 
fungus was isolated on the same day. The isolated endophytic 
fungus was found to be  H. chrysospermus after ITS sequence 
comparison. The culture was incubated in Potato Dextrose Water 
(PDB) containing 0 and 120 mg/l Cd at 28°C for 3 days with 
constant shaking at 120 rpm. Five replicate treatment groups were 
prepared for this experiment, and each group was analyzed. The 
mycelium was collected in a sterile environment, placed in 
lyophilization tubes (2 ml), rapidly frozen in liquid nitrogen, and 
stored at − 80°C for RNA extraction.

RNA extraction, library preparation and 
sequencing

Total RNA was extracted from mycelial samples and was 
extracted from the tissue using TRIzol® Reagent (Plant RNA 
Purification Reagent for plant tissue) according the manufacturer’s 
instructions (Invitrogen). Genomic DNA was removed using 
DNase I  (TaKara). RNA degradation and contamination was 
monitored on 1% agarose gels. The integrity and purity of the total 
RNA quality was determined by 2,100 Bioanalyser (Agilent 
Technologies) and quantified using the ND-2000 (NanoDrop 
Technologies). Only high-quality RNA sample (OD260/280 =  
1.8 ~ 2.2, OD260/230 ≥ 2.0, RIN ≥ 8.0, 28S:18S ≥ 1.0, >1 μg) was 
used to construct sequencing library.

RNA purification, reverse transcription, library construction 
and sequencing were performed at Shanghai Majorbio Bio-pharm 
Biotechnology Co., Ltd. (Shanghai, China) according to the 
manufacturer’s instructions (Illumina, San Diego, CA, 
United States). The transcriptome library was prepared following 
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TruSeq™ RNA sample preparation Kit from Illumina (San Diego, 
CA, United States) using 1 μg of total RNA. Messenger RNA was 
isolated according to polyA selection method by oligo(dT) beads 
and then fragmented by fragmentation buffer firstly. Double-
stranded cDNA was synthesized using a SuperScript double-
stranded cDNA synthesis kit (Invitrogen, CA, United States) with 
random hexamer primers (Illumina). The synthesized cDNA was 
subjected to end-repair, phosphorylation and “A” base addition 
according to Illumina’s library construction protocol. Libraries 
were size selected for cDNA target fragments of 300 bp on 2% Low 
Range Ultra Agarose followed by PCR amplified using Phusion 
DNA polymerase (NEB) for 15 PCR cycles. After quantified by 
TBS380, paired-end RNA-seq sequencing library was sequenced 
with the Illumina NovaSeq  6,000 sequencer (2 × 150 bp 
read length).

Quality control and data assembly

The raw sequencing data contained splice sequences, 
low-quality reads, sequences with high N contents (N represents 
uncertain base information), and sequences that were too short, 
which could seriously affect the quality of the subsequent 
correlation analysis. Therefore, SeqPrep1 and Sickle2 were used to 
check the quality of the raw sequencing data before analysis and 
to obtain high-quality clean data to ensure the accuracy of the 
subsequent analysis (Zhang et  al., 2016). The accuracy of the 
results was ensured. For transcriptome analysis without reference 
genomes, after obtaining high-quality sequencing data through 
transcriptome sequencing, all sample clean data were assembled 
from scratch using Trinity and the assembly results were optimally 
evaluated (Grabherr et al., 2011).

Analysis of DEGs and functional 
annotation

The experiment was performed with five biological 
replicates; therefore, DEG expression analysis was performed 
using DESeq2 software (p-adjust < 0.05, |log2FC| ≥ 1; Love et al., 
2014). All transcripts obtained from this transcriptome 
sequencing were compared with those in six databases (NR, 
Swiss-Prot, Pfam, COG, GO, and KEGG databases) to obtain 
annotation information in each database and count the 
annotation status of each database. The software GOATOOLS3 
was used to perform GO enrichment analysis of genes/
transcripts in the gene set (Ye et al., 2018). GO standardizes the 
biological terminology of genes and gene products in different 
databases and provides a uniform qualification and description 

1 https://github.com/jstjohn/SeqPrep

2 https://github.com/najoshi/sickle

3 https://github.com/tanghaibao/GOatools

of gene and protein functions. KEGG is a knowledge base for 
the systematic analysis of gene function, linking genomic and 
functional data. Researchers can use the KEGG database to 
classify genes in a gene set according to the pathway they are 
involved in or the function they perform. Fisher’s exact test was 
performed, and the GO function and KEGG pathway were 
considered significantly enriched in the gene set when the 
corrected p-value (FDR) was less than 0.05.

qRT-PCR validation

qRT-PCR was also performed on the same samples used for 
transcriptome analysis, primarily to verify the reliability of DEGs 
identified from the transcriptome sequencing data. In this 
experiment, four genes were selected for their potential 
involvement in improving Cd tolerance in H. chrysospermus; their 
expression was significantly upregulated (p < 0.05). Primer 5.0 was 
used to design primer sequences for the selected genes. The 
β-actin gene was selected as the internal reference gene (Suzuki 
et  al., 2000; Negi et  al., 2011). The primer sequences for the 
qRT-PCR experiments are listed in Table  1. qRT-PCR was 
performed using an ABI 7300 Fluorescent Quantitative PCR 
instrument (Applied Biosystems, United  States). The reaction 
system for qRT-PCR consisted of the following: 0.8 μl of primer F, 
0.8 μl of primer R, 6 μl of ddH2O, 2 μl of cDNA, 10 μl of 2 × ChamQ 
SYBR Color qPCR Master Mix, and 0.4 μl of 50 × ROX reference 
dye, making the final volume 20 μl. Each DEG was subjected to 
three technical replicates and three biological replicates in two 
treatment groups (0 and 120 mg/l Cd). The PCR amplification 
procedure was as follows: 5 min at 95°C and 40 cycles of 5 s at 
95°C, 30 s at 55°C, and 40 s at 72°C. Ploidy was calculated using 
the 2−ΔΔCT method.

Results and discussion

Annotation of transcriptome sequencing 
data and assembly results

A total of 10,279 and 17,304 unigenes and transcripts were 
detected, respectively, with unigenes being the longest transcript 
and usually providing a better representation of the coding 
information of the genes. The clean data for each sample were 
above 6.45 Gb and the percentage of Q30 bases was above 93.85%, 
indicating that the sequencing data had sufficient quality to 
further justify the analysis. The GC content of the sequencing data 
was over 58%, also indicating the stability of the sequencing data 
(Supplementary Table S1). The correlation between the biological 
replicates of the samples in the experimental design was good, and 
the results verified the soundness of the experimental design 
(Supplementary Figure S1).

A total of 10,279 unigenes were obtained by non-reference 
splicing of the raw data and annotation results from the NR, 
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Swiss-Prot, Pfam, COG, GO and KEGG databases (Figure 1A 
bar chart). A total of 3,543 genes were obtained in this study, of 
which a total of 3,253 (91.8%) genes were annotated in all six 
databases (Figure  1A Venn diagram). The similarity of the 
transcript sequences of H. chrysospermus to similar species was 
assessed by comparison with species in the NCBI_NR library. 
As shown in Figure  1B, the species closely related to 
H. chrysospermus could be annotated in the NR database. These 
mainly belonged to the genus Trichoderma, including 
T. arundinaceum (33.06%), T. harzianum (11.43%), and T. virens 
(10.16%).

Functional enrichment analysis of DEGs

A total of 1,839 DEGs were screened. Of these, 854 DEGs 
were downregulated, accounting for 46.44% of the total 
differential expression, and 985 DEGs were upregulated, 
accounting for 53.56% of the total differential expression 
(Figure 2). The expression levels of four genes related to Cd 
tolerance in H. chrysospermus were assessed by qRT-PCR in the 
two treatment groups to verify the accuracy of the transcriptome 

data obtained. The trends in the expression of the four DEGs 
obtained by qRT-PCR were similar to those in the transcriptome 
sequencing data (Figure  3; Supplementary Table S2). The 
Pearson correlation coefficient (r) was 0.974, indicating that the 
transcriptome sequencing data in the present study 
were reliable.

Functional analyses of DEGs

GO is an international standardized gene function 
classification database that includes three relatively independent 
categories: cellular components, molecular functions, and 
biological processes. Figure  4 shows the top  20 DEGs in GO 
annotations. At the ontology level, DEGs induced by Cd in 
H. chrysospermus cells were mainly involved in cellular 
components and molecular functions. When these 1,839 DEGs 
were analyzed from the sublevel entries, the functional categories 
of the most GO-enriched genes were integral component of 
membrane, intrinsic component of membrane, oxidoreductase 
activity, transporter activity, transmembrane transporter activity 
and transition metal ion binding.

TABLE 1 Primer sequences used in this study.

Gene id Forward Reverse

TRINITY_DN707_c0_g1 GCACCCGCTTCATCCTCA CGGTTGGTCTCCCAGTCGTT

TRINITY_DN1814_c0_g1 TCATCTGTATCGCCGCATCT CGGGTTCTCCTTGTCCGTAA

TRINITY_DN700_c0_g1 CAAACATCGCCCAACCTG AACATGCGTGCAAACTCATAC

TRINITY_DN3517_c0_g1 TCATTGCCTGCGACACCC AGCGACCCTTCTGACCACC

β-actin CGACAATGGTTCCGGTATGTGCAA ACGTAGGAGTCCTTCTGACCCATA

A B

FIGURE 1

Transcriptome sequencing of Hypomyces chrysospermus. (A) Venn diagram of unigenes annotated in public databases, including Swiss-Prot, 
COG, KEGG, GO, and Pfam databases. (B) Species distribution of all annotated unigenes.
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Differentially expressed genes pathway 
analysis

To further identify the specific metabolic pathways that are 
altered in H. chrysospermus under Cd stress, a KEGG analysis of 
DEGs was performed under Cd stress. A total of 652 (35.5%) 
DEGs were annotated to different metabolic pathways. All 
Cd-induced DEGs could be  classified into four categories of 
metabolic pathways. Of these, the metabolism category had the 
most enriched DEGs, more than 55% of the total annotated DEGs. 
The category with the least amount of enriched DEGs was 
environmental information processing, accounting for less than 
3% of the total annotated DEGs. Table  2 shows the results of 

KEGG enrichment analysis of the top 20 enriched DEGs. At the 
metabolic pathways level, Cd-induced DEGs were mainly 
enriched in translation, amino acid metabolism, transport and 
catabolism, carbohydrate metabolism, and folding/sorting and 
degradation pathways. These pathways include oxidative 
phosphorylation, glycolysis/gluconeogenesis, amino sugar and 
nucleotide metabolism, glyoxylate and dicarboxylate metabolism, 
and purine metabolism.

Expression of Hypomyces chrysospermus 
transport systems under cd stress

Metal transporter proteins are a class of transport proteins 
that are located on cell membranes and are involved in the uptake, 
transport, and compartmentalization of metal elements (Chen 
et al., 2017a). Extensive studies have identified a range of Cd- and 
its chelator-related transporter proteins, mainly the ATP-binding 
cassette (ABC) transporter protein, zinc/iron transporter protein 
(ZIP), and metal tolerance protein (MTP), using genetic 
engineering and modern molecular biology techniques (Zhang 
et al., 2018).

In this study, nine DEGs involved in the ABC transporter 
pathway were identified in H. chrysospermus under 120 mg/l Cd 
stress. The expression of these DEGs was significantly upregulated, 
and they mainly participated in the biosynthesis of ATM 
belonging to the ABC transporter protein B family and DPXA1/2 
belonging to the ABC transporter protein D family 
(Supplementary Table S3). ABC transporter proteins are powerful 
transporters that could transfer inorganic ions, sugars, amino 
acids, lipids, lipopolysaccharides, peptides, and metal ions (Guo 
et al., 2022). Moreover, ABC transporter proteins play a crucial 
role in defense against virulence factors and drugs, particularly in 
sustaining dynamic metal ion homeostasis by transporting metal 
ions across the cell membrane in the form of ions/complexes 
(Higgins, 1992; Sanchez et al., 2001; Verrier et al., 2008; Do et al., 
2018). For instance, DEGs regulating ABCC1 could reduce 
toxicity in H. chrysospermus by eliminating excess heavy metals 
from cells because the ABC transporter tolerance factors located 
in the mid-upper vesicle membrane can transport heavy metal 
toxins chelated with GSH into the vesicles for detoxification and 
can improve heavy metal tolerance in H. chrysospermus (Bruce, 
2014). Hence, these upregulated DEGs may play an important role 
in conferring resistance to exogenous Cd (120 mg/l) in 
H. chrysospermus. These findings were similar to those of previous 
studies. Cai et  al. assessed the ABC transporter protein gene 
OsABCG48 and found that the heterologous expression of 
OsABCG48 conferred Cd tolerance to corn wine fission yeast, 
Arabidopsis and rice (Cai et al., 2021).

The ZIP family is an important group of divalent metal 
transport proteins responsible for transporting metal ions, such as 
zinc, copper, manganese, iron, Cd, nickel, arsenic, and cobalt 
(Bashir et al., 2016). In this study, four DEGs associated with iron-
regulated transporter (IRT) and zinc-regulated transporter (ZRT) 

FIGURE 2

Volcano map of 1,839 differentially expressed genes.

FIGURE 3

Validation of RNA-Seq results by quantitative real-time PCR (qRT-
PCR). Four upregulated DEGs in Hypomyces chrysospermus 
were selected for validation.
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proteins were significantly upregulated in H. chrysospermus in the 
presence of 120 mg/l Cd (Supplementary Table S3). Cd2+ has been 
reported to have the same outer electron configuration as Zn2+ and 
Fe2+. Moreover, the chemical properties of these ions are very 
similar. Hence, H. chrysospermus stimulated the expression of 
genes encoding IRT and ZRT and transported Cd2+ to maintain 
intracellular ion homeostasis (Tan et al., 2015; Zheng et al., 2022). 
These results were similar to those of a previous study, which 
reported that highly expressed DEGs involved in the ZIP–ZRT 
transporter pathways mediated the entry of higher levels of Cd2+ 
into the roots through the ZIP transporter in 
Cd-hyperaccumulating plants (Chen et  al., 2017b; Zhu et  al., 
2018). Previous studies also revealed that the upregulated 
expression of IRT and ZRT increased Cd transport and 
accumulation in Arabidopsis under Cd stress (Becher et al., 2004).

In addition, DEGs associated with oligopeptide transporter 
(OPT), vesicular calcium transporter, MTP, and MFS multidrug 
resistance transporter regulatory pathways were upregulated in 
H. chrysospermus (Supplementary Table S3). The MFS family of 
transporter proteins is a superfamily of transmembrane 
transporters involved in the transport of drugs, metabolites, 
oligosaccharides, amino acids, and oxygen-containing anions, 
among others (Pao et  al., 1998). Our results indicated that 
H. chrysospermus may have initiated its own detoxification 
mechanism to resist Cd stress and, to a certain extent, mitigate the 
harmful effects of the heavy metal Cd and improve its 
tolerance to Cd.

Expression of antioxidant enzymes and 
antioxidant genes in Hypomyces 
chrysospermus under Cd stress

Enzymes play an important role in the abiotic stress 
response of microorganisms. Under normal conditions, the 
antioxidant enzymes superoxide dismutase (SOD), catalase 
(CAT), and peroxidase (POD) and the antioxidants GSH and 
ascorbic acid (AsA) in the cell scavenge the reactive oxygen 
species (ROS) produced during cellular metabolism, 
maintaining a very low level of ROS in the cell (Bansal et al., 
2021). In this study, two CAT genes encoding glutathione 
S-transferase (GST) II (Log2FC = 3.374766182) and GSH 
synthetase (Log2FC = 1.087802885), which are involved in 
cysteine and methionine metabolism pathways, were 
significantly upregulated in response to 120 mg/l Cd treatment 
(Supplementary Table S4), possibly because excess Cd induced 
the production of large amounts of reactive oxygen radicals in 
the cells. To decrease oxidative stress and avoid oxidative 
damage to cell membrane lipids, these upregulated genes play 
an important role in the scavenging of ROS under Cd stress. 
Previous studies also revealed that the expression of POD, 
GSH synthetase, and photosynthesis-related proteins was 
significantly upregulated in Piriformospora indica under Cd 
treatment (Su et  al., 2021). Moreover, the rhizobacteria 
Serratia marcescens S2I7 was found to have a GST-related 
mechanism to detoxify Cd (Kotoky et al., 2019).

FIGURE 4

Top 20 enriched GO terms associated with DEGs in response to Cd stress. (The vertical axis represents the GO Term, the horizontal axis represents 
the Rich factor [the ratio of the number of samples enriched in the GO term to the background number; a larger Rich factor indicates greater 
enrichment], the size of the dots indicates the number of genes/transcripts in the GO Term, and the color of the dots corresponds to the different. 
The color of the dots corresponds to different FDR (p value corrected) ranges.)
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Expression of nonenzymatic antioxidant 
genes in Hypomyces chrysospermus 
under Cd stress

In fungi, heat shock proteins (HSPs) promote protein 
folding, stabilization, transport, and degradation and are 
therefore involved in the regulation of cell cycle processes and 
the activation of many key signaling enzymes (Roy and 
Tamuli, 2022). Thioredoxin (TRX) is a cofactor that acts as the 
electron donor for ribonucleotide reductase. It is involved not 
only in various physiological processes, such as the regulation 
of transcription factors, apoptosis, and antioxidant activity, 
but also in immune stress responses and redox reactions as a 
cofactor and an active growth factor. In this study, the 
expression of genes encoding HSP and TRX was found to 
be  upregulated in H. chrysospermus under Cd stress 
(Supplementary Table S4), suggesting that the presence of 
heavy metals altered the redox state of the cells and induced 
the production of TRX and HSP. The small molecule proteins 
HSP and TRX could respond to the presence of high ROS in 
H. chrysospermus as nonenzymatic antioxidants. Hence, the 
upregulated expression of hsp and trx could increase the 
tolerance of H. chrysospermus cells to Cd by altering the redox 
status and chelating ions effectively. Many studies also found 

that exposure to Cd2+ could lead to ≥ 2–10-fold increase in 
HSP70 and HSP27 levels in organisms and that the increase in 
HSP70 responses induced by Cd damage may play a role in the 
protection of cell membranes (Yazdi et  al., 2021). The 
increased levels of HSP70 in tobacco plants inoculated with 
P. indica suggested the involvement of HSP70 in increasing Cd 
tolerance in the plants (Hui et al., 2015). Moreover, whole-
genome sequencing studies in Rhizobium JC1 revealed that 
heavy metal-responsive transcriptional regulators, TRX, and 
heavy metal transport/detoxification proteins play an 
important role in heavy metal adsorption and detoxification 
(Sun et al., 2021).

The expression of DEGs encoding GSH (Log2FC = 3.91050035; 
Supplementary Table S4) was found to be  upregulated under 
120 mg/l Cd stress; this may have improved the tolerance of 
H. chrysospermus cells to Cd stress. GSH is an important 
intracellular component responsible for heavy metal 
detoxification. It can react with heavy metals at the sulfhydryl 
group to form thiopeptide complexes and reduce the content of 
free-state heavy metals in cells (Orlando et al., 2021). Whole-
genome resequencing and transcriptome analysis revealed that the 
expression of seven genes regulating GSH metabolism was altered 
in wild-type Chlamydomonas reinhardtii after exposure to Cd 
(Yu Z. et al., 2020).

TABLE 2 The 20 most significant pathways and numbers of DEGs.

Pathway id Number Description First category Second category

map03010 72 Ribosome Genetic information processing Translation

map00190 63 Oxidative phosphorylation Metabolism Energy metabolism

map03013 19 RNA transport Genetic information processing Translation

map04141 19 Protein processing in endoplasmic 

reticulum

Genetic information processing Folding, sorting and degradation

map03040 17 Spliceosome Genetic information processing Transcription

map04144 17 Endocytosis Cellular processes Transport and catabolism

map00010 16 Glycolysis / gluconeogenesis Metabolism Carbohydrate metabolism

map04146 14 Peroxisome Cellular processes Transport and catabolism

map00020 13 Citrate cycle (TCA cycle) Metabolism Carbohydrate metabolism

map04011 13 MAPK signaling pathway: yeast Environmental information processing Signal transduction

map00520 13 Amino sugar and nucleotide sugar 

metabolism

Metabolism Carbohydrate metabolism

map00380 12 Tryptophan metabolism Metabolism Amino acid metabolism

map03015 11 mRNA surveillance pathway Genetic information processing Translation

map00051 11 Fructose and mannose metabolism Metabolism Carbohydrate metabolism

map04113 11 Meiosis-yeast Cellular processes Cell growth and death

map00630 10 Glyoxylate and dicarboxylate 

metabolism

Metabolism Carbohydrate metabolism

map04213 9 Longevity regulating pathway: multiple 

species

Organismal systems Aging

map04933 9 AGE-RAGE signaling pathway in 

diabetic complications

Human diseases Endocrine and metabolic disease

map00680 9 Methane metabolism Metabolism Energy metabolism

map03018 9 RNA degradation Genetic information processing Folding, sorting and degradation
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Expression of genes encoding metabolic 
detoxification enzymes in Hypomyces 
chrysospermus under Cd stress

Detoxification enzymes catalyze metabolic detoxification in 
cells in the presence of exogenous toxic substances. Of the several 
known detoxification enzymes, monooxygenases are the most 
important. Monooxygenases are multienzyme complexes having 
cytochrome P450 (CYP450) as their terminal oxidase that plays a 
key role in their catalytic function (Sligar, 2010). With an increase 
in Cd concentrations, nine DEGs encoding monooxygenases and 
seven DEGs encoding CYP450 were found to be  significantly 
upregulated in this study. These results suggest that Cd stress can 
induce the production of CYP, which could help remove heavy 
metals and increase the tolerance of H. chrysospermus to Cd stress. 
Previous studies also reported CYP450 to be  involved in Cd 
detoxification, salt tolerance, calcium signaling and homeostasis, 
and pathogen-triggered immunity in Chinese cabbage (Zhang 
et al., 2021). In addition, two molecular chaperones were found to 
be  significantly upregulated in the H. chrysospermus 
transcriptome; these molecular chaperones may enhance the 
tolerance of cells to heavy metals by converting metal ion-induced 
misfolded and aggregated proteins into transiently active natural 
proteins (Qiu et al., 2006; Howell, 2013; Rauch et al., 2016).

Expression of transcription factor genes 
in Hypomyces chrysospermus under Cd 
stress

Transcription factors are a group of proteins consisting of 
single or multiple structural domains that specifically bind to 
DNA. In this study, the expression of 14 DEGs encoding 
transcription factors, including one DEG encoding a fungus-
specific transcription factor, one DEG encoding a heat shock 
factor, and four DEGs encoding C6 transcription factors, 
was upregulated in H. chrysospermus under Cd stress 
(Supplementary Table S5). Previous studies have reported that C6 
transcription factors with zinc finger structures play an important 
role in response to heavy metal stress (Krishna et al., 2003; Jen 
and Wang, 2016) because the transcriptional co-activators with 
PDZ-binding motifs in zinc finger structures can confer 
resistance to various heavy metals by interacting with OsMYB34 
and OsFHA9 transcription factors (Shalmani et al., 2021; Li et al., 
2022). Hence, we hypothesized that the upregulated expression 
of DEGs encoding transcription factors could increase the 
tolerance of H. chrysospermus to Cd stress.

Mechanisms underlying resistance of 
Hypomyces chrysospermus to Cd stress

Currently, the mechanisms underlying heavy metal tolerance 
in eukaryotes are divided into two main categories: intracellular 

tolerance mechanisms and extracellular tolerance mechanisms. 
Extracellular tolerance mechanisms mainly include the adsorption 
of heavy metals by the cell wall and the precipitation of heavy 
metals by extracellular secretion. Heavy metal adsorption by fungi 
is mainly attributed to cell wall components, such as chitin, 
dextran, cellulose, and proteins, and many functional groups that 
can bind to heavy metals, such as hydroxyl (–OH), carboxyl (–
COOH), sulfhydryl (–SH), and amino (–NH2) groups. These 
groups can facilitate the adsorption of heavy metals on the cell 
wall and thus prevent heavy metal ions from entering the cell.

In this study, H. chrysospermus was found to grow under Cd 
stress, indicating that it can tolerate Cd toxicity. H. chrysospermus 
anchors Cd to the cell wall and then transports it into the cell 
through transport proteins or cytokinesis. Five DEGs encoding 
chitinase were upregulated in H. chrysospermus. The enriched Cd 
may have increased the expression of genes encoding chitinase, 
which may have helped transport Cd (Wang et al., 2021). In a 
study assessing Cd tolerance and accumulation in barley, 
transporter proteins and chitinases were also found to be involved 
in the transport of Cd (Cartagena Luna et al., 2020). In addition, 
fungi also secrete some organic acids that can bind to heavy metals 
and precipitate them, thereby preventing heavy metal ions from 
entering the cells (Salazar et al., 2020). Free amino acids have 
negatively charged hydroxyl and carboxyl functional groups that 
bind to heavy metal cations (Zhou, 1999). The amino acid 
metabolic pathways associated with Cd stress include arginine and 
proline metabolism; valine, leucine, and isoleucine biosynthesis; 
glycine and threonine metabolism; and GSH metabolism 
pathways (Pereira et al., 2002). In our study, three genes involved 
in arginine and proline metabolism, two genes involved in 
cysteine and methionine metabolism, and one gene catalyzing the 
linkage of glycine to tRNA were found to be  significantly 
upregulated, suggesting that H. chrysospermus itself further resists 
exogenous Cd damage by increasing free amino acid metabolism 
under Cd stress. In addition, one gene encoding a capsular 
polysaccharide and two genes encoding iron carriers were 
upregulated in H. chrysospermus under Cd stress. Capsular 
polysaccharides can immobilize Cd by chelating and precipitating 
Cd2+ with carbonyl groups (–COO–), and siderophores can 
chelate heavy metal ions in the extracellular matrix. These 
properties help mitigate the toxic effects of Cd on the organism.

Heavy metal transport proteins also have a crucial effect on 
microbial metabolism under Cd stress. The main eukaryotic 
proteins tolerant to the heavy metal Cd are currently classified into 
three categories: transporter proteins, Cd-binding proteins, and 
proteins associated with Cd-binding proteins. In this study, nine 
genes involved in ABC transporter protein pathways were 
identified. ABC transporter proteins play an invaluable role in 
defense against virulence factors and drugs, particularly in 
sustaining dynamic metal ion homeostasis by transporting metal 
ions across the cell membrane in the form of ions/complexes. 
Therefore, the regulation of other genes associated with metal 
transporter proteins plays an important role in maintaining metal 
ion homeostasis in H. chrysospermus under Cd stress.
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Under normal conditions, the antioxidant system, which 
consists of antioxidant enzymes and antioxidants, scavenges ROS 
produced during cellular metabolism. For example, the catabolism 
of CAT helps remove harmful substances, such as hydrogen 
peroxide, produced in the cell, which helps maintain a very low 
level of ROS in the cell (Xu et al., 2015). In this study, two CAT 
genes, one encoding GST II and the other encoding GSH 
synthetase (involved in cysteine and methionine metabolism), 
were upregulated under 120 mg/l Cd stress. These results indicate 
that the upregulated genes may induces the defense response of 
the antioxidant enzyme system in H. chrysospermus and mitigate 
the harmful effects of oxidative damage in cells.

In this study, one gene encoding HSP70 and two genes 
encoding TRX were upregulated in H. chrysospermus under Cd 
stress. These upregulated genes may have enhanced the tolerance 
of H. chrysospermus to Cd under severe Cd stress by altering the 
redox status of cells and chelating ions. In addition, the expression 
of genes encoding GSH was upregulated. The active group of GSH 
is a sulfhydryl group, which not only reacts with heavy metals to 
form thiopeptide complexes and to reduce the content of free 
heavy metals but also serves as an important intracellular 
component in the detoxification of heavy metals (Gadd, 1990). 
Therefore, increasing the level of GSH may help reduce the content 
of free heavy metals by forming complexes and improve the 
tolerance of organisms to heavy metals.

In summary, the regulatory network of H. chrysospermus in 
response to Cd stress is shown in Figure 5. The mycelium of 
H. chrysospermus increase its tolerance to Cd through multiple 
pathways. H. chrysospermus increase the level of chitinase to 
break down chitin in its environment and then uses it to 
synthesize its own cell wall. This improves the adsorption of Cd 
to the environment. Next, Cd mainly enters the cell through 
ABC, IRT, and ZRT metal transport proteins or other ion 
channels. The cell is under oxidative stress at this point. This 
leads to increased expression levels of genes encoding 
antioxidant enzymes (such as CAT, GST, and GSH synthetase) 
and nonenzymatic antioxidants (such as TRX and HSP). 
Moreover, genes involved in GSH metabolism are 
simultaneously upregulated, further enhancing the scavenging 
of ROS from the cells. In addition, genes related to free amino 
acid metabolism (e.g., proline and cysteine) are upregulated to 
bind to Cd and reduce its toxicity. Furthermore, the intracellular 
expression of the transcription factors C6 and FKBP12 is 
upregulated, potentially enhancing transcription factors that 
improve fungal tolerance when subjected to stress. Finally, 
H. chrysospermus upregulates the expression of the membrane-
bound metal transport proteins OPT, MTP, and ABC, 
transferring Cd or Cd chelates into the vesicle or excreting the 
same from the cell. The combination of these mechanisms 
makes H. chrysospermus highly resistant to Cd stress.

FIGURE 5

Mechanism underlying Cd accumulation and tolerance in H. chrysospermus cells. (CW: cell wall, PM: plasma membrane, Cd: cadmium, ROS: 
reactive oxygen species, ABC: ATP-binding cassette, ZRT: zinc-regulated transporter, IRT: iron-regulated transporter, MRP: multidrug resistance-
associated protein, GSH: glutathione, HSP: heat shock protein, TRX: thioredoxin).
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Conclusion

This study aimed to assess the transcriptome changes within 
the mycelium of H. chrysospermus under Cd stress. Our results 
provide a biomolecular explanation of how H. chrysospermus cells 
perceive and respond to Cd stress. Transcriptome sequencing 
revealed 1,839 DEGs in H. chrysospermus under 120 mg/l Cd 
stress. These DEGs mainly belonged to the integral component of 
membrane, intrinsic component of membrane, oxidoreductase 
activity, membrane activity, transporter activity, transmembrane 
transporter activity and transition metal ion binding functional 
categories. Based on these findings, we propose the regulatory 
network of H. chrysospermus in response to Cd stress. These 
findings can help comprehend the molecular mechanisms 
underlying Cd tolerance in H. chrysospermus in a more realistic 
and direct manner.
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