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Abstract
Objectives To reduce the dose of intravenous iodine-based contrast media (ICM) in CT through virtual contrast-enhanced images
using generative adversarial networks.
Methods Dual-energy CTs in the arterial phase of 85 patients were randomly split into an 80/20 train/test collective. Four
different generative adversarial networks (GANs) based on image pairs, which comprised one image with virtually reduced
ICM and the original full ICM CT slice, were trained, testing two input formats (2D and 2.5D) and two reduced ICM dose levels
(−50% and −80%). The amount of intravenous ICM was reduced by creating virtual non-contrast series using dual-energy and
adding the corresponding percentage of the iodine map. The evaluation was based on different scores (L1 loss, SSIM, PSNR,
FID), which evaluate the image quality and similarity. Additionally, a visual Turing test (VTT) with three radiologists was used to
assess the similarity and pathological consistency.
Results The −80%models reach an SSIM of > 98%, PSNR of > 48, L1 of between 7.5 and 8, and an FID of between 1.6 and 1.7.
In comparison, the −50%models reach a SSIM of > 99%, PSNR of > 51, L1 of between 6.0 and 6.1, and an FID between 0.8 and
0.95. For the crucial question of pathological consistency, only the 50% ICM reduction networks achieved 100% consistency,
which is required for clinical use.
Conclusions The required amount of ICM for CT can be reduced by 50% while maintaining image quality and diagnostic
accuracy using GANs. Further phantom studies and animal experiments are required to confirm these initial results.
Key Points
• The amount of contrast media required for CT can be reduced by 50% using generative adversarial networks.
• Not only the image quality but especially the pathological consistency must be evaluated to assess safety.
• A too pronounced contrast media reduction could influence the pathological consistency in our collective at 80%.
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Abbreviations
CI-AKI Contrast-induced acute kidney injury
CIN Contrast-induced renal injuries
CKI Chronic kidney disease
FID Fréchet inception distance
GAN Generative adversarial network
HU Hounsfield unit
HVS Human visual system
ICM Iodine-based contrast media
MAE Mean absolute error
MSE Mean squared error
PSNR Peak signal-to-noise ratio
SSIM Structural similarity index
VNC Virtual non-contrast
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Introduction

The use of iodine-based contrast media (ICM) is essential for
dealing with various diagnostic tasks, such as the exclusion of
pulmonary artery embolism or mesenteric ischemia. As the
number of computed tomography (CT) scans continues to rise
worldwide, the exposure of patients to ICM is increasing. The
most important side effects of ICM include dose-dependent
contrast-induced kidney injury (CIN) and thyroid dysfunction,
as well as non-dose-dependent allergic reactions. As a result
of the worldwide rise in life expectancy and the associated
increase in overall morbidity and the rising prevalence of type
II diabetes, the prevalence of chronic kidney disease (CKD)
continues to grow [1]. Although it is now known that the risk
of developing acute kidney injury (CI-AKI) in patients with
reduced renal function after exposure to intravenous ICM has
been overrated in the past, the actual risk of developing CI-
AKI in patients with severe kidney disease remains unknown
[2]. As radiologists, we still are increasingly faced with the
challenge of making precise diagnostic statements for which
we are frequently dependent on the intravenous administration
of ICM and, on the other hand, we are confronted with a
population with an increasing prevalence of CKD in whom
the administration of intravenous ICM can potentially lead to
a further deterioration in kidney function with all the conse-
quences in terms of hospitalization, morbidity, and eventual
mortality.

Through technical optimizations such as improved recon-
struction procedures, and CT protocols with reduced tube
voltage, significant savings in intravenous ICM have already
been achieved in recent years [3]. Advances in deep learning–
based image post-processing now open up possibilities for
further ICM savings.

In the present study, we trained a generative adver-
sarial network (GAN) to enhance ICM-induced image
contrasts selectively and validated the results using
dual-energy CT in which a 50% or 80% reduced ICM
dose was simulated via the proportional subtraction of
the calculated iodine maps.

Materials and methods

Ethics statement

This study was conducted in compliance with the guidelines
of the Institutional Review Board of the University Hospital
Essen (approval number 19-8904-BO). Due to the retrospec-
tive nature of the study, the requirement of written informed
consent was waived by the Institutional Review Board. The
data were completely anonymized before being included in
the study.

Computed tomography

A SOMATOM Force CT scanner (Siemens Healthineers AG)
was used to perform dual-energy computed tomography with
intravenous ICM. Reconstructions with a layer distance and a
thickness of 1.5 mmwere used. The scanning parameters were
0.25–0.5 s of rotation time, pitch 0.55–0.75, and 128 ×
0.6 mm detector collimation. Dual-energy with a tube voltage
of 80 kV and 150 kV was used. Furthermore, CareDose 4D
was used to provide automatic tube current modulation
adapted to the patient anatomy for effective mAs (Siemens
Healthineers AG). The bolus tracking technique with an
ROI placed in the aorta was used to acquire the arterial phase.
Contrast media (1.5 ml/kg) were injected at a flow rate of 2.5–
4.5 ml/s.

Sequence reconstructions

The reconstructions of the virtual non-contrast (VNC) and
isolated ICM sequence were performed in the dual-energy
workflow of Syngo.via VB30 (Siemens Healthineers AG)
employing a three-material mass fraction decomposition algo-
rithm [4], which assumes that each voxel consists of fat, soft
tissue, and iodine. As a result, the algorithm generates a map
that encodes the iodine distribution in each CT voxel (isolated
ICM sequence). In the next step, this distribution can be used
to create VNC images. Both the isolated ICM sequence and
VNC sequence were exported with a slice thickness and dis-
tance of 1.5 mm. Mixed images with a weighting factor of 0.5
with a slice thickness of 1.5 mm were reconstructed as the
target images.

Study design

The collected data contains 85 studies, including CT record-
ings from the abdomen, liver, and thorax during the arterial
enhancement phase. Furthermore, the selected data were ran-
domly split into an 80/20 collective for the training and testing
process. The mean age of patients represented in the data was
66.8, with a standard deviation of 11.2 years. Patient age
ranged from 32 to 83 years; 56% of the patients were men,
and 44% were women. Figure 1 visualizes the distribution of
the CT body regions, patient age, and patient sex for the train-
ing and testing subset. Table 1 illustrates the distribution of
pathologies/findings in the test set.

In general, each study contained two CT image series of
interest: virtual non-contrast and isolated ICM. These allow us
to combine both image types and generate the needed input
images by adjusting the ICM dose to the desired level, as
shown in Fig. 2.

The CT image pairs used for training comprised the input
image, which consisted of a dual-energy CT image reduced by
50% or 80% ICM, and the corresponding target image, which
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contained the original 100% ICM dose. A VNC image was
combined with the reduced isolated ICM image to generate
the input images (Fig. 2). In addition, the target image was
created by combining the full dose isolated ICM image with
the VNC image (Fig. 2). In addition to this standard procedure
for generating the input images, there were two different exper-
imental setups that were slightly different regarding the image
input format. The first input variant 2D received one reduced
ICM CT slice as the input image and predicted the correspond-
ing 100% ICM image. The 2.5D model received three reduced
ICM CT slices as input. Those three slices were mapped to the

different channels of an RGB color image. More precisely, the
slice corresponding to the target was placed on the middle
channel, the previous slice on the first channel, and the subse-
quent slice on the last channel. The hypothesis was that by
including neighborhood information, predictions could be sta-
bilized at the cost of being unable to translate the very first and
very last image slices. The flow of the input data through the
network architecture is visualized in Fig. 3.

The model architecture used in this paper is very similar to
the original Pix2PixHD model [5], a generative adversarial
network for paired image-to-image translation tasks. In the
reference implementation of Pix2PixHD, transposed convolu-
tions are used as an upsampling method [5]. These, however,
tend to generate checkerboard artifacts. Therefore, in order to
reduce the risk of those artifacts, the standard upsampling
method was replaced by the bilinear upsampling followed
by a 3 × 3 convolution, which tends to generate fewer artifacts,
which was shown by Odena et al and Wojna et al [6, 7].

In general, all images were loaded with an unchanged size
of 512 × 512. Depending on the selected input type, the first
convolution layer had between 1 and 3 input channels. In
contrast, only one output channel was defined for each model.
During training, onlymoderate data augmentation, in the form
of horizontal flipping, was used. Additionally, the number of
filters for the first convolutional layer was set to 32 and 64 for
the generator and discriminator. Since neighbor slices contain
very similar information, only every fifth slice of a volume
was used for training in order to reduce training times. Each
model was trained for up to 200 epochs, with weights being
saved every 10 epochs for further analysis. An Adam optimiz-
er was used for optimizing the model [5], with a batch size of
1, the learning rate set to constant 0.002 during the first 100
epochs and then linearly decaying to zero for the last 100
epochs, and a momentum (beta1) of 0.5. In addition, the fea-
ture matching loss weight was set to 10. All other network
hyperparameters were set to the defaults of Pix2PixHD.
Furthermore, for each model configuration, five models were

Table 1 Distribution of pathologies/findings in the test set. Each
examination containing the pathology/finding at least once was counted
as one

Finding/pathology Number of examinations
containing the
finding/pathology

Lung

- Metastasis 2

- Nodule (<8 mm) 7

Liver

- Cyst 7

- Hemangioma 2

- Metastasis 5

- HCC 2

Lymph node metastasis 3

Gastric cancer 2

Bone

- Hemangioma 3

- Metastasis 2

- Bone island 5

Uterine myoma 1

Renal cyst 7

Adrenal adenoma 4

Fig. 1 Distribution of the CT body region (left), age distribution within sex groups (middle), and frequency distribution for sex groups for the training
(blue) and test (red) data (triangle indicates the mean)
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trained with identical data to reduce the randomness in the
performance of a single model. By simply averaging the pre-
dictions of these five models, an ensemble of GANs was cre-
ated that produces empirically better-perceived image quality.

In the reference implementation of Pix2PixHD, input data
is expected to be 8 bits per channel by default [5]. This pre-
requisite was an obstacle for the application within medical
imaging and especially within CT images. Since CT images
were captured in Hounsfield units (HU), the resulting theoret-
ical value range is from −1024 to + 3071 HU for a 12-bit
scanner quantization. Thus, the data loader in Pix2PixHD
was extended to support loading 16-bit PNG images. Before
feeding the images into the networks, the image data were
normalized to a range from −1 to 1. It should be noted that
for the volumes used, the HU range was limited to the theo-
retically possible maximum value range.

Evaluation methods

Four different metrics and scores were used to evaluate the
images generated by the different models. These were the L1
loss or mean absolute error (MAE), the structural similarity
index (SSIM), the peak signal-to-noise ratio (PSNR), and the
Fréchet inception distance (FID) [8]. The L1 loss indicates the
mean absolute pixel difference between the generated and the
target image. A lowL1 value indicates a close approximation of
the target images. In contrast, both the SSIM and the PSNR try
to ensure a less superficial comparison between the generated
and the target image [9]. The PSNR is based on the mean
squared error (MSE)+ and approaches infinity [10]. This means
that a rising PSNR value correlates with higher image quality.

In contrast, the SSIM provides a score based on factors
derived from the human visual system (HVS) [10]. Instead

Reduce ICM dose 
by 50 or 80%

Input Image

Target Image

Virtual Non-Contrast Isolated ICM Reduced Isolated ICM

Fig. 2 Schematic illustration of the generation of the used image pairs (input, target) through the combination of the VNC and the isolated ICM images

Input variants Pix2PixHD Output

Concat

One 
of

Real

Fake

Encoder

Decoder

A

B

Generator

Discriminator

Fig. 3 The schematic network architecture (blue = encoder, red = decoder) and the flow of the input data (2D (A) and 2.5D (B)) through the network,
resulting in the final prediction with the enhanced variant of the input image
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of the classical error summation, each image difference is
expressed by the three factors correlation loss, luminance dis-
tortion, and contrast distortion. An SSIM of 0 represents that
the images have no correlation, whereas an SSIM of 1 means
that the target image is identical to the prediction [9, 10].

Lastly, the FID uses activation vectors extracted from in-
ception networks, which were pre-trained on ImageNet [8].
Therefore, both the real and the generated images are propa-
gated through the network, but instead of using the final clas-
sification layer, the feature maps from the last pooling layer
are used [8]. Subsequently, the mean and the covariance are
calculated for all extracted feature maps of the two image
domains (real and generated). These statistics can then be used
to calculate the Fréchet distance. The lower the FID value, the
better the image quality and similarity [8]. Within this study,
the real CT volume is defined as the target domain, and the
predicted volumes are defined as the source domain. For each
volume pair, we calculated the FID value and used this value
for further analysis. All the named scores and metrics have
specific advantages and disadvantages for evaluating image
similarities, but, combined, they provide an overall impression
of the achieved image quality.

In addition to evaluating the metrics and scores, it is rec-
ommended to examine the generated images from a radiolog-
ical perspective. For this reason, the generated images were
also presented to three professional radiologists with 9, 4, and
3 years of experience using a visual Turing test (VTT) [11,
12]. This test was divided into two subtests: volume and slice.
Within the volume test, artificially generated and non-
artificially generated CT volumes were presented to the radi-
ologists’ side by side. The radiologists’ task was to distinguish
between the two volumes and to select the non-artificially
generated one. This distinction is measured with the real/fake
accuracy, which represents the percentage of cases where the
radiologist selected the non-artificial CT as real. The lower the
real/fake accuracy, the more difficult it is for a radiologist to
distinguish between real and fake. During the slice test, the
radiologists were asked to select the non-artificial slice with-
out the ability to scroll through the complete image stack. The

motivation for this was that Pix2PixHD is by design a two-
dimensional model architecture that contains only very limited
information about the entire body region captured during im-
age acquisition.

For these tests, the volumes and slices were displayed with-
in a DICOM viewer supporting standardized tools such as
windowing, zooming, panning, and scrolling. This test was
intended to determine whether the generated images not only
provide good perceptual results but also withstand radiologi-
cal criteria such as that the images should be diagnostically
equivalent. Therefore, the radiologists were also asked wheth-
er the two slices or volumes were pathologically consistent.
This leads to a second evaluation metric, the so-called patho-
logical consistency, which indicates the number of cases
where the non-artificial and artificial CT slices were patholog-
ical equivalent. Pathological consistency is intended to ensure
that no pathology is visible in one examination that is not
visible in the other. This evaluation metric was used to ex-
clude that pathologies were accidentally inserted or removed.
As opposed to the real/fake accuracy, a low pathological con-
sistency indicates that the artificially created slices or volumes
are not diagnostically equivalent in comparison to the real
slice/volume.

Results

Figure 4 contains the evaluation results of the four ensemble
models, two different input types, and two different ICM re-
duction levels. In addition to themodel results, we calculated a
so-called baseline for both models. The baseline calculation
uses the image slices with ICM dose computationally reduced
by 50% or 80% and compares them to the full ICM dose
image. With this, it is possible not only to compare the
achieved results of the models to the target but also to track
the improvement of the image similarity and quality in com-
parison to the input slice.

For each quantitative analysis score, an image improve-
ment compared to the baseline image could be shown. In

Fig. 4 Scores and metrics for each model type (blue = −80%, red = −50%) as a boxplot. The calculation of the boxplots is based on the single volume
scores from each ensemble model. The triangle within each boxplot symbolizes the mean of the respective input type for the relevant score or metric
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general, the networks that applied a 50% ICM reduction
achieved substantially better image quality than the networks
that applied an 80% ICM reduction.

The −80% models reached a mean SSIM of > 98%,
PSNR of > 48, L1 of between 7.5 and 8, and an FID be-
tween 1.6 and 1.7. In comparison, the −50% models
reached a mean SSIM of > 99%, PSNR of > 51, L1 be-
tween 6.0 and 6.1, and an FID between 0.8 and 0.95.

In addition to this quantitative image analysis, a qualitative
image analysis using the VTT was also performed. The results
of the VTT are listed in Table 2.

In general, the results indicate, as expected, that it is more
difficult for radiologists to distinguish between real and artifi-
cial images if they see only slices rather than a whole volume.
However, the results of the VTT showed substantial differ-
ences between the 50 and 80% ICM reduction networks on
the one hand and between the 2D and 2.5D networks on the
other. Overall, the results of the networks with an 80% reduc-
tion were not satisfactory. On the one hand, these were easily
identified by the radiologists as artificial due to artifacts, and,
on the other hand, they did not show an excellent pathological
consistency with the 100% ICM images (volume: 23%, 55%,

Table 2 Results of the VTTwith three radiologists (A, B, C) for the different ICM reduction levels, models, and the slice/volumewise evaluation. Each
model configuration is evaluated based on the real/fake accuracy and pathological consistency for single slices and complete volumes

Volume Slice

ICM reduction Models Real/fake accuracy Pathological consistency Real/fake accuracy Pathological consistency

A B C A B C A B C A B C

−80% 2D 100% 59% 100% 23% 55% 32% 88% 90% 76% 85% 80% 90%

2.5D 100% 100% 100% 27% 45% 45% 90% 88% 82% 92% 81% 90%

−50% 2D 95% 91% 95% 100% 100% 100% 69% 80% 62% 99% 98% 100%

2.5D 73% 77% 91% 100% 100% 91% 55% 77% 64% 100% 100% 100%

Input Target Prediction Difference Input Target Prediction Difference 

Fig. 5 50% 2.5D ICM reduction network. Comparison of input, target,
prediction, and difference image used and generated by the 2.5D model
(−50%). The diffmap indicates the difference in HU between the target

and the output images. The red regions indicate that the model predicted a
lower ICM intensity (−50 HU) for a specific region, whereas blue regions
indicate a higher ICM intensity (+50 HU) prediction for a region
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32%; slice: 85%, 80%, 90%). In contrast, the 50% reduction
networks showed satisfactory results. These networks
achieved 100% pathological consistency in the median both
as 2D and as 2.5D networks in the volume analysis. Overall,
however, the 2.5D networks were clearly more difficult to
identify by the radiologists in the volume analysis than the
2D networks (95%, 91%, 95% vs. 73%, 77%, 91%).

In addition to the presented results, Figs. 5 and 6 provide a
visual overview of the models’ performance on selected CT
slices.

Discussion

In the present study, we trained generative adversarial net-
works to enhance ICM-induced image contrasts selectively
and validated the results using dual-energy CTs in which a
50% or 80% reduced ICM dose was simulated via the propor-
tional subtraction of the calculated iodine maps. To evaluate
the network’s efficiency, we measured various quantitative
parameters (L1 loss, SSIM, PSNR, FID) and performed a
VTT with three radiologists.

Overall, our results show that the virtual enhancement of
ICM is not only possible but also reached degrees in terms of
quality; the generated CTs were pathological equivalent to the
original ones. In general, the networks based on 2.5D per-
formed slightly better in all quantitative evaluation parame-
ters. However, in the volume-based VTT, they performed
much better than 2D networks. This could be because
scrolling through a volume created by the 2.5D network using
the anatomical information creates a more natural flow than
the 2D network. Furthermore, artifacts created by a 2D net-
work may be more apparent in 3D data. However, the ICM
dose was a much more relevant parameter.

All in all, the networks with 50% ICM dose reduction
performed considerably better than those with 80% ICM dose
reduction. This led to a median 100% consistency of pathol-
ogies in our test data of those images created by a network
which inserts 50% ICM. This result is especially important
regarding the possible insertion of pathologies described in
the literature on unpaired image-to-image conversion [13].
Therefore, we conclude that a 50% ICM reduction is feasible
and safe using GAN-based image-to-image translation.
Overall, our results fit well into the recent literature, which
has described the versatile possibilities of GANs for image

Input Target Prediction Difference Input Target Prediction Difference 

Fig. 6 80% 2.5D ICM reduction Network. Comparison of input, target,
prediction, and difference image used and generated by the 2.5D model
(−80%). The diffmap indicates the difference in HU between the target

and the output images. The red regions indicate that the model predicted a
lower ICM intensity (−50 HU) for a specific region, whereas blue regions
indicate a higher ICM intensity (+50 HU) prediction for a region
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processing, for example, in the insertion of contrast media in
brain MRIs [14]. Further studies have shown that GANs are
suitable as an alternative reconstruction algorithm to remove
artifacts and reduce image noise in low-dose CT [15, 16].

As an alternative to our approach, the amount of contrast
medium required on CT can be significantly reduced by using
low-voltage technology. This technique enables to reduce the
amount of ICM to a similar extent as with our approach [17,
18]. On the downside, the image noise is increased when
using low-voltage CT [19]. This is especially important for
bariatric patients for whom it is recommended to increase the
tube voltage in order to reduce image noise [20]. This includes
about 34% of all Americans [21] and is expected to increase to
42–51% of all Americans by 2030 [22].

In contrast, our method is not dependent on patient weight
and can be implemented relatively easily and hardware-
independently using post-processing. Furthermore, our ap-
proach may be used synergistically with low-voltage CT to
even further reduce the dose of ICM. However, this needs to
be verified by us in subsequent studies.

For the qualitative analysis of GANs within the field of
medical imaging, the VTT is a widely used evaluation method
for image quality through professionals [11, 12, 23]. For the
setup within this study, a side-by-side approach was used to
combine the real/fake selection with the question of patholog-
ical consistency. Within future studies, it would be worth also
considering to conduct a fully blinded test scenario.

The most important limitation of our study is that, for eth-
ical reasons, we were not able to conduct true double exami-
nations with and without ICM dose reduction. Our
workaround was to virtually reduce the ICM dose by calcu-
lating iodine maps from dual-energy CT examinations. While
the low ICM dose studies calculated in this way looked very
convincing to human radiologists, at this point, we cannot say
with certainty that our GAN-based approach would also work
in real ICM dose reduction regimes. Therefore, our next step is
to reproduce our results first in a phantom and then in an
animal model. Further limitations within this study are the
used ICM reduction levels of 50% and 80%. Within further
studies, it should be tested if there are other reduction levels
that could reproduce or even reach better results within the
reduction level range of 50 to 80%. In addition, it should be
tested whether the perfect degree of reduction is dependent on
the examined body region. Another limitation is the number of
enrolled patients. Although this problem was addressed by
internal cross-validation and multiple repetitions of the exper-
iment, external validation including different scanner models
and acquisition protocols and recruitment of larger multi-
center patient cohorts should be the focus of future studies to
demonstrate the true potential for contrast media insertion in
CT and to validate it for clinical use.

In summary, it can be said that a GAN-based approach for
subsequent selective contrast enhancement in CT

examinations with virtual ICM dose reduction works excel-
lently. However, future systematic phantom and animal stud-
ies still have to prove that this procedure also works with a real
ICM dose reduction and which dose reductions can ultimately
be achieved in clinical routine.
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