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Introduction

Breast cancer (BC) is the most frequently occurring cancer 
in women and a leading cause of cancer-related deaths (1).  
Surgeries for BC inevitably cause complications, such 
as postoperative scar tissue formation, limited range of 

motion of the upper limbs, and lymphatic circulation 
blockade-induced swelling in the upper limbs (2). Since BC 
metastasizes first to axillary lymph nodes (ALNs), axillary 
lymph node metastasis (ALNM) is the earliest detectable 
clinical manifestation of BC when distant metastases are 
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present (3). Therefore, the accurate determination of the 
ALN status is vital for the clinical management of BC 
patients (4). Sentinel lymph nodes (SLNs) are the first 
draining lymph nodes for primary cancers. Therefore, the 
use of sentinel lymph node dissection (SLND) is clinically 
recommended to predict the ALN status in BC patients, 
particularly in patients with clinically negative lymph  
nodes (5). However, ALND is detrimental for patients due 
to its persistent side effects, including lymphedema and 
shoulder movement restriction (6). Accordingly, BC therapy 
is in transition to minimal axillary surgery, even in presence 
of SLN involvement (7). Of note, the Z0011 experiment 
demonstrated that the overall survival rate of clinical T1/
T2 BC patients with two or fewer SLN metastases was not 
lower after SLND alone than after ALND (8). The results 
of several randomized trials have shown that the short- and 
long-term morbidity of ALND decreases in patients with 
negative ALNs, which improves the quality of life of patients 
(6,9). In addition, clinicians have observed that up to 70% 
of patients with early BC do not develop ALNM (10).  
Consequently, some types of axillary surgery can be 
considered, to some extent, a very significant overtreatment (5).  
As a result, the identification of the lymph node status 
should be the first step in BC management, not immediate 
surgical treatment (11).

Ultrasound has been widely used for the diagnosis 
of breast diseases. When breast malignancy is highly 
suspected, axillary ultrasound is preferred for examining 
the preoperative ALN status, which is an important 
prognostic factor for early BC (12). Axillary ultrasound 
can also identify the ALN status based on changes in 
morphology, cortical thickness, and internal echogenicity 
(13,14). As an essential screening method for breast lesions, 
ultrasound imaging vividly reflects the shape, growth 
direction, margins, and other features of tumors according 
to the Breast Imaging Reporting and Data System (15). 
In some studies, the ALN status was predicted based 
on the ultrasound image characteristics of lesions, such 
as quadrants, lesion size, boundary, and internal blood 
supply (2,7,13). Additionally, a prior study predicted the 
ALN status based on clinicopathological data, including 
lymph vascular infiltration, Ki-67 proliferation index, 
and hormone receptors (16). In several previous studies, 
models were constructed based on axillary ultrasound, 
ultrasound features of lesions, clinicopathological data, 
or a combination of these data for predicting the axillary 
lymphatic status and presented with the area under the 
receiver-operating characteristic curve (AUC) of 0.585–0.74, 

which was not ideal (2,16,17). In conclusion, understanding 
the preoperative ALN status is crucial for the selection of 
the suitable axillary treatment option (18).

Radiomics and deep learning radiomics have emerged 
as research hotspots, although there are many challenges 
in the deep learning of breast imaging and very few work 
has been landed to clinical trials (19). Radiomics can 
automatically extract numerous quantitative image features 
from medical images that are frequently imperceptible 
to the naked eye (20). In detail, this method uses specific 
advanced software to extract high-dimensional information, 
such as shape, intensity, and texture features, from medical 
images and then utilizes specific algorithms to label the 
characteristics of tumors (21). Of note, this study used deep 
learning radiomics to construct a model for predicting 
ALNM. Deep learning radiomics is a newly developed 
method that automatically extracts features in the hidden 
layer of a neural network from imaging data, thus obtaining 
quantitative and high-throughput features from medical 
images such as computed tomography, magnetic resonance 
imaging, and ultrasound through supervised learning  
(20-22). Different from the prediction model constructed 
with related clinical data, radiomics and deep learning 
radiomics combined with clinical parameters can integrate 
clinical information and network features to provide 
complementary information for image features. Prior 
research has unveiled that the model can be constructed 
with ultrasonic image features and clinical information, 
which improves the performance of the prediction model 
(23,24). Accordingly, it is reasonable to hypothesize that 
deep learning radiomics and radiomics can extract more 
quantitative characteristic information from ultrasound 
images of breast malignant lesions and can be combined 
with relevant clinical parameters to generate a combined 
prediction model for better prediction and stratification of 
ALNs.

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the First Affiliated 
Hospital of Wannan Medical College (Yijishan Hospital 
of Wannan Medical College), and informed consent was 
obtained from patients for the collection of clinical data. 
In this study, we retrospectively collected and analyzed the 
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data of female patients with solitary BC who underwent 
mastectomy and ALND in the First Affiliated Hospital of 
Wannan Medical College (Yijishan Hospital of Wannan 
Medical College) from January 2012 to June 2021. The 
inclusion criteria were as follows: (I) patients diagnosed 
with a malignant tumor of the breast based on pathological 
findings; (II) patients who had undergone ALND; (III) 
patients with complete and detailed measurements and 
images within 1 month before surgery; (IV) patients 
pathologically diagnosed with a single lesion that had 
a maximum transversal of less than or equal to 5 cm on 
ultrasound. The exclusion criteria were listed below: (I) 
patients pathologically diagnosed with multiple foci; (II) 
patients with a history of neoadjuvant chemotherapy; (III) 
patients without detailed ultrasound reports or complete 
image information, such as inability to confirm infiltration 
of the interstitial adipose tissue violation; (IV) patients 
with incomplete clinical data and immunohistochemistry 
and pathology results. Patients who were confirmed to 
have positive axillary nodes by ultrasound were included in 
the study. In addition, the patients in the training and test 
cohorts were stratified and matched according to clinical 
node status.

The clinical data, ultrasound images, and pathological 
findings of these patients were collected. Surgical specimens 
were obtained for the immunohistochemistry detection of 
estrogen receptor, progesterone receptor, human epidermal 
growth factor receptor-2, and Ki-67, as well as pathological 
analysis.

Ultrasound instruments and ultrasound image 
information acquisition

All patients underwent ultrasound examinations in our 
outpatient or inpatient ultrasound medicine department 
with an Esaote Mylab Twice (Esaote, Genova, Italy) color 
Doppler ultrasound instrument equipped with a 4–13 MHz 
linear array transducer, as well as a Siemens S2000 color 
Doppler ultrasound instrument (Siemens, Concord, CA, 
USA) equipped with a 4–9 MHz linear array transducer.

Breast Imaging Reporting and Data System-based feature 
extraction and axillary ultrasound findings

All ultrasound images were analyzed based on the Breast 
Imaging Reporting and Data System and with reference 
to the Adler blood flow classification. The image database 
included two-dimensional ultrasound images, color Doppler 

images of lesions, and internal blood flow grading of 
lesions. All images were reviewed by two senior radiologists 
(HF and TW, both with 12 years of experience in breast 
ultrasound) in a double-blind way. Images were imported 
into the database if both radiologists agreed. If there was 
disagreement between the two radiologists, a consensus 
was negotiated, and then images were imported into the 
database. If they still disagreed with the image analysis 
during evaluation, another radiologist (FJ, with 28 years 
of breast ultrasound experience) reviewed the image and 
entered it into a database. ALN ultrasound was conducted 
in this study. Lymph nodes were classified as positive ALNs 
in the presence of the following sonographic signs: a cortical 
thickness greater than 3 mm, a long/short diameter less 
than 2, a cortical/medullary thickness greater than 1, partial 
or complete loss of the lymphatic gate, complete or partial 
replacement of the lymph node, and microcalcifications 
of the lymph node. Before the start of the study, HF and 
TW attended centralized training in the standardized 
assessment of BC and ALN ultrasound images. All of the 
image information researchers in this study were blinded 
to the pathological findings of the patients. All relevant 
data were input into the database by the first author herself. 
Pathology labels were used to indicate the presence or 
absence of metastasis in the pathology after ALND. In cases 
of two classifications, a label of 0 indicated no metastasis, 
while a label of 1 indicated the presence of metastasis. In 
cases of multiple classifications, a label of 0 represented no 
transfer, a label of 1 marked low-load transfer, and a label of 
2 suggested heavy-load transfer.

Related clinical data

The clinical data of patients were obtained, including 
basic clinical data (age, tumor size, location, and 
detailed ultrasound features) and pathological results 
(the pathological tissue types of the tumor and the 
main immunohistochemistry results). In addition, the 
histopathological findings of SLND and ALND were 
recorded, including the total number of resected ALNs and 
lymph node metastasis. Thereafter, a machine algorithm 
was used to select the optimal model where clinical data 
could predict ALNM. The characteristics including age 
and tumor size were introduced to explore the effects 
of clinical data on the prediction of ALNs. The specific 
statistical analysis is displayed in Table 1. Additionally, Pearson 
correlation among features was calculated, and the results 
showed that our clinical features were less correlated (Figure 1).
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Table 1 Characteristics of clinical parameters in the training, validation, and independent test cohorts

Feature name
Test Training Validation

All Label =0 Label =1 P All Label =0 Label =1 P All Label =0 Label =1 P

Age, year 52.7±10.0 52.8±9.8 52.3±10.9 0.782 52.60±10.16 53.19±10.64 51.87±9.51 0.108 52.86±9.38 52.65±9.64 54.32±7.17 0.406

Size, mm 23.4±8.7 21.8±7.7 28.8±10.0 <0.001 23.71±8.86 22.15±8.40 25.65±9.02 <0.001 23.71±9.33 22.28±8.55 34.08±8.24 <0.001

The axillary US <0.001 <0.001 <0.001

Negative 139 (0.67) 125 (0.78) 14 (0.30) 386 (0.62) 272 (0.80) 114 (0.41) 154 (0.74) 146 (0.80) 8 (0.32)

Positive 69 (0.33) 36 (0.23) 33 (0.70) 235 (0.38) 72 (0.20) 163 (0.59) 53 (0.26) 36 (0.20) 17 (0.68)

ISAT 0.003 <0.001 <0.001

Negative 78 (0.38) 69 (0.43) 9 (0.19) 231 (0.37) 160 (0.47) 71 (0.26) 111 (0.54) 107 (0.59) 4 (0.16)

Positive 130 (0.63) 92 (0.57) 38 (0.81) 390 (0.63) 184 (0.53) 206 (0.74) 96 (0.46) 75 (0.41) 21 (0.84)

IIAT 0.003 <0.001 <0.001

Negative 181 (0.87) 146 (0.91) 35 (0.74) 506 (0.81) 305 (0.89) 201 (0.73) 175 (0.85) 161 (0.88) 14 (0.56)

Positive 27 (0.13) 15 (0.09) 12 (0.26) 115 (0.19) 39 (0.11) 76 (0.27) 32 (0.15) 21 (0.12) 11 (0.44)

Echo halo <0.001 <0.001 <0.001

Negative 116 (0.56) 102 (0.63) 14 (0.30) 296 (0.48) 203 (0.59) 93 (0.34) 115 (0.56) 109 (0.60) 6 (0.24)

Positive 92 (0.44) 59 (0.37) 33 (0.70) 325 (0.52) 141 (0.41) 184 (0.66) 92 (0.44) 73 (0.40) 19 (0.76)

Laterality 0.732 0.976 0.214

Left 124 (0.60) 97 (0.60) 27 (0.57) 321 (0.52) 178 (0.52) 143 (0.52) 107 (0.52) 97 (0.53) 10 (0.40)

Right 84 (0.40) 64 (0.40) 20 (0.43) 300 (0.48) 166 (0.48) 134 (0.48) 100 (0.48) 85 (0.47) 15 (0.60)

Quadrants 0.288 0.002 0.337

Outer upper 116 (0.56) 90 (0.56) 26 (0.55) 330 (0.53) 160 (0.47) 170 (0.61) 108 (0.52) 91 (0.50) 17 (0.68)

Outer lower 27 (0.13) 16 (0.10) 11 (0.23) 79 (0.13) 50 (0.15) 29 (0.10) 27 (0.13) 26 (0.14) 1 (0.04)

Inner lower 8 (0.04) 6 (0.04) 2 (0.04) 34 (0.05) 24 (0.07) 10 (0.04) 9 (0.04) 9 (0.05) Null

Inner upper 51 (0.25) 45 (0.28) 6 (0.13) 157 (0.25) 97 (0.28) 60 (0.22) 54 (0.26) 48 (0.26) 6 (0.24)

Central 6 (0.03) 4 (0.02) 2 (0.04) 21 (0.03) 13 (0.04) 8 (0.03) 9 (0.04) 8 (0.04) 1 (0.04)

Shape 0.189 0.0150 0.091

Regular 19 (0.09) 17 (0.11) 2 (0.04) 47 (0.08) 34 (0.10) 13 (0.05) 19 (0.09) 19 (0.10) Null

Irregular 189 (0.91) 144 (0.89) 45 (0.96) 574 (0.92) 310 (0.90) 264 (0.95) 188 (0.91) 163 (0.90) 25 (1.00)

Orientation 0.387 0.399 0.597

Horizontal 135 (0.65) 107 (0.67) 28 (0.60) 388 (0.62) 220 (0.64) 168 (0.61) 148 (0.72) 129 (0.71) 19 (0.76)

Vertical 73 (0.35) 54 (0.34) 19 (0.40) 233 (0.38) 124 (0.36) 109 (0.39) 59 (0.29) 53 (0.29) 6 (0.24)

Margin 0.189 0.007 0.112

Circumscribed 19 (0.09) 17 (0.11) 2 (0.04) 55 (0.09) 40 (0.12) 15 (0.05) 17 (0.08) 17 (0.09) Null

Not circumscribed 189 (0.91) 144 (0.89) 45 (0.96) 566 (0.91) 304 (0.88) 262 (0.95) 190 (0.92) 165 (0.90) 25 (1.00)

Echo pattern 0.978 0.277 0.258

Complex 9 (0.04) 7 (0.04) 2 (0.04) 16 (0.03) 11 (0.03) 5 (0.02) 9 (0.04) 9 (0.05) Null

Hypoechoic 199 (0.96) 154 (0.96) 45 (0.96) 605 (0.97) 333 (0.97) 272 (0.98) 198 (0.96) 173 (0.95) 25 (1.00)

Table 1 (continued)
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Table 1 (continued)

Feature name
Test Training Validation

All Label =0 Label =1 P All Label =0 Label =1 P All Label =0 Label =1 P

Posterior acoustic 
feature

0.43 0.08 0.01

No change 121 (0.58) 94 (0.58) 27 (0.57) 356 (0.57) 204 (0.59) 152 (0.55) 137 (0.66) 124 (0.68) 13 (0.52)

Enhance 41 (0.20) 35 (0.22) 6 (0.13) 101 (0.16) 61 (0.18) 40 (0.14) 30 (0.14) 29 (0.16) 1 (0.04)

Shadow 46 (0.22) 32 (0.20) 14 (0.30) 164 (0.26) 79 (0.23) 85 (0.31) 40 (0.19) 29 (0.16) 11 (0.44)

Calcification 0.013 0.002 0.272

No calcification 97 (0.47) 83 (0.52) 14 (0.30) 291 (0.47) 179 (0.52) 112 (0.40) 102 (0.49) 92 (0.51) 10 (0.4000)

Macrocalcification 4 (0.02) 2 (0.01) 2 (0.04) 19 (0.03) 13 (0.04) 6 (0.02) 4 (0.02) 4 (0.02) Null

Microcalcification 107 (0.51) 76 (0.47) 31 (0.66) 311 (0.50) 152 (0.44) 159 (0.57) 101 (0.49) 86 (0.47) 15 (0.60)

Vascularity <0.001 <0.001 0.003

No flow 48 (0.23) 43 (0.27) 5 (0.11) 135 (0.22) 93 (0.27) 42 (0.15) 58 (0.28) 55 (0.30) 3 (0.12)

Alder I 58 (0.28) 47 (0.30) 11 (0.23) 129 (0.21) 82 (0.24) 47 (0.17) 35 (0.17) 31 (0.17) 4 (0.16)

Alder II 57 (0.27) 45 (0.28) 12 (0.26) 188 (0.30) 116 (0.34) 72 (0.26) 73 (0.35) 67 (0.37) 6 (0.24)

Alder III 45 (0.22) 26 (0.16) 19 (0.40) 169 (0.27) 53 (0.15) 116 (0.42) 41 (0.20) 29 (0.16) 12 (0.48)

ER 0.469 0.820 0.480

− 68 (0.33) 54 (0.34) 14 (0.30) 186 (0.30) 105 (0.31) 81 (0.30) 53 (0.26) 47 (0.26) 6 (0.24)

+ 16 (0.08) 15 (0.09) 1 (0.02) 44 (0.07) 23 (0.07) 21 (0.08) 22 (0.11) 20 (0.11) 2 (0.08)

++ 33 (0.16) 22 (0.14) 11 (0.23) 81 (0.13) 38 (0.11) 43 (0.16) 15 (0.07) 15 (0.08) Null

++++ 91 (0.44) 70 (0.43) 21 (0.45) 310 (0.50) 178 (0.52) 132 (0.48) 117 (0.57) 100 (0.55) 17 (0.68)

PR 0.138 0.591 0.133

− 83 (0.40) 68 (0.42) 15 (0.32) 241 (0.39) 134 (0.39) 107 (0.39) 74 (0.36) 67 (0.37) 7 (0.28)

+ 15 (0.07) 12 (0.07) 3 (0.06) 64 (0.10) 32 (0.09) 32 (0.12) 16 (0.08) 15 (0.08) 1 (0.04)

++ 35 (0.17) 27 (0.17) 8 (0.17) 91 (0.15) 47 (0.14) 44 (0.16) 31 (0.15) 29 (0.16) 2 (0.08)

+++ 75 (0.36) 54 (0.34) 21 (0.45) 225 (0.36) 131 (0.38) 94 (0.34) 86 (0.41) 71 (0.39) 15 (0.60)

HER-2 0.092 0.015 0.497

− 30 (0.14) 25 (0.16) 5 (0.11) 124 (0.20) 79 (0.23) 45 (0.16) 52 (0.25) 45 (0.25) 7 (0.28)

+ 71 (0.34) 59 (0.37) 12 (0.26) 210 (0.34) 120 (0.35) 90 (0.32) 62 (0.30) 59 (0.32) 3 (0.12)

++ 53 (0.26) 38 (0.24) 15 (0.32) 132 (0.21) 67 (0.19) 65 (0.23) 47 (0.23) 38 (0.21) 9 (0.36)

+++ 54 (0.26) 39 (0.24) 15 (0.32) 155 (0.25) 78 (0.23) 77 (0.28) 46 (0.22) 40 (0.22) 6 (0.24)

Ki-67 0.113 0.279 0.343

Negative 49 (0.24) 42 (0.26) 7 (0.15) 145 (0.23) 86 (0.25) 59 (0.21) 58 (0.28) 53 (0.29) 5 (0.20)

Positive 159 (0.76) 119 (0.74) 40 (0.85) 476 (0.77) 258 (0.75) 218 (0.79) 149 (0.72) 129 (0.71) 20 (0.80)

Pathology results 0.049 0.010 0.077

Ductal carcinoma 182 (0.88) 137 (0.85) 45 (0.96) 547 (0.88) 293 (0.85) 254 (0.92) 170 (0.82) 147 (0.81) 23 (0.92)

Lobular carcinoma 8 (0.04) 7 (0.04) 1 (0.02) 19 (0.03) 12 (0.03) 7 (0.03) 10 (0.05) 8 (0.04) 2 (0.08)

Others 18 (0.09) 17 (0.11) 1 (0.02) 55 (0.09) 39 (0.11) 16 (0.06) 27 (0.13) 27 (0.15) Null

Label =0, lymph node dissection is negative, label =1: lymph node dissection is positive; data are presented as mean ± standard deviation or number 
(frequency). The staining intensity grading for pathological samples is as follows: ‘+’, ‘++’, ‘+++’. Ki-67: negative: <14%, positive: ≥14%. US, ultrasound; ISAT, 
infiltration of subcutaneous adipose tissue; IIAT, infiltration of the interstitial adipose tissue; ER, estrogen receptor; PR, progesterone receptor; HER-2, human 
epidermal growth factor receptor 2. 
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Intensity normalization

Our study was performed under variable imaging conditions 
of different machines. Therefore, the pixel value range of 
medical images varied considerably. In this context, all pixel 
values in each image were sorted and the intensity of each 
image was truncated to a range of 0.5 to 99.5 percentage 
points to minimize the side effects of pixel outliers. 
Subsequently, images were analyzed and features were 
extracted.

Hand-crafted features and feature selection

Hand-crafted features generally are categorized into three 
types, including geometric features (23 features, describing 
the third-order morphological characteristics), intensity 
features (340 features, representing the first-order statistical 
distribution of voxel intensity), and texture features (1,040 
features, describing the pattern or second-order and higher-
order spatial distribution of intensity). In our study, five 
texture features were extracted with software, including 
Gray Level Co-occurrence Matrix (GLCM), Gray Level 
Run Length Matrix (GLRLM), Gray Level Size Zone 
Matrix (GLSZM), Neighbouring Gray Tone Difference 
Matrix (NGTDM), and Gray Level Dependence Matrix 
(GLDM). A total of 1,403 hand-crafted features were 

extracted with Pyradiomics software (http://pyradiomics.
readthedocs.io) for further statistical analysis.

For highly repetitive features, the correlation between 
features was analyzed with the Spearman’s rank correlation 
coefficient, and one of the two features with a correlation 
coefficient greater than 0.9 was retained. To retain the 
capability of depicting features to the greatest extent, 
features were filtered with a greedy recursive deletion 
strategy, that is, the feature with the largest redundancy was 
removed from the current set each time.

Radiomic feature selection

All feature lines were standardized with the z-score 
standardization method. Next, features with nonzero 
coefficients were selected from the training cohort with the 
least absolute shrinkage and selection operator (LASSO) 
logistic regression algorithm combined with penalty 
parameter tuning that was conducted through 10-fold cross-
validation. The selected features were weighted by their 
respective coefficients and linearly combined to generate a 
radiomics signature.

Deep transfer learning model and feature compression

Resnet50, resnet101, inception_v3, and vgg19 were chosen 

Figure 1 The covariance of each feature. US, ultrasound; ISAT, infiltration of subcutaneous adipose tissue; IIAT, infiltration of the 
interstitial adipose tissue; PR, progesterone receptor; HER-2, human epidermal growth factor receptor 2.
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as convolutional neural network models which were pre-
trained in the ImageNet Large Scale Visual Recognition 
Challenge-2012 dataset. Images of the largest tumor were 
captured to represent each patient. Then, the grayscale 
values were normalized to the range [−1, 1] with min-max 
transformation. Next, each cropped subregion image was 
resized to 224×224, except for the inception model, which 
was set to 299×299 with the nearest interpolation.

The image of the largest cross-section of the lesion 
was used as the model input. Since the dimension of deep 
learning features was 2,048, their dimension was reduced 
by principal component analysis to maintain the balance 
among features. The dimension of deep learning was 
reduced to 128 to improve the generalization ability of the 
model and decrease the risk of overfitting.

Deep learning radiomic signature

A deep learning radiomic signature was constructed based 
on the selected clinical features, radiomic features, and 
128 compressed deep transfer learning features. The same 

pipeline was followed up as the radiomics signature or deep 
transfer learning signature.

After features were screened with the LASSO analysis, 
a risk model was constructed by inputting the final features 
into the machine learning models to obtain the final deep 
learning radiomic signature. Support vector machine 
or linear regression was chosen during the construction 
of the final signature based on their performance in the 
test cohort. Figure 2 shows the workflow of deep transfer 
learning and radiomics combined with clinical parameters 
used in this study. Deep learning models were retrained, 
with 1,000 epochs for each model. Figure S1 of loss and 
accuracy curve in the supplementary material illustrate the 
training process.

Statistical analysis

With ALND as the reference standard, the ALN status 
was classified into three groups, including no ALNM (N0), 
low-load ALNM [N + (1–2)], and heavy-load ALNM 
with ≥3 positive nodes [N + (≥3)]. The t-test or Mann-

Figure 2 The overall thinking process of this research model. The Inception_v3 model was found to be the best model after multiple model 
pre-training. The input image was encoded as the feature parameters combined with clinical and RAD to construct the joint mode. ROI, 
region of interest; LASSO, least absolute shrinkage and selection operator; PCA, Principal Component Analysis; SVM, support vector 
machine, ROC, receiver operating characteristic curve; DCA, Decision Curve Analysis; RAD, radiomics.
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Whitney U test was used to compare the detailed basic 
clinical data and pathological data between the N0 and N+ 
(≥1) groups. The AUC of participants and their related 
characteristics, such as accuracy, sensitivity, specificity, 
positive predictive value, and negative predictive value, were 
utilized to evaluate the classification of axillary ultrasound, 
image-based radiomics, deep learning radiomics, clinical 
information, and combined diagnostic models with the 
model (Supplementary material—Appendix 1). The 
thresholds of sensitivity, specificity, positive predictive 
value, and negative predictive value were determined by the 
Youden index. Moreover, the AUC and these characteristics 
were compared with Delong’s test or other Hanley and 
McNeil methods. Decision Curve Analysis was also used 
to assess the predictive accuracy of the model. The fit of 
the model was evaluated with the calibration curves. In the 
clinical data, all cases were assigned into three groups, and 
P values less than 0.1 were used for further analysis. All 
statistics were two-sided, and a difference with P<0.05 was 
considered statistically significant. All statistical analyses 
were performed with Python 3.7.

Results

Baseline characteristics

A total of 5,321 women were enrolled in this study, among 
which 1,738 patients were diagnosed with BC after surgery. 
After careful screening according to our inclusion and 
exclusion criteria, 892 women were finally included, who 
were aged from 23 to 81 years (a mean age of 53 years), and 
892 breast tumors were analyzed (their diameter ranged from 
7 to 50 mm, with a mean diameter of 23.6 mm). Figure 3  
exhibits the workflow for patient recruitment.

Selection of the deep learning radiomic model

The included patients were randomly classified into 
training and independent test cohorts at a ratio of 4:1, and 
the model parameters were optimized based on the training 
cohort. The training, validation, and test cohorts were 
matched in terms of clinicopathologic variables, including 
nodal stage. Specifically, 20% of training samples were 
selected for hyperparameter tuning. Finally, it was found 

Figure 3 Patient recruitment process. A total of 892 breast cancer cases out of 5,321 patients were included in the study strictly according to 
screening criteria. All patients underwent routine ultrasound examination and the images of lesions met the study criteria. The clinical data 
required for this study are complete. ALND, axillary lymph node dissection.

From January 2012 to June 2021, 5,321 
patients were suspected of breast malignant 

tumor by ultrasound examination in our hospital

1,738 cases were surgically resected and 
pathologically proved to be malignant breast 

tumors
416 patients excluded

• 13 cases bilateral breast cancer 
• 33 cases postoperative pathology confirmed 

multiple lesions
• 281 underwent preoperative radiotherapy, 

chemotherapy or neoadjuvant chemotherapy
• 89 No ALND

1,322 patients with 1,322 breast lesions

892 patients with 892 malignant breast lesions

430 patients excluded
• 97 No detailed pathological and pathological 

chemical results 
• 212 Ultrasound image quality and clinical 

information were incomplete
• 121 Ultrasound measurement of the lesion 

was greater than 5 cm
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that the optimal hyperparameters were as follows: stochastic 
gradient descent optimizer, an initial learning rate of 0.001, 
and a batch size of 32. The results revealed that inception_
v3 outperformed other deep learning models (Table 2).

Prediction of ALNs in the no ALNM (N0) and low-load 
ALNM [N + (1–2)] groups

With N0 as the negative reference standard, patients were 
randomly arranged into three groups, including training 
(535 lesions), validation (178 lesions), and test (179 lesions) 
cohorts, at a ratio of 6:2:2. The detailed characteristics of 
patients, including age, tumor size, lateral position, and echo 
aperture, were analyzed. The evaluation results of axillary 
ultrasound by experienced radiologists demonstrated that 
the AUC of axillary ultrasound was 0.783 (95% confidence 
interval: 0.748–0.817) in the training cohort and 0.790 (95% 
confidence interval: 0.718–0.861) in the test cohort.

In the training cohort, the AUC was the highest 
(0.948) for deep learning radiomics combined with clinical 
parameters and traditional radiomics and was 0.746, 
0.786, and 0.893 for deep learning radiomics, traditional 
radiomics, and clinicopathological data, respectively. The 
AUC for the prediction of ALNM was slightly lower in 

the test cohort than in the training cohort. Specifically, the 
AUC of deep learning radiomics combined with clinical 
parameters and traditional radiomics was the highest 
(0.920) in the test cohort, while the AUC of deep learning 
radiomics, radiomics, and clinicopathological data were 
0.717, 0.755, and 0.884, respectively. Detailed statistical 
results are summarized and the corresponding receiver-
operating characteristic curves are shown in Figure 4. The 
prediction results of deep learning radiomics only based on 
ultrasound images were lower than those of the combined 
model of clinical parameters, deep learning radiomics, and 
radiomics, with a statistically significant difference (P=0.01). 
The prediction results of radiomics and clinical parameters 
were lower than those of the combined model, without a 
statistically significant difference (P=0.3644 and P=0.122) 
(Table 3). 

Prediction of ALNS in the low-load ALNM [N + (1–2)] 
and heavy-load ALNM with ≥3 positive nodes [N + (≥3)] 
groups

In this experiment, with N + (1–2) as the negative reference 
standard, 206 lesions were randomly selected as the training 
cohort, and 47 lesions as the independent test cohort. 

Table 2 Comparison results of performance of different deep learning models 

Model Cohort Acc AUC 95% CI Sensitivity Specificity PPV NPV

Inception_v3 Training 0.730290 0.749599 0.6967–0.8024 0.707547 0.730667 0.428571 0.891720

Validation 0.726708 0.731170 0.6327–0.8297 0.600000 0.769231 0.354167 0.884956

Test 0.725000 0.716721 0.6109–0.8226 0.714286 0.740458 0.357143 0.923077

Resnet101 Training 0.726141 0.647468 0.5869–0.7081 0.452830 0.808511 0.393443 0.838889

Validation 0.720497 0.641349 0.5311–0.7516 0.500000 0.801527 0.333333 0.870690

Test 0.768750 0.697781 0.5921–0.8035 0.571429 0.803030 0.378378 0.886179

Resnet50 Training 0.757261 0.673763 0.6114–0.7361 0.481132 0.837766 0.451327 0.850949

Validation 0.782609 0.735751 0.6342–0.8373 0.600000 0.838462 0.439024 0.900000

Test 0.725000 0.696158 0.5870–0.8053 0.714286 0.674242 0.333333 0.892857

Vgg19 Training 0.759336 0.619606 0.5564–0.6828 0.471698 0.745989 0.307692 0.785088

Validation 0.807453 0.609924 0.4880–0.7318 0.700000 0.584615 0.454545 0.833333

Test 0.837500 0.583063 0.4508–0.7153 0.714286 0.492424 0.625000 0.848684

Wide_resnet50_v2 Training 0.757261 0.666964 0.6028–0.7311 0.528302 0.781915 0.447619 0.843501

Validation 0.745342 0.678880 0.5660–0.7918 0.500000 0.846154 0.372093 0.881356

Test 0.837500 0.771916 0.6714–0.8725 0.642857 0.885496 0.529412 0.920635

Acc, accuracy; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value. 
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In the training cohort, deep learning radiomics, image-
based radiomics, and clinicopathological data showed the 
AUC of 0.766, 0.783, and 0.746, respectively, while clinical 
parameters combined with deep learning radiomics and 
radiomics had the AUC of 0.999. In the independent test 
cohort, the AUC of the combined model decreased but still 
reached 0.819, higher than that of deep learning radiomics 
(AUC: 0.718, P=0.1851), image-based radiomics (AUC: 
0.744, P=0.3045), and clinicopathological data (AUC: 
0.770, P=0.3869). The corresponding receiver-operating 
characteristic curves are listed in Figure 5.

Prediction of ALNS in the no-ALNM, low-load ALNM, 
and heavy-load ALNM with ≥3 positive nodes groups

Patients were assigned into three groups [N0, N + (1–2), N 
+ (≥3)] according to the ALN status. The prediction model 
was extended, and three groups of tasks were implemented 
to predict the lymph node status. Then, the number of 
lesions was 639 in the N0 group, 98 in the N + (1–2) group, 
and 155 in the N+ (≥3) group, of which 20% was selected as 
the test cohort, including 132 lesions in the N0 group, 18 
lesions in the N + (1–2) group, and 29 lesions in the N+ (≥3) 

Figure 4 The ROC curves of different models predicting N0 and [N+ (≥1)] were compared between the training and test cohorts.  
(A) Training cohort; (B) test cohort. ROC, receiver operating characteristic curve; AUC, area under curve; US, ultrasound; DL, deep 
learning; RAD, radiomics; DTL, deep transfer learning; CI, confidence interval.

Table 3 Comparison of predictive performance of various models

Model name Cohort Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

Rad Training 0.808896 0.785952 0.7357–0.8362 0.609091 0.853119 0.478571 0.907923

Test 0.640523 0.755300a 0.6496–0.8610 0.846154 0.598425 0.301370 0.950000

DL-Image Only Training 0.730290 0.745599 0.6967–0.8024 0.707547 0.730667 0.428571 0.891720

Test 0.725000 0.716721b 0.6109–0.8226 0.714286 0.740458 0.357143 0.923077

Clinical Training 0.852735 0.892740 0.8659–0.9196 0.762136 0.889546 0.737089 0.902000

Test 0.821229 0.884268c 0.8186–0.9499 0.914894 0.787879 0.605634 0.962963

DLR Training 0.915849 0.947550 0.9289–0.9662 0.849515 0.942801 0.857843 0.939096

Test 0.893855 0.920052 0.8722–0.9679 0.808511 0.924242 0.791667 0.931298

Different models predicted ALN state results [N0 vs. N+ (≥1)]. a, P=0.3644, Delong et al. compared radiomics with DLR in independent test 
cohorts; b, P=0.010, Delong et al. compared DLR in an independent test cohort with image-based deep learning; c, P=0.122, Delong et al.  
clinical parameters were compared with DLR in the independent test cohort. AUC, area under the curve; CI, confidence interval; PPV, 
positive predictive value; NPV, negative predictive value; DL, deep learning; DLR, deep learning radiomics; ALN, axillary lymph node.
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group. The training cohort included 376 lesions in the N0 
group, 59 lesions in the N + (1–2) group, and 100 lesions in 
the N + (≥3) group. Deep learning radiomics and radiomics 
were generated based on conventional breast ultrasound 
images combined with clinicopathological data. The 
accuracy of the combined model was 0.798. The prediction 
model for the combined diagnosis performed well in the no 
ALNM group. The confusion matrix is exhibited in Figure 6.

Explanatory nature of the deep learning radiomic model

Explainable artificial intelligence can be used to improve the 

visibility of deep learning models and better understand the 
underlying decision-making process (25). Thus, explainable 
artificial intelligence is important in model development 
for the goal of model visualization and inspection. To 
study the interpretability of deep learning radiomics, 
gradient-weighted class activation mapping was used in the 
present study to visualize the network, and the high coarse 
localization map was the import region of the classification 
target (Figure 7).

Evaluation of the model

Deep learning was used to construct and evaluate the 
ALNM model, and the Decision Curve Analysis was 
utilized to directly evaluate the benefit to patients. Decision 
Curve Analysis is an analytical method that integrates 
patient or decision-maker preferences into the analysis to 
evaluate a clinical prediction model and meet the actual 
needs of clinical decision-making, which is becoming 
increasingly popular in clinical analysis. Figure 8 shows that 
if the threshold probability is greater than 25%, the use 
of the deep learning radiomic prediction of lymph node 
metastasis will yield more net benefit in the current study. 
Meanwhile, the predictive ability and actual situation of 
various models were assessed with the calibration curve. 
The results illustrated that the combined application of 
clinical parameters, radiomics, and deep learning was the 
optimal way to evaluate ALNM (Figure 9).

Figure 5 The ROC curves comparison between different models for predicting low-load ALNM [N+ (1–2)] and ≥3 positive nodes ALNM 
[N+ (≥3)]. (A) Training cohort; (B) test cohort. ROC, receiver operating characteristic curve; AUC, area under curve; RAD, radiomics; DL, 
deep learning; DTL, deep transfer learning; ALNM, axillary lymph node metastasis.

Figure 6 The confusion matrix of predicting ALNM among (N0), 
[low-load ALNM (N+ (1–2)] and heavy-load ALNM [N+ (≥3)]. 
LR, logistic regression; ALNM, axillary lymph node metastasis.

Rad model: LR

125 4

12

9 4 16

2

3

4

N0                    N1–2                     N≥3

N0

N1–2

N≥3

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
0.0              0.2              0.4              0.6               0.8              1.0 0.0              0.2               0.4              0.6              0.8              1.0

Clinic AUC: 0.746 (95% CI 0.669–0.822)
Rad AUC: 0.783 (95% CI 0.708–0.859)
DL only AUC: 0.766 (95% CI 0.695–0.837)
Clinic + rad+ DTL AUC: 0.999 (95% CI 0.997–1.000)

Clinic AUC: 0.770 (95% CI 0.635–0.905)
Rad AUC: 0.744 (95% CI 0.545–0.944)
DL only AUC: 0.718 (95% CI 0.554–0.883)
Clinic + rad+ DTL AUC: 0.819 (95% CI 0.568–1.000)

1−Specificity 1−Specificity

S
en

si
tiv

ity

S
en

si
tiv

ity

Model AUC Model AUCA B



Wei et al. Deep learning radiomics predict lymph node metastasis5006

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):4995-5011 | https://dx.doi.org/10.21037/qims-22-1257

Figure 7 Visualization of a patient example. The grayscale ultrasound image and corresponding heat map are shown, with the blue area 
representing a larger weight that can be decoded correctly by the color bar above. The hypoechoic region within the tumor is valuable for 
predicting ALNS. ALNS, axillary lymph nodes.

Figure 8 Patients who received the intervention had the best net clinical benefit between 0.25 and 1.0. (A) Training cohort; (B) test cohort.  
DCA, Decision Curve Analysis; US, ultrasound; DLR, deep learning radiomics.

Discussion

BC has emerged as a serious threat to the health of 
women around the world (1). The high mortality of BC is 
attributable to the metastasis of vital organs other than the 
primary tumor (26). According to the ACOSOG Z0011 
trial, SLND alone, but not ALND, did not decrease 
the survival rate of early BC patients with less than two 
metastatic SLNs (8). On the contrary, another study 
elucidated that SLN surgery alone without further ALND 
was an appropriate, safe, and effective treatment option 
for BC patients with clinically negative lymph nodes in the 
presence of negative SLNs (27). As reported, up to 70% 
of patients with early BC do not suffer from ALNM (10).  
Accordingly, certain types of axillary surgery can be viewed 
as a very significant overtreatment to some extent (5). 

Therefore, it is extremely critical for BC treatment to 
accurately predict the extent of ALNM in a non-invasive 
manner.

In this study, a combined model (clinical, radiomics, 
and deep learning radiomics) was developed and validated, 
for the first time, for evaluating the ALN status in 
patients with early BC. The diagnostic performance of 
this combined model was significantly superior to that of 
the single method in differentiating patients with N0 BC 
from patients with N + (≥1) BC, with the AUC of 0.920. 
Encouragingly, our model could favorably discriminate 
axillary diseases between patients with low-load ALNM 
[N + (1–2)] and patients with heavy-load ALNM of ≥3 
positive node [N + (≥3)]. The combined prediction model 
constructed with the three methods may be developed as a 
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Figure 9 The calibration curves showed that the combined model predicted axillary lymph node metastasis with good agreement between 
the training group (A) and the test group (B). The P value of the H-L test is 0.14, indicating that the joint model is very suitable in both the 
training and test groups. US, ultrasound; RAD, radiomics; DL, deep learning; DTL, deep transfer learning; H-L, Hosmer-Lemeshow.

non-invasive imaging approach with the potential to replace 
SLND for the treatment of early BC. Clinical parameters 
in combination with deep learning radiomics have been 
demonstrated to have the potential to help breast clinicians 
select the optimal axillary treatment: N0 patients do not 
require SLND or ALND, whereas N + (1–2) patients only 
require SLND and N + (≥3) patients require ALND (8,24).

At present, preoperative axillary ultrasound has a poor 
overall diagnostic effect. In this study, the AUC of axillary 
ultrasound was 0.790, consistent with the results of prior 
studies (28-30). Zhu et al. found that deep learning could be 
used to identify microinvasion of breast ductal carcinoma in 
situ from ultrasound images (31). Then, radiomics and deep 
learning radiomics based on conventional ultrasound images 
were combined, followed by combination with clinical 
parameters. Our results unraveled that the performance 
of the combination of these three methods (AUC: 0.920) 
was better than that (AUC: 0.790) of conventional axillary 
ultrasonography evaluated by two senior radiologists with 
12 years of breast ultrasound experience (both) in predicting 
ALNM.

It has been reported that the ultrasound characteristics 
of some lesions, such as tumor size, internal blood supply, 
lesion boundary, infiltration of subcutaneous adipose tissues, 
and infiltration of the interstitial adipose tissue violation, 
can be used as independent risk factors for ALNM (2,7,32). 
Additionally, other studies have identified histopathological 
data, including lymphatic vascular invasion, estrogen 
receptor, and progesterone receptor, as potential risk factors 
for ALNM (2,33). Different from most previous studies, all 

histopathological data were used in this study and obtained 
before surgery. Meanwhile, detailed ultrasound features of 
lesions were collected before surgery. Accordingly, some 
preoperative clinical data were retained as candidate factors 
for constructing prediction models which could be used 
entirely as non-invasive prediction methods for assessing 
the ALN status.

In recent years, the development of radiomics and 
deep learning radiomics is an extremely important clinical 
research direction because these two methods are promising 
for applications (20,24). Qi et al. observed that radiomic 
features extracted from diagnostic Computed Tomography 
scans could enhance the predictive power of pathologic 
complete response when used in conjunction with clinical 
features (19). Lambin et al. noted that the proposed deep 
learning radiomics demonstrated excellent performance on 
the diagnosis of benign and malignant focal liver lesions 
when combined with contrast-enhanced ultrasound cines 
and clinical factors (34). Radiomics-based decision-support 
systems can be a powerful tool for precision diagnosis 
and treatment in modern medicine (35). Additionally, 
these methods also open up new research directions for 
predicting ALNM in BC. Usually, tens of thousands to 
hundreds of thousands of features can be extracted from 
medical images. Nevertheless, it is still in the initial stage of 
research on radiomics based on ultrasound images to predict 
ALNM. The efficiency of the research and development 
of prediction models has not yet reached the ideal state. As 
a result, it is necessary to improve and optimize the model 
to achieve the best state of clinical prediction (36). Feature 
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selection is an important step in the feature construction 
process as it helps to identify the most relevant features and 
remove redundant and irrelevant features. Thus, different 
features and weightages may contribute to different 
conclusions. The selected features in the current study 
were weighted according to their respective coefficients and 
then linearly combined to generate a radiomic signature. 
Deep learning radiomics is a supervised method that can 
make use of the embedded information in images to learn 
high-throughput image features, which were different 
from hand-crafted and engineered features designed based 
on prior medical experiences. In our study, images were 
obtained under different imaging conditions of different 
machines, and their pixel value ranges varied substantially. 
To reduce the side effects of outlier pixels and avoid the 
inherent differences among different types of ultrasound 
machines, all pixel values in each image were ranked, and 
the intensity was truncated to the 0.5 to 99.5 percentage 
range. Meanwhile, data extraction and acquisition were 
standardized by two experienced radiologists.

It was previously demonstrated that radiological features 
obtained from ultrasound images of primary tumors could 
moderately predict the ALN status in BC, with the AUC 
ranging from 0.71 to 0.78 (36-38). Our results elaborated 
that radiological features extracted only from ultrasound 
images of primary tumors were effective in predicting 
ALNM. In addition, this method relied only on ultrasound 
which has been widely used for BC diagnosis, with images 
easily available. Therefore, this method can be utilized as a 
regular examination tool for BC. In this study, ALN status-
related radiomic features collected from ultrasound images 
exerted a moderate predictive effect, with the AUC of 0.786 
and 0.755 in the primary and test cohorts, respectively.

Compared with most previous studies, our study 
showed better diagnostic performance for the first time 
of the combined model by focusing on radiomics, deep 
learning radiomics, and clinical parameters, which could 
more effectively supplement image features by suppressing 
features extracted from images and render the model 
more reliable. To explore the most suitable basic model 
for the prediction of the ALN status, the model that best 
predicted the ALN status was selected between N0 and N 
+ (≥1) patients for various models. When inception_v3 was 
selected as the basic model with the optimal performance, 
clinical parameters and the radiomics diagnostic model 
were further added. The prediction of the ALN status based 
on clinical data, radiomics, and deep learning radiomic 
composition was highly favorably effective, with the AUC 

of 0.948 and 0.920 in the main queue and validation 
cohorts, respectively. Furthermore, our experimental results 
exhibited that the combination of clinical parameters, 
radiomics, and deep learning radiomics could also 
effectively distinguish between patients with low-load  
[N + (1–2)] and heavy-load ALNM with ≥3 positive nodes 
[N+ (≥3)], which provide guidance to clinicians for axillary 
surgery. This study, which was performed completely based 
on conventional ultrasound images, was convenient, fast, 
and radiation-free and could realistically predict the ALN 
status under non-invasive conditions.

There are still some limitations in this study. First, 
our study was a single-center and retrospective study. 
Accordingly, image selection and information reading 
may result in certain biases. Second, patients with bilateral 
cancer or multifocal breast lesions were excluded from 
this study. Third, our study only included conventional 
two-dimensional grayscale images, and elastography and 
contrast-enhanced ultrasound images were not analyzed 
for the correlation with ALNM. Fourth, this study did 
not address whether BC genetic markers could be used 
to stratify patients according to disease risk (39). Finally, 
human factors in the development of the predicted model 
may cause bias. Models based on human feature selection 
is semi-automatic in nature, which can lead to bias in their 
performance due to the specific features selected or filtered 
by radiologists during the development phase. Previous 
studies have shown that such algorithms may not perform 
well in the real world.

To date, most of the current artificial intelligence tools 
are based on retrospective data, with very few artificial 
intelligence tools landed in clinical trials. However, as the 
deep learning tool is incorporated into clinical practice, 
supervision is needed to avoid algorithm deviation and 
solve the unique ethical, medicolegal, and quality-control 
problems of the deep learning algorithm (40). These 
ALNM-related issues are still unresolved, which warrants 
further investigation.

Conclusions

In this study, a combined model was constructed based 
on deep learning, which had the potential to predict 
preoperative ALN involvement in BC and was a minimally 
invasive, even non-invasive, and practical approach for 
BC diagnosis. This combined diagnosis model based on 
deep learning can evaluate the preoperative ALN status 
and help optimize axillary treatment for patients with 
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early BC. Considering the fact that the receiver-operating 
characteristic curve analysis requires a large amount of data 
and relies on subjective selection of thresholds, further 
studies are needed to verify the current findings.
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