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Abstract
Breast cancer has seriously been threatening physical and mental health of women 
in the world, and its morbidity and mortality also show clearly upward trend in China 
over	 time.	Through	 inquiry,	we	 find	 that	 survival	 rate	of	patients	with	early-stage	
breast	cancer	 is	 significantly	higher	 than	 those	with	middle-	and	 late-stage	breast	
cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. 
Until now, many methods for diagnosing breast cancer have been developed, mainly 
based on imaging and molecular biotechnology examination. These methods have 
great contributions in screening and confirmation of breast cancer. In this review 
article, we introduce and elaborate the advances of these methods, and then con-
clude	some	gold	standard	diagnostic	methods	for	certain	breast	cancer	patients.	We	
lastly discuss how to choose the most suitable diagnostic methods for breast cancer 
patients. In general, this article not only summarizes application and development of 
these diagnostic methods, but also provides the guidance for researchers who work 
on diagnosis of breast cancer.

1  | INTRODUC TION

Breast	 cancer	 (BC)	 has	 become	 one	 of	 the	 most	 common	 malig-
nant	tumours,	and	latest	dates	from	CA-cancer	magazine	show	that	
the incidence rate is increasing every year. In 2019, approximately 
316 700 new cases of BC have been confirmed in US women, and 
the growth rate is nearly 0.3% per year.1 The data from China show 

that the incidence rate of BC also raises per year (272 400 cases in 
2015	and	367	900	cases	in	2018).2,3 Taking population growth into 
consideration, experts predict that there will be about 3.2 million 
new BC cases per year globally by 2050.4	More	notably,	 not	only	
the number of patients with BC is increasing all over the world, but 
also the age of affected patients is tending to be younger.5 There are 
many factors causing above situation, such as age, family history, 
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lifestyle environments and so on.4,6,7 The high incidence rate of BC 
is	unavoidable,	but	decreasing	the	mortality	of	BC	is	feasible.	Early	
detection and treatment are critical to curing BC, because it tends 
to metastasize in the middle and last stage.8-10 Therefore, finding 
BC is vital in early stage, which can greatly improve the survival rate 
of patients.

To quickly and accurately screen BC, many diagnostic methods 
based on imaging and molecular biotechnology have been devel-
oped. It is indispensable to summarize and evaluate these methods, 
to provide value information for clinical diagnosis. Jafari11 summa-
rized various imaging techniques and biochemical biomarkers used 
for detection and monitoring BC patients and highlighted that it is 
helpful to diagnose and treat patients with BC by measuring level of 
certain	biomarkers.	Weaver12 described definitions and applications 
of imaging “biomarkers,” and thought that they can build the decision 
support system by these markers to provide help for clinical breast 
care	and	BC–related	research.	Many	articles	review	these	methods	
for diagnosing BC mainly from these aspects, by introducing the 
contribution of imaging techniques (including molecular imaging 
markers)	in	diagnosing	BC	patients,	and	summarizing	these	findings	
on connection between newly discovered tumour makers and BC 
patients.13-15	Many	 articles	 describe	 a	 large	 number	 of	 diagnostic	
methods for breast cancer, but few articles introduce how to choose 
suitable diagnostic methods for different types of BC patients.

In this review, many diagnostic methods are reviewed, such as 
mammography	(MG),	ultrasonography	(US),	magnetic	resonance	imag-
ing	(MRI),	nucleic	acid	hybridization	system	(NAHS),	real-time	fluores-
cence	quantitative	PCR	system	(RT-qPCR),	protein	hybridization	system	
(PHS),	 flow	 cytometer	 (FCM)	 and	 so	 on.	We	 herein	 introduce	 their	

development and summarize their advantages and disadvantages and 
provide some diagnostic schemes for different types of BC patients. 
The article can help future research and development in diagnosing BC 
patients and guiding people who are working on BC research, on how 
to choose the suitable methods for diagnosing BC patients.

2  | IMAGING DIAGNOSIS

Utilization of imaging techniques shows clearly the morphology 
and location of tumour tissues and proves much clinical informa-
tion that is valuable to doctors. However, imaging techniques may 
cause harm to patients when using contrast agents and high energy 
rays. Therefore, we should discuss these imaging techniques and 
choose the most appropriate diagnostic method for BC patients. 
These	imaging	techniques	mainly	include	mammography	(MG),	ultra-
sonography	(US),	magnetic	resonance	imaging	(MRI),	positron	emis-
sion	computed	tomography	(PET),	computed	tomography	(CT)	and	
single-photon	emission	computed	tomography	(SPECT).	 In	Table	1,	
we list the advantages and disadvantages of these imaging meth-
ods. In view of high cost, poor practicability and radiation damage, 
PET,	CT	and	SPECT	are	not	recommended	in	diagnosing	BC	patients.	
However, these techniques can be used as auxiliary diagnostic 
methods for diagnosing BC in some special cases, such as screen-
ing for metastatic BC, presence of bone and lymphatic metastases. 
Therefore,	we	only	 introduce	MG,	US	and	MRI	 that	 are	preferred	
methods for screening BC. Summary and evaluation of these com-
mon imaging techniques will help doctors to better serve patients 
and promote the development of clinical diagnosis.

TA B L E  1  Advantages	and	disadvantages	of	imaging	techniques

Imaging techniques Advantages Disadvantages

XRM 1. The golden standard for diagnosing BC patients
2. Suitable as a screening method for BC
3. Finding mammary gland calcification

1. Not suitable for people under 40
2. Not suitable for people with high gland density
3. No more than twice a year

US 1. Suitable screening for young women
2.	Non-invasive	diagnostic	methods
3. Finding mammary gland inflammation

1. Not suitable for small mass and atypical tissue
2.	Affected	by	the	examining	doctor
3. Definition and Resolution are not high

MRI 1. High sensitivity and specificity to invasive BC
2.	Screening	of	high-risk	groups,	such	as	family	history	of	

BC
3.	Suitable	for	patients	with	breast-conserving	surgery

1. Not for everyone, such as patients with Claustrophobia 
and hypersensitivity to contrast

2. Not suitable for wide scale screening
3. Not suitable for BC staging

PET 1. High sensitivity to BC recurrence and metastasis
2. Helpful for staging of the BC
3.	High	sensitivity	to	small	breast	tumour	(>0.5	cm)

1. High cost, not recommended as routine screening
2. Not suitable for patients with hypersensitivity to 

Developer

CT 1. Supplementary diagnostic method for BC, such 
as identifying BC with or without intrapulmonary 
metastases

1. Not the first choice for diagnosing BC
2. Radiation damage
3. Poor spatial resolution and need experienced doctor

SPECT 1. High resolution, small field of vision
2. Recommended use when suspects metastasis (such as 
osseous	metastasis)

1. Obtaining littler clinic information
2. Not suitable for patients with inflammatory bone lesions 

and bone proliferative metabolic abnormalities or 
variations

Abbreviations:	CT,	Computed	tomography;	MRI,	Magnetic	resonance	imaging;	PET,	Positron	emission	tomography;	SPECT,	Single-photon	emission	
computed	tomography;	US,	Ultrasonography;	XRM,	X-ray	mammography.
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2.1 | Mammography

Mammography	(MG)	is	preferred	strategy	for	screening	and	diagnos-
ing BC and helps doctors obtain clinic information on BC patients. 
The evidence suggests that the mortality rate of BC patients could 
be	reduced	30%-40%	though	early	MG	screening.16	Meanwhile,	the	
diagnostic	 result	of	MG	 is	only	positive	criteria	 for	4%-10%	of	BC	
patients	(eg,	patients	who	exhibited	only	slight	calcification).17,18	MG	
is	developed	continuously	with	passage	of	time.	Contrast-enhanced	
mammography	(CEM)	and	digital	breast	tomosynthesis	(DBT)	are	at	
present two main strategies that diagnose BC patients in clinic.19,20 
Through	investigation,	CEM	is	superior	to	full-field	digital	mammog-
raphy	(FFDM),	and	the	value	of	CEM	in	diagnostic	accuracy	and	eval-
uation	of	disease	extent	 is	close	 to	breast	MRI.21,22 Similarly, DBT 
also has good performance, such as higher specificity, when com-
pared	with	FFDM	(96.4%,	57229/59381%	vs	97.5%,	23427/24020,	
P	<	.001).23	In	1998,	computer-aided	detection	(CAD)	was	developed	
and it greatly improved the sensitivity of instruments from about 
60% to 100%.24	CEM	can	be	combined	with	CAD	to	diagnose	BC	
patients, and it could carry out classification for breast masses, 
and the ROC curves for patients will be significantly increased to 
0.848 ± 0.038 (P	 <	 .01).25 Similarly, the reading time for DBT can 
be improved to about 29.2%, and the ROC curves for patients will 
be	increased	from	0.841	to	0.850	(95%	CI,	−0.012	to	0.030)	when	
combined	with	CAD.26

In	general,	MG	and	its	derivatives	are	indispensable	part	in	diag-
nosis and screening of BC patients. Their advantages are as follows: 
rapid screening, high accuracy, low cost and suitable for promoted 
use.	 Therefore,	MG	 is	 optimal	 imaging	 diagnostic	method	 for	 pa-
tients with low income and eliminates the risk for BC, etc However, 
these	 factors	may	 cause	MG	 to	not	 be	 suitable	 for	 everyone.	 For	
example,	MG	needs	harmful	contrast	agent	and	X-ray	to	do	imaging,	
so cannot be used repeatedly in a short period of time, and is not 
recommended to use for patients under age of 40.27 In the future, 
MG	will	 tend	to	be	harmless	and	with	high	resolution.	Meanwhile,	
with	advancement	of	artificial	intelligence	(AI)	technique	and	devel-
opment of sensors, it is viable to realize automation of detection and 
analysis of BC.

2.2 | Ultrasonography

Ultrasonography	(US)	is	applied	in	observing	morphology	and	vari-
ation condition of tumour tissues, and it can accurately locate the 
location of lesions. US is not harmful to humans and is suitable for 
everyone. The development history of US is as follows: the early 
grayscale US only showed whether the tumour existed at detec-
tion site, but it was difficult to distinguish benign and malignant 
tumours, because its resolution was low.28,29	Surely,	 the	 two-di-
mensional US only gets some flat images of tumour, and judge-
ment	 by	 physicians	 will	 be	 affected.	 So,	 three-dimensional	 US	
technology	was	 developed	 for	 three-dimensional	 imaging	 of	 tu-
mour morphology and blood vessel distribution, which are shown 

when patients are diagnosed.30 The colour Doppler US is one of 
many	three-dimensional	US	and	can	clearly	reflect	the	situation	of	
tumour and blood flow information and provide doctors with more 
valuable clinical information, so that it can distinguish benign and 
malignant tumours.31 In 1998, Krouskop32 found that there are 
elastic differences in different tissues, which provides theoretical 
foundation	for	developing	elastic	US.	Moreover,	some	researches	
screened the suspected pathological tissues by using elastic US 
and found that it improves greatly the accuracy for diagnosing 
BC.33,34	However,	when	combined	with	three-dimensional	US,	the	
elastic US can diagnose axillary lymphadenopathy and classify the 
patient's tumour state.35	Though	MG	is	optimal	method	to	detect	
the calcification condition of BC, when the size of calcification is 
too	small,	 it	 is	difficult	 to	be	detected	by	MG	or	routine	US.36	A	
new	 US	 image-processing	 technique,	 MicroPure,	 was	 therefore	
developed. This method can reduce speckle by analysing pictures 
of spatial feature and frequency and create images that have high 
contrast resolution and high tissue uniformity.37	Machado	et	al38 
processed	ex	vivo	surgical	breast	 specimens	by	using	MicroPure	
examination	 and	 found	 that	 the	MicroPure	 has	 high	 recognition	
rate to microcalcifications of BC, and conventional US cannot 
found its situation.

US has many advantages, such as use of few contrast agents, 
none	 high	 energy	 rays	 and	 suitability	 for	 all	 ages.	 Meanwhile,	
when	MG	 cannot	 be	 used,	 US	 can	 become	 an	 alternative	 diag-
nostic method for BC. However, the US has limitations that need 
professional operation and lower definition and resolution than 
CT. Notably, the people who are obese and those with nodi lym-
phatici parasternales metastasis are not suitable to use US for 
diagnosis. In the future, intelligent US detection will be a new 
tendency, which will greatly reduce errors due to unprofessional 
judgements, thereby helping doctors to get more accurate diag-
nostic results.

2.3 | Magnetic resonance imaging

Magnetic	 resonance	 imaging	 (MRI)	 allows	early	detection	of	 familial	
BC regardless of patients’ age, breast density or risk status.39 Figure 1 
is	 schematic	diagram	of	MRI.	Water	dispersion	coefficient	of	differ-
ent	 tissues	 exists	 with	 differences.	 Magnetic	 resonance	 diffusion	
weighted	 (MRDW)	 is	a	 technique	that	can	show	clear	movement	of	
water	molecules	in	the	body.	Therefore,	MRDW	has	become	a	method	
for diagnosing BC patients. Through literature review, we found that 
malignant	tumours	have	typical	water	diffusion-limited	effects	in	com-
parison with benign tumours, so researchers can distinguish benign 
and	malignant	breast	tumours	by	using	MRDW	to	measure	apparent	
diffusion	coefficient	(ADC)	values	(represent	diffusion-limited	effects)	
of	tumours	(ADC	values:	normal	breast	group	>	benign	group	>	malig-
nant	group).40,41 Recently, a review reported that the optimal threshold 
values	for	ADC	in	distinguishing	benign	and	malignant	lesions	are	as	
follows: 1.06 × 10−3 mm2/s ~ 1.10 × 10−3 mm2/s.42	Dynamic	contrast-
enhanced	MRI	 (DCE-MRI)	has	higher	 resolution	of	 soft	 tissues	 than	
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MRDW,	 and	 it	 can	 clearly	 show	 morphological	 characteristics	 and	
haemodynamic characteristics of the lesions in vivo.43 Researchers 
found	that	the	positive	predictive	value	(98%)	of	DCE/MRI	is	higher	
than	the	positive	predictive	value	(77%)	of	MRI	alone,	and	the	specific-
ity points to 97%.44 Guindalini45 compared the diagnostic techniques 
of	BC	and	found	that	biannual	DCE-MRI	and	annual	MG	for	BC	pa-
tients	have	performed	well	and	low	recall	rates.	Magnetic	resonance	
spectroscopy	 (MRS)	 is	a	non-invasive	method	that	can	also	 improve	
diagnostic rate of BC, by evaluating the risk of BC and guiding treat-
ment of BC.46,47

Magnetic	 resonance	elastography	 (MRE)	 is	 another	 special	mag-
netic resonance technology that can provide information on tissue 
elasticity by transmission of mechanical waves in tissues. Bohte et al48 
elaborated	MRE’s	future	tendency	that	it	can	delineate	pre-operative	
tumour and predict response to treatment and metastatic potential 
of	primary	tumours.	PET/MRI,	Positron	emission	computed	tomogra-
phy	(PET)	combined	with	MRI,	can	display	soft	tissue	structures	of	the	
breast	and	chest	wall.	PET	can	provide	molecular-level	information	in	
vivo,	and	PET/MRI	can	improve	the	positive	predictive	rate	of	patients	
and has great value in evaluating BC metastasis.9,49,50

Magnetic	 resonance	 imaging	 is	 an	 auxiliary	 method	 that	 has	
many advantages in diagnosing BC. However, there are many fac-
tors	that	influence	the	wide	application	of	MRI,	such	as	long	imag-
ing time, high cost, cannot be carried out if has metal material in 
patient's	body,	and	so	on.	Therefore,	MRI	can	be	used	in	situations	
where the primary BC is too small, where all information about tu-
mour	needs	 to	be	obtained,	and	 for	screening	of	high-risk	groups,	
etc	In	the	future,	MRI	will	tend	to	have	higher	signal-to-noise	ratio,	
shorter	imaging	time	and	lower	cost.	Likewise,	advancement	in	MRI	
should also consider how to reduce the use of contrast agents, so 
that it serves every stage of BC.

3  | MOLECUL AR BIOTECHNOLOGY 
E X AMINATION

Molecular	 biotechnology	 examinations	 can	 diagnose	 BC	 earlier	
than imaging techniques. Nevertheless, it cannot replace the imag-
ing techniques and become auxiliary methods to diagnose BC. The 

purposes of molecular biotechnology examination are to analyse 
specific biomarkers such as nucleic acid, proteins, cells and tissues 
of patients. These examinations can help doctors obtain much clini-
cal	information	at	the	molecular	level.	At	present,	these	examination	
techniques	mainly	 include	 nucleic	 acid	 hybridization	 system,	 real-
time fluorescence quantitative PCR system, protein hybridization 
system, flow cytometer, needle biopsy and immunohistochemistry 
(IHC).	These	techniques	help	us	analyse	BC	from	the	level	of	nucleic	
acids, proteins and cells.

3.1 | Novel specific biomarkers

Circulating	 tumour	 cells	 (CTCs)	 enter	 the	 blood	 circulation	 from	 pri-
mary tumour tissues, and the number of CTCs is about 1 ~ 102/
mL in peripheral blood. Jin et al51 investigated the viability of using 
CytoSorter®system to detect CTCs and to evaluate the diagnostic value 
of CTCs in BC. Their results showed that the CTCs can differentiate BC 
patients from the patients with benign breast diseases or healthy volun-
teers, as a diagnostic aid for early cancer diagnosis and cancer staging.51 
CTCs could be used as a novel biomarker in assisting BC detection.

Circulating	 tumour	 DNA	 (ctDNA)	 is	 fragments	 of	 tumour	 ge-
nomic	 DNA	 that	 contains	 characteristics	 of	 gene	 variations	 con-
sistent	 with	 primary	 solid	 tumour.	 ctDNA	 is	 thus	 very	 helpful	 in	
identifying	the	DNA	from	tumour	cells	or	normal	cells,	as	the	number	
of	 ctDNA	 is	 very	 small	 in	peripheral	 blood.	Thus,	 the	quantitative	
and	qualitative	detection	methods	for	ctDNA	are	based	mainly	on	
PCR	and	next-generation	 sequencing	 (NGS).	Ma	et	 al52 had a lon-
gitudinal monitoring of 21 patients during treatment that showed 
that the molecular tumour burden index (mTBI, a measure of the per-
centage	of	ctDNA	in	samples),	positively	correlated	with	tumour	size	
as evaluated by computed tomography (P < .0001, Pearson r	=	.52),	
and	detected	disease	progression	8-16	weeks.52	Therefore,	ctDNA	
could be used to assess tumour heterogeneity and predict treatment 
outcomes in metastatic BCs.52

Exosomes	 are	 membrane-enclosed	 phospholipid	 extracellu-
lar vesicles with a variety of tumour antigens which can be ap-
plied in the diagnosis and treatment of cancer due to their high 
secretion on the surface of cancer cells.53	Exosomes	have	stable	
chemical	properties,	and	their	size	is	30-150	nm.53 Ni et al54 inves-
tigated	whether	the	enrichment	of	miRNAs	in	exosomes	reflects	
the	pathogenesis	of	BC	and	ductal	carcinoma	 in	situ	 (DCIS).	The	
levels	of	exosomal	miR-16	were	higher	in	plasma	of	BC	(P	=	.034)	
and DCIS (P	=	.047)	patients	than	healthy	women	and	were	asso-
ciated with oestrogen (P	=	 .004)	and	progesterone	(P	=	 .008)	re-
ceptor	status.	Moreover,	 lower	 levels	of	exosomal	miR-30b	were	
associated with recurrence (P	=	 .034),	and	exosomal	miR-93	was	
upregulated in DCIS patients (P	=	.001).54 Taken together, their re-
sult	showed	that	different	signatures	of	miR-16,	miR-30b	and	miR-
93 in exosomes from BC and DCIS patients are associated with a 
particular biology of breast tumours.54 Therefore, exosomes have 
become a research hotspot in recent years because of their great 
diagnostic potential.

F I G U R E  1  Schematic	diagram	of	MRI
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Long	noncoding	RNA	(lncRNA)	can	 involve	 in	the	regulation	of	
cell cycle of tumour cells and a variety of cell signalling pathways of 
cancer cell invasion, metastasis, resistance of chemotherapy and so 
on. Shao et al55	found	two	lncRNAs	that	significantly	correlated	with	
outcomes of breast cancer and were regulated by methylation sta-
tus. Liang et al56	revealed	that	RHPN1	antisense	RNA	1	(RHPN1-AS1)	
was	 induced	 by	 KDM5B	 and	 promoted	 BC	 via	 RHPN1-AS1/miR-
6884-5p/ANXA11	pathway.	Besides,	H19,	an	oestrogen-inducible	ln-
cRNA,	was	reported	to	function	in	the	cell	survival	and	proliferation,	
which was from the oestrogen in breast cancer cells.57 Therefore, 
the	functions	of	lncRNAs	in	initiation,	progression	and	metastasis	of	
breast cancer are emerging and are expected to be a potential new 
diagnostic marker and therapeutic target for BC.56

Circular	RNAs	(circRNAs)	were	recently	discovered	as	a	looped	
subset	of	competing	endogenous	RNAs,	with	an	ability	to	regulate	
gene	 expression	 by	microRNA	 sponging.58 Lu et al59 found that a 
total	of	715	circRNAs	were	notably	overexpressed,	and	440	were	
remarkably downregulated in the BC lesions compared with healthy 
tissue	 samples	 among	 1155	 differentially	 expressed	 circRNAs.	 In	
2019,	Yan	et	al60 introduced hsa_circ_0072309 as a novel prognostic 
biomarker	in	BC,	which	is	a	miR-492	sponge	that	is	downregulated	in	
BC.	Dysregulation	of	this	circRNA	increases	proliferation,	migration	
and invasion in BC cells, and thus, it has a potential role in BC, as it is 
highly conserved and stable.

In all, these novel biomarkers not only are monitored dynami-
cally, but are also used to judge prognosis. The patient's body fluids 
are	used	as	samples	for	CA	biopsy.

3.2 | Nucleic acid hybridization system

3.2.1 | Nucleic acid hybridization

Nucleic acid hybridization techniques mainly include fluorescence 
in	situ	hybridization	(FISH)	and	aptamer	probe	hybridization	(APH).	

They can find special fragments of tumour biomarkers and search 
new tumour biomarkers when diagnosing BC.

FISH has made huge contributions to the development of mo-
lecular biology diagnostics.61	 Its	 principle	 follows	 (Figure	 2)	 base	
pairing.	These	data	display	that	approximately	25-30	per	cent	of	all	
BC are human epidermal growth factor receptor 2 (HER-2)–positive	
BC.62,63	FISH	has	high	response	rates	(2474	of	2524;	98.0%)	to	am-
plify HER-2 gene and has high HER-2 copies number per cell (by 2.86; 
P	=	.02).64 FISH detection is an important factor in whether a medi-
cation	(Herceptin)	is	needed	or	not	for	BC	patients.	Meanwhile,	FISH	
is considered the “gold standard” for detecting whether the HER-2 
gene is activated.65 In addition, FISH shows other advantages, in-
cluding reproducibility, stability and high sensitivity. However, these 
factors limit its promotion, including the need for complex probes 
design and special fluorescence detector. In the future, multicolour 
fluorescence in situ hybridization will be a tendency in greatly im-
proving the throughput when searching genetic sites.

Aptamer	probe	hybridization	is	another	highly	sensitive	and	spe-
cific technique. Suitable aptamers are key factors in the accuracy of 
APH.	These	aptamers	mainly	are	produced	by	Systematic	Evolution	
of	 Ligands	by	Exponential	 enrichment	 (SELEX).66	At	present,	Cell-
SELEX	 is	one	of	 the	most	 representative	of	SELEX,	and	 it	has	be-
come the main method that gets optimal aptamers from tumours.67 
The	schematic	diagram	of	Cell-SELEX	is	shown	in	Figure	3.	Suitable	
aptamers can identify some specific fragments that can be used to 
diagnose diseases. Kim68	 prepared	 a	 nucleotide	 aptamer	 (SE15-8-
QDs)	for	detecting	BC	and	found	that	it	 is	more	sensitive	than	the	
common probes. Cai69 developed a new type of fluorescence ap-
tamer	 (AAI2-5)	 that	can	detect	MCF-7	BC	cells	and	MDA-MB-231	
cell lines easily and sensitively from breast cells with an accuracy 
of 90%. However, the process for obtaining suitable aptamers or 
probes is complex and difficult, requiring a lot of time and money, 
and is not suitable for promoting to use in primary hospitals. In the 
future,	APH	will	have	the	easy	process	for	screening	suitable	aptam-
ers and will find more biomarkers of BC.

F I G U R E  2   Technical principle of 
fluorescence in situ hybridization
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3.2.2 | Gene chip and next-generation sequencing

Gene chip can analyse a large number of fragments of nucleic acid 
simultaneously, and it is applied widely in diagnosing BC. Gene chip 
is used to observe and analyse the condition of nucleic acids in BC 
cells or tissues and also can find new diagnostic biomarkers for BC 
by	screening	a	 large	number	of	samples.	As	well	known,	gene	chip	 is	
essentially	 a	high-density	oligonucleotide	microarray.70-72	At	present,	
there are two methods for chip preparation: in situ synthesis and direct 
point method.73 However, in situ synthesis is the main method, and its 
schematic diagram is shown in Figure 4. Using gene chip technology, 
researchers found mechanisms for doxorubicin resistance in BC and 
screened these key genes for BC therapy.74 Jiang et al75	used	LIMMA	
(Linear	Models	for	Microarray	Data)	methodology	to	identify	differential	

expression	of	lncRNAs	between	tumour	and	normal	samples,	and	they	
identified	 26	 inter-genic	 lncRNAs	 transcripts	 that	 were	 specifically	
expressed in tumour cells [P < .005, FDR < 0.15]. There are however 
limitations of gene chip, such as difficulty in synthesizing probes, easy 
appearance of positive signals and especially complicated nucleic acid 
extraction. In the future, with development of nanotechnology, the size 
of chip will be smaller and the throughput of gene chip will be higher.

Next-generation	sequencing	(NGS)	was	put	forward	by	Metzker.76 
The schematic diagram of NGS is shown in Figure 5. This technique 
makes great contribution to get the genome sequence information 
and can help find mutant gene sites. Currently, NGS has been applied 
widely in diagnosing BC. For example, Dong et al77 designed targeted 
NGS	 platform	 and	 found	 three	 additional	 possible	 disease-causing	
mutant genes. Liang et al78 found twelve common mutant genes by 

F I G U R E  3  Schematics	of	cell-based	
aptamer selection.147 (Reproduced 
with permission from Copyright 2014, 
American	Chemical	Society)

F I G U R E  4   Flow chart of microarray 
technology.162 (Reproduced with 
permission from Copyright 2012, Rajnish 
Kumar)
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NGS detection, namely TP53, PIK3CA, MYH9, NOTCH2, BRCA2, ERBB4, 
FGFR3, POLE, LAMA2, ARID1A, NOTCH4 and ROS1, in inflammatory BC. 
Moreover,	Kim	et	al79 detected at least one somatic mutation in 44 of 
61	 tDNA	 (72.1%)	 and	29	of	44	 (65.9%)	 and	 cfDNA,	 and	 the	overall	
concordance	rate	of	cfDNA	to	tDNA	was	85.9%,	utilizing	next-gener-
ation	digital	sequencing	technology.	Wu	et	al80	used	RNA	sequencing	
to	detect	tumour-specific	miRNAs,	and	their	results	showed	that	the	
exosome	 levels	 of	 hsa-miR-150-5p,	 hsa-miR-576-3p	 and	 hsa-miR-
4665-5p	were	higher	in	BC	with	recurrence	compared	to	those	in	pa-
tients without recurrence. Page et al81 used a novel targeted NGS panel 
to	examine	cfDNA	to	detect	somatic	mutations	and	gene	amplification	
in women with metastatic BC. Their results showed no mutations were 
identified	 in	cfDNA	of	healthy	controls,	whereas	exactly	half	 the	pa-
tients with metastatic BC had at least one mutation or amplification 
in	cfDNA	 (mean	2,	 range	1-6)	across	a	 total	of	13	genes.81 Scarpitta 
et al82 screened the 24 genes involved in BC predisposition, genome 
stability	maintenance	and	DNA	repair	mechanisms	by	NGS	and	found	
that	a	positive	family	history	is	a	strong	predictor	of	germline	BRCA2	
mutations	 in	male	BC.	Ou-Yang	et	al83 compared differences in gene 
expressions	 in	 parental	 and	 CHD4-deficient	 cells	 by	 NGS	 and	 sug-
gested	that	the	chromodomain-helicase-DNA-binding	protein	4	regu-
lates β1	integrin	in	triple-negative	BC.	However,	the	main	limitation	of	
NGS	is	short	reads	of	about	200-500	bp.	Single-molecule	sequencing	
can	offer	long	read	lengths,	direct	RNA	sequencing,	direct	identification	
of base modifications and so on, but at present NGS can easily occupy 
mismatch	and	is	not	suitable	for	analysis	of	satellite	DNA.84 Therefore, 
sequencing can help us to analyse the gene mutations in humans and 
can predict the risk of BC. Research shows that NGS will be main trend 
of high throughput, high accuracy and fewer mismatch in the future.

3.3 | Real-time fluorescence quantitative 
PCR system

Real-time	 fluorescence	 quantitative	 PCR	 (RT-qPCR)	 system	 can	
monitor the process of nucleic acids amplification and predict the 
protein	 expression	 condition.	Various	 biomarkers,	 such	 as	 cfDNA,	
ctDNA,	lncRNA,	circRNA,	microRNA	and	so	on,	have	been	expressed	

in BC, but their content is too low to be detected by ordinary instru-
ments.	Therefore,	RT-qPCR	system	is	a	good	choice	and	can	predict	
risk	of	BC	by	analysing	the	 level	of	mRNA	expression.	 It	has	some	
advantages, such as less time consumption, high sensitivity and 
specificity. In addition, it requires less samples and shorter analysis 
time compared with other molecular methods.85	 Meanwhile,	 RT-
qPCR is optimal technology for identifying difference of expression 
levels	of	mRNA	between	malignant	 tumours	and	normal	 tissues.86 
Mansoori	 et	 al87 found that Bach-1	 mRNA	 was	 overexpressed,	
while	miR-142-3p	was	downregulated	 in	the	BC	tumours	and	then	
summed	up	that	the	expression	of	miR-142-3p	has	relationship	with	
BC.	 Moreover,	 RT-qPCR	 system	 can	 also	 guide	 BC	 treatment	 by	
monitoring	 specific	 expression	of	mRNA.88,89	Matouk	et	 al90 used 
the system to analyse the expression condition of H19 gene in BC 
patients and healthy individual and found the expression difference 
between them, indicating that the H19 gene is a potential molecular 
marker for diagnosing BC. However, to obtain satisfactory results, 
high-quality	mRNA	should	be	extracted.	The	process	for	extraction	
of	high-quality	mRNA	 is	difficult	because	of	presence	of	RNase	 in	
the environment.91	So	the	full-automatic	nucleic	acid	extraction	de-
vice	appears	and	will	improve	the	RNA	yield	for	getting	the	accurate	
analysis results.92

Gene	promoter	region	DNA	methylation	can	also	cause	cancer,	be-
cause it can produce similar effects to gene mutations, such as obtain-
ing or losing functions of some specific genes.93,94	Methylation-based	
RT-qPCR	 system	 is	 widely	 used	 for	 analysing	 genetic	 methylation.	
The Table 2 lists part of methylation genes in BC. In order to under-
stand the detection process for methylated genes, we elaborate it by 
Figure 6. Next, the applications of methylation in BC are expounded. 
Luo et al94 identified that these genes, ALDH1L1, HOPX, WNT5A and 
SOX9,	were	hypomethylated	after	neoadjuvant	chemotherapy	(NAC)	
treatment	by	using	MethyLight	ddPCR	and	the	methylation	levels	of	
4	genes	in	BC	patients	after	NAC	were	lower	than	those	before	NAC.	
MethyLight	can	be	used	to	research	expression	conditions	of	methyl-
ated silencing genes in cell lines during treatment of BC with drugs.95 
Mastoraki	et	al96 considered that methylation of ESR1 gene can be-
come	a	potential	liquid	biopsy-based	biomarker	to	evaluate	the	risk	of	
BC and ESR1 methylation in CTCs and was associated with response 

F I G U R E  5   Schematic diagram for NGS
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of	 everolimus/exemestane.	 In	 addition,	 the	MethyLight	 can	 explore	
chemo-resistance	to	breast	tumour	by	analysing	methylation	gene.97 
Therefore,	 MethyLight	 plays	 very	 important	 part	 in	 diagnosing	 BC.	
However,	MethyLight	has	some	 limitations;	 for	example,	 the	nucleic	
acid needs to be treated (totally methylated or un-methylated nucleic 
acid),	needs	to	design	complex	probes	and	requires	professional	oper-
ation. In the future, integrating extraction and methylation detection 
of	DNA	will	be	a	tendency,	which	will	not	only	improve	the	DNA	yield,	
but also the efficiency of methylation.

3.4 | Protein hybridization system

Tumour cells or tissues contain not only the nucleic acids but also 
many proteins. The “central dogma” of molecular biology shows that 
proteins are closely associated with nucleic acids. However, if the 

final protein has no change, the differential expression of nucleic 
acids may not cause cancer. Therefore, proteins are another impor-
tant biomarker for diagnosing cancers and analysing the situation 
of proteins can predict occurrence of cancer. Similarly, proteins, as 
important biomarker, make great contribution to diagnosis of BC. In 
Table 3, we introduce the most common and latest oncogene pro-
teins involved in BC. These proteins can be quantitatively evaluated 
by	 immunochemistry,	 RT-qPCR	 and	Western	 blot.	 The	 difference	
between	them	is	the	different	detective	object,	 in	which	RT-qRCR	
is	for	mRNA	and	Western	blot	and	immunostaining	are	for	proteins.

3.4.1 | Immunochemistry

For	 pathologists,	 immunostaining	 (IHC)	 can	 accurately	 locate	 the	
site of organization and is an auxiliary method for diagnosing BC. 

TA B L E  2   Partially methylation gene in breast cancer

Gene Gene description References

BRCA1 BRCA1 gene is a tumour suppressor, and it can maintain genomic stability. The nuclear phosphoprotein is encoded 
by BRCA1	gene.	Methylation	of	the	BRCA1 gene promoter region can change expression of BRCA1 gene and loss 
function of tumour suppressor

148

E2F4 E2F4	gene	is	potential	basal	transcription	factor,	and	it	can	promote	tumour	growth.	Methylation	of	E2F4 gene can 
cause upregulation expression of E2F4 gene and accelerate the development of tumours

149

PITX2 PITX2	gene	is	a	prognostic	marker	for	progesterone	receptor-positive	patients,	and	it	is	closely	associated	with	poor	
survival and distant metastasis of breast tumours. If PITX 2 gene is methylated, it can be considered low risk of 
distant metastasis recurrences and need not adjuvant chemotherapy

150

Hox The methylation of Hox gene is closely related to the high expression of oestrogen and progesterone receptors, and 
methylation of HoxD13 gene is closely related to breast tumour size and poor clinical treatment

151

AKT1 Methylation	of	AKT1 gene is observed to be associated with BC, and it affects expression of AKT1 gene. The 
expression of AKT1	gene	has	significantly	associated	with	HER-2	protein	status

152

Soxl7 Soxl7	gene	has	significantly	associated	with	breast	tumour	size	and	lymphatic	metastasis,	but	un-methylation	of	
Soxl7 gene is found in normal breast tissue and serum

153

CDKN2A The methylation of CDKN2A	gene	in	patients	with	malignant	tumour	is	found,	but	un-methylation	of	CDKN2A 
gene	is	found	in	patients	with	benign	breast	disease.	Methylation	of	CDKN2A gene also is associated with distant 
metastasis of breast tumours

154

FHIT FHIT gene is widely expressed in normal tissues, and methylation of FHIT gene occurs in 31% of patients with 
primary BC. In particular, after FHIT gene is methylated, its expression quantity is changed in patients with 
sporadic ductal carcinoma

155

TIMP-3 Methylation	of	TIMP-3 gene is found in BC cells, but does not find in normal tissues. The degree of methylation of 
TIMP-3 gene is positively correlated with malignancy of BC

156

MDGI The MDGI gene is also lowly expression in BC tissues. If promoter region of MDGI gene is methylated in breast 
cancer patients, methylation of MDGI will be only slightly influenced by surgery, whereas tamoxifen therapy will be 
a more pronounced effect

157

RASSF1A In the patients with sporadic BC, finding 33.3% of RASSF1A gene was deleted or methylated 158

HSD17B4 Methylation	of	HSD17B4 gene is an independent predictive marker for pathological complete response in some 
studies. If the HSD17B4 is not methylated in patients with BC, these patients will be not benefit from trastuzumab 
treatment, but will be benefit from lapatinib treatment

159

ESR1 Abnormal	hyper-methylation	of	ESR1 gene is found in BC cells, and it will hope to become a new biomarker of 
breast tumour

160

RhoBTB2 Aberrant	methylation	of	RhoBTB2 gene may affect expression of the RhoBTB2 gene, which influences PR protein 
status, become the factor that induce BC

161

NBPF1 Hypermethylation of promoter region of NBPF1 gene is found in patient's serum or plasma with BC, and thus, the 
NBPF1 methylated from patient's serum or plasma may become potential tumour biomarker for detection of BC

160
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IHC analysis of breast tumours has advantages in the following four 
aspects:	 (a)	 can	distinguish	between	benign	 and	malignant	breast	
tumours;	 (b)	 can	 assess	 interstitial	 infiltration;	 (c)	 can	 distinguish	
between	ductal	and	lobular	tumours;	and	(d)	can	detect	expression	
of proteins associated with BC treatment and prognosis, to guide 
endocrine therapy and prognosis.98-101	At	present,	IHC	is	the	best	
diagnostic	method	 for	 oestrogen	 receptor	 (ER)	 and	 progesterone	
receptor	 (PR)	 in	 BC.102 The basic principle of IHC (as shown in 
Figure	7)	 is	antigen-specific	binding	of	antibodies,	and	these	anti-
bodies are usually labelled with colour reagents (such as fluorescein 
and	metal	ion)	to	detect	the	antigen,	protein,	peptides,	etc	IHC	can	
screen and diagnose BC patients by evaluating the level of marker 
proteins.103 HER-2 gene amplification may cause overexpression of 
HER-2, so Suryavanshi et al104 used IHC to confirm whether HER-
2 gene was amplified abnormally in BC patients by detecting the 
level of protein and evaluating that the effect of IHC was close to 
FISH. Surely, IHC also can help researchers to explore the relation-
ship	between	external	factors	and	BC.	For	example,	Wang	et	al105 
found the underlying association between alcohol and BC by utiliz-
ing IHC. Toomey106 used IHC to assess the level of PTEN protein 
and	found	that	14	of	45	(31.1%)	tumours	samples	had	low	(absent	
or	weak)	PTEN	expression	and	PR-negative	tumour	had	higher	PTEN 
expression	 than	PR-positive	 tumours	 (37.9%	vs	 18.8%)	 in	BC.	BC	
formation may cause changes of protein levels, so IHC is able to 
study the mechanism of breast tumours by analysis of protein lev-
els.	However,	IHC	needs	fluorescence	labelling	which	is	time-con-
suming and difficult to prepare.

3.4.2 | Western blot

Similarly,	Western	blotting	also	utilizes	the	antigen-antibody	binding	
character that is highly specific. On one hand, the capacity of histo-
logical	localization	of	Western	blotting	is	poorer	than	that	of	IHC,	but	
the capacity of quantitative protein level is more accurate than that 
of	 IHC.	On	 the	other	hand,	 for	RT-qPCR,	 though	 they	all	evaluate	
quantitatively the level of proteins, their detection objects are dif-
ferent,	where	RT-qPCR	is	for	nucleic	acids,	and	Western	blotting	is	
for proteins. Using exogenous proteins to study proteins’ interaction 
is a common approach, but the most rigorous approach is to detect 
interactions between endogenous proteins.107	Western	blotting	can	
satisfy this need and be used in diagnosing BC. For example, Zhou 
et al108	used	Western	blot	to	investigate	the	expression	of	UCA1 and 
microRNA	(miRNA)	in	BC	cells	in	response	to	 IMP1 expression. Liu 
used	this	technique	to	analyse	the	relationship	between	miRNA	and	
IDH1gene.	These	results	showed	that	Western	blot	can	not	only	ex-
plore whether the proteins are expressed, but also verify whether 
the protein expression is abnormal.109 De Francesco et al110 found 
by	Western	blotting	analysis	that	HIF-1α and GPER expressions in-
creased	with	time	in	CAFs	cells,	but	expression	decreased	over	time	
in	SKBR3	cells.	Moreover,	Ansari111	utilized	Western	blot	to	analyse	
the	level	of	proteins	in	BC	and	found	that	191	from	1110	(17%)	in	the	
discovery	set	and	268	from	1554	 (17%)	 in	validation	sets	of	cases	
had	positive	SLC7A5	expression	(>15	H-score),	while	1019	in	1923	
(53%)	from	metastatic	BC	cases	had	high	mRNA	expression	(log2 in-
tensity	 >	 8).	 Surely,	Western	 blot	 has	 deficiencies,	 such	 as	 use	 of	
expensive agents, easily false positive and needs professional opera-
tion.	In	the	future,	the	decrease	in	price	of	Western	blot	agents	will	
be	a	tendency	and	simply	the	process	of	Western	blot	operation.

3.5 | Flow cytometer

Flow	 cytometer	 (FCM)	 can	 reflect	multiple	 physical	 characteris-
tics of a single cell when the cell flows in suspension,112 and it has 
become	an	 indispensable	 technology	 in	diagnosis	 of	BC.	FCM	 is	
a	high-tech	developed	 in	 the	1960s,	and	 it	 is	 the	combination	of	
many disciplines and technologies, such as cytochemistry, immu-
nology, materials science, molecular biology, spectroscopy, optical 
system, fluidic system, laser technology and computer technol-
ogy.113-116	Surely,	FCM	also	has	sorting	function	for	tumour	cells	
and can rapidly detect cells or biological particles through the 
one-by-one	flow	state,	multi-parameters	or	rapidly	qualitative	and	
quantitative analysis.117-120 Figure 8 shows how marked sites on 
cell	surface	are	detected	by	FCM.121	In	the	FCM,	the	cells	or	bio-
logical particles need to firstly be treated and labelled, so that they 
can be detected by laser.

In	recent	years,	FCM,	by	combining	with	other	detecting	tech-
niques,	 can	 achieve	 quantitative	 detection	 of	 low-abundance	
genes.122	FCM	also	is	excellent	method	in	diagnosing	BC	and	guiding	
medication. Kim et al123	 used	FCM	to	analyse	 tumour	cell	 surface	

F I G U R E  6  Schematic	diagram	of	MethyLight
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markers and found that hypoxic tumour microenvironment may 
associate with promoting malignant progression and therapy resis-
tance. Chamberlin124	 utilized	 the	 FCM	 to	mark	 different	 cells	 and	
found that the ratio of luminal and basal cells presents a significant 
increase in obese mammary glands with weight gain and expounded 

how	obesity	is	linked	to	BC.	Moreover,	Tu	et	al125	used	FCM	to	trace	
these tumour cells and found that primary breast tumour growth 
cannot be affected by an oral administration of an FUT inhibitor 
(2-fluorinated-peracetyl-fucose),	but	these	medicines	greatly	reduce	
the	lung	metastatic.	Through	FCM	analysis,	Xu	et	al126 identified the 

Protein Protein description References

HER-2 HER-2	as	therapeutic	and	prognostic	biomarker	plays	a	
significant role in Human BC. It is found that adenomas and 
carcinomas	have	higher	levels	of	HER-2	protein	than	normal	
mammary glands

163

CA125 CA125	as	a	predictive	marker	of	ovarian/breast	carcinoma,	it	
depends	on	disease	nature/stages.	CA125	plays	an	interactive	
role in the disease processes, and it is closely related to BC

164

CA19-9 Levels	of	CA19-9	are	correlated	with	treatment	response	and	
survival of BC

165

MUC1 MUC1-MBP	is	a	member	of	the	mucins	family,	and	it	is	present	in	
normal	glandular	epithelial	cells	and	tumour	cells.	MUC1-MBP	
consists of a polypeptide core and a side chain sugar chain. 
MUC1-MBP	widely	distributed	on	the	surface	of	BC	cells

166

ER ER	in	the	pathophysiology	of	BC	plays	an	important	role,	and	it	
as an index can be used to guide pharmacy for BC patients

167

CypB BC tissues have higher levels of CypB proteins than 
para cancerous tissues. Functional study confirms that 
downregulation levels of CypB may inhibit tumour cell growth, 
proliferation and migration

168

CA153 When	the	breast	becomes	cancerous,	the	activities	of	protease	
and salivary enzyme are increased, causing destruction of the 
cytoskeleton	of	the	gland,	causing	CA153	saccharide	antigen	
generally separated from the cancer cell membrane and 
releasing into the blood. It is an important index for screening 
BC

169

CEA CEA	is	an	acidic	glycoprotein	with	a	specific	determinant	of	
human	embryonic	antigen.	It	is	a	broad-spectrum	tumour	
marker that can be expressed in a variety of tumours. It is also 
elevated in the serum of patients with BC, lung cancer and 
other malignant tumours

170

PR Analysis	of	PR	proteins	remains	controversial	in	BC.	The	level	
of PR + is related to age of BC patients. The deletion of PR 
proteins might cause BC

98

TA B L E  3   Partial oncogene proteins 
related to breast cancer

F I G U R E  7   Schematic diagram of 
immunohistochemical principle
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origin	of	cancer	stem	cell	 (CSC)–like	cells	 that	would	be	critical	 to	
cancer	treatment	and	found	these	breast	non-stem	cancer	cells	are	
transferred	to	breast	CSC-like	cells	 in	apoptosis	process.	FCM	not	
only can detect the biomarkers of BC cell, but also can also detect BC 
cells based on morphology. Patel et al127 utilized digital holographic 
cytometry	(DHC)	and	found	that	a	special	marker,	sialic	acid-molecu-
larly	imprinted	polymers	(SA-MIPs),	has	impact	on	different	BC	cells’	
morphology and motility. Similarly, Farghadani et al128 investigated 
the mechanism of inhibitory and cytotoxic activity of anticancer 
agent on BC cells, cell cycle progression using flow cytometry analy-
sis, and found some valuable medicine.

There	are	some	advantages	of	FCM,	including	nonspecific	bind-
ing	 in	 antigen	 antibody	may	 cause	 the	 signalling	 pathway	of	 FCM	
to	be	affected.	Dyestuff	pollution	 in	FCM	experiment	 is	also	a	big	
trouble, and expensive instruments are required. In the future, it is 
most	important	that	diagnostic	scheme	for	FCM	should	be	standard-
ized and agents of high efficiency and low cost should be developed.

3.6 | Puncture biopsy system

Needle biopsy is a main method to obtain tumours tissue or cells sam-
ple for histopathological diagnosis. These puncture biopsies system 
include	 fine-needle	 aspiration	 cytology	 (FNAC),	 core	 needle	 biopsy	
(CNB)	 and	vacuum-assisted	 breast	 biopsy	 (VABB).129,130	At	 present,	
VABB	 has	 excellent	 effects	 in	 the	 auxiliary	 diagnosis	 of	 BC.	 Its	 ad-
vantages are as follows: single puncture can accurately and simply 
collect many samples, accurate positioning, convenient operation, 
smaller trauma area and so on. In general, obtaining samples (cells or 
tissues)	by	puncture	needs	staining	(usually	using	haematoxylin-eosin)	
to easily observe samples under optical microscope, which can rap-
idly analyse and identify pathological tissue and cell morphology to 
help doctors make pathological diagnosis. Surely, these samples also 
are detected by other molecular biology methods. Zhang et al131 used 

high-frequency	 ultrasound-guided	 breast	 mass	 biopsy	 to	 diagnose	
BC in two hundred patients. Their results showed that each patient 
had a successful puncture rate of 100% under the guidance of ultra-
sound.	Moreover,	no	complications	occurred,	and	95%	(190/200)	of	
the	patients	were	clearly	diagnosed,	and	5%	(10/200)	were	orientally	
diagnosed. The biopsy examination results were completely consist-
ent with surgical pathological results in 170 patients, accounting for 
85%. Thus, this method can provide strong evidence for diagnosis and 
identification of benign and malignant breast tumours, and for choos-
ing the correct operation scheme.131 Hu et al132	performed	US-guided	
fine-needle	 aspiration	 biopsy	 (FNAB)	 for	 early-stage	 BC	 and	 found	
that its sensitivity and specificity were higher than for US alone, 11.9% 
and	21.7%,	respectively.	With	development	of	imaging,	the	accuracy	
of puncture biopsy is higher under imaging guidance. Guo et al133 of-
fered	 a	 new	 integrated	 precise	 re-biopsy	 algorithm	 for	 pathological	
confirmation and surveillance of recurrent BC. The technology is more 
sensitive and accurate than conventional imaging technologies in di-
agnosis	of	early-stage	BC.

However, there are some disadvantages of needle breast biopsy; 
for example, it may cause tumours transfer and researchers thought 
that	high-grade,	non-coaxial	biopsies,	triple-negative	BCs	and	mul-
tiple insertions may be risk factors for neoplastic seeding.134-137 In 
the future, with development of biopsy needle, the risk of neoplastic 
seeding will be reduced and the accuracy of diagnosis will be im-
proved. Surely, the latest imaging guidance will also promote the de-
velopment of puncture biopsy.

4  | CONCLUSIONS AND FUTURE 
PERSPEC TIVES

In this review, we mainly introduced the common methods for 
diagnosis	 of	 BC.	 As	 the	 exploration	 of	 imaging	 technology	 goes	
deeper, researchers realize that the single imaging technology has 

F I G U R E  8   Isolation of individual 
droplets by flow cytomtry.121 (Reproduced 
with permission from Copyright 2020, 
American	Chemical	Society)
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lower accuracy and cannot meet the need for BC diagnosis, and 
the combination of various imaging modalities will be one of the 
major developing directions.138-140	Moreover,	 with	 development	
of biosensors, a lot of BC biomarkers have been found. The com-
bination of imaging sensors and biosensors can get unexpected 
results.141,142	Meanwhile,	more	and	more	aptamers	are	developed,	
which increases connection between imaging and molecular bi-
ology.143,144	 These	 aptamer-functionalized	 nano-composites	 not	
only can become indicators for imaging, but also can identify can-
cer cells, and/or even classify BC cells subsets. In another aspect, 
screening for new tumour biomarkers is still an important task 
which can help doctors diagnose BC faster and more accurately. 
Currently, proteins, nucleic acids and lipids are the main tumour 
markers in breast cancer, while the question remains whether 
single markers could not acquire definite diagnosis results.145,146 
Hence, multiple tumour markers or screening for a super new 
marker can greatly improve the positive diagnostic rate for BC and 
reduce the negative diagnosis rate.

Over the next few years, imaging instruments still will be the 
routine method for screening BC, because they suit to be widely ap-
plied. However, new markers for BC will advance these technologies 
to higher throughput, faster, higher sensitivity and specificity. In the 
future, with development and use of these techniques, they not only 
can diagnose BC from various aspects, but also can evaluate effect of 
treating BC. Of course, different types of BC also will be evaluated by 
corresponding diagnostic methods, to get the most accurate results.
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