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Triple-negative breast cancer (TNBC) resistance to neoadju-
vant chemotherapy (NAC) represents a major clinical chal-
lenge; therefore, delineating tumor heterogeneity can provide
novel insight into resistance mechanisms and potential thera-
peutic targets. Herein, we identified the transcriptional land-
scape associated with TNBC resistance to NAC at the single-
cell level by analyzing publicly available transcriptome data
from more than 5,000 single cells derived from four extinction
(responders) and four persistence (non-responders) patients,
revealing remarkable tumor heterogeneity. Employing iterative
clustering and guide-gene selection (ICGS) and uniform mani-
fold approximation and projection (UMAP), we classified
TNBC single cells into several clusters based on their distinct
gene signatures. The presence of clusters indicative of immune
cell activation was a hallmark of the extinction group pre-NAC,
while post NAC, the extinction tissue consisted mostly of
breast, omental fat, and fibroblasts. The persistent gene signa-
tures of pre-NAC resembled the gene signature of lung epithe-
lial, mammary, and salivary glands and acute myeloid leukemia
blast cells, which were associated with enhanced cellular move-
ment and activation of FOXM1, NOTCH1, and MYC and sup-
pression of tumor necrosis factor (TNF) and IFNGmechanistic
networks. Multivariate survival analysis identified persistence-
derived three-gene signature (KIF5BhighHLA-ClowIGHG2low)
predictive of relapse-free survival (hazard ratio [HR]: 2.2
[1.6–3.2, p < 0.0001]) in a second cohort of 360 TNBC patients.
Mechanistically, loss of function of several upregulated genes in
the persistent group (BYSL, FDPS, ENO1, MED20, MRPL9,
MRPL37, NDUFB11, PMVK, MYC, and GSTP1) inhibited
MDA-MB-231 and BT-549 TNBC models’ colony-forming
unit (CFU) potential and enhanced their sensitivity to pacli-
taxel. Our data unraveled the transcriptional portrait associ-
ated with NAC resistance, identified several key genes, and sug-
gested their potential utilization as prognostic markers and
therapeutic targets in TNBC.

INTRODUCTION
Breast cancer (BC) is one of the most common cancer types among
women with an estimated incidence of 1.5 million new cases per
year globally, hence it remains a common cause of death worldwide.1
Molecular The
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The current molecular classification of BC is based on expression of
sex hormone receptors and human epidermal growth factor receptor
2 (HER2), which have remarkable implications in diagnosis and treat-
ment choice.2 Recent approaches of molecular classification of BC
based on gene signatures are gaining momentum.3,4 Triple-negative
breast cancer (TNBC) represents 15%–20% of invasive BCs and is
characterized by the lack of expression of estrogen and progesterone
receptors and lack of amplification of HER2. Those patients do not
benefit from endocrine or anti-HER2 therapies; therefore, chemo-
therapy and surgery are the main treatment modality for TNBC pa-
tients.5 Neoadjuvant chemotherapy (NAC) is mainly administered
to facilitate breast-conserving surgery and to eliminate clinically silent
micro-metastases. TNBC patients with stages I–III receive NAC;
however, only approximately 50% achieve pathological complete
response (pCR) with favorable recurrence-free survival,6,7 whereas re-
maining patients with residual disease have high rates of metastatic
recurrence and significantly worse survival. Therefore, defining the
molecular signature that can predict the response of TNBC patients
to chemotherapy can aid in personalizing their medical care choices.8

A large number of studies revealed TNBC tumors to harbor various
somatic mutations resulting in higher degree of tumor heterogeneity.9

Several mechanisms have been implicated in BC heterogeneity,
including differentiation state of the cell of origin, cell plasticity, ge-
netic evolution, and the tumor microenvironment niche.10–15 A
recent study by Kim et al.16 described two categories of TNBC pa-
tients in response to NAC. The first group was referred to as “clonal
extinction,” which exhibited disappearance of tumor cells post-treat-
ment based on mutation analysis pre- and post-NAC treatment. The
second group was referred to as “clonal persistence,” in which certain
tumor clones based on DNA mutation analysis existed pre-NAC and
were subsequently enriched in response to NAC treatment, suggest-
ing lack of response of those patients to the treatment. In the current
rapy: Oncolytics Vol. 23 December 2021 ª 2021 The Author(s). 151
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Figure 1. Heterogeneity of TNBC single cells

revealed through ICGS2 and UMAP dimensionality

reduction analysis of TNBC-derived single cells pre-

and post-NAC

(A) Unsupervised single-cell population identification using

ICGS2 algorithm conducted on 719 extinction (re-

sponders) and 525 persistence (non-responders) single

cells pre-NAC and 894 extinction (responders) and 687

persistence (non-responders) single cells post-NAC. Data

are presented as heatmap with the enriched cell popula-

tion indicated on the left legend and the corresponding

single-cell cluster on top. Color scale displays differential

gene expression (log2). Lower legend indicated cell

origin. (B) UMAP dimensionality reduction analysis

revealing 13 cell clusters pre- and post-NAC. EXT_POST,

extinction post-NAC; EXT_PRE, extinction pre-NAC;

PER_PRE, persistence pre-NCA; PER_POST, persis-

tence post-NAC.
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study, we employed various computational pipelines (iterative clus-
tering and guide-gene selection [ICGS], uniform manifold approxi-
mation and projection [UMAP] dimensionality reduction, and inge-
nuity pathway analysis [IPA]) to delineate TNBC heterogeneity and
identified their transcriptional landscape in response to NAC at the
single-cell level. Data from the single-cell analysis was further vali-
dated in a large cohort of TNBC patients (360 patients), leading to
the identification of a three-gene signature predictive of TNBC
relapse-free survival (RFS). Mechanistically, we implicated several
persistence-derived genes in paclitaxel (PTX) resistance employing
the MDA-MB-231 and BT-549 TNBC models.

RESULTS
Single-cell RNA sequencing and ICGS reveal TNBC intratumor

heterogeneity pre- and post-NAC treatment

To investigate TNBC heterogeneity at the single-cell level, we
analyzed single-cell transcriptome data from patients classified
as extinction (responders, n = 4) and persistence (non-responders,
n = 4) pre- and post-NAC treatment. We employed the ICGS2
152 Molecular Therapy: Oncolytics Vol. 23 December 2021
algorithm, which classifies interconnected gene
elements through pairwise correlations of vari-
able genes, followed by various series of
HOPACH heatmap clustering of genes and
cells, and finally determination of representative
marker genes associated with each phenotype
(persistence versus extinction). Unsupervised
transcriptome analysis of 719 extinction and
525 persistence single cells pre-NAC and 894
extinction and 687 persistence single cells
post-NAC identified 13 clusters, each with
distinct molecular signature (Figure 1A; Table
S1). MarkerFinder subsampled ordered in heat-
map is highlighting differentially expressed
genes in each cell population within the persis-
tence and extinction group pre- and post-
NAC, where expression level of each gene (log2) is depicted according
to the color scale. Statistically enriched Gene Ontology (GO) terms
associated with each gene cluster relates common proclaimed cell
types from GO-Elite analysis. The lower legend indicates the origin
of each cell (red: persistence pre-NAC; blue: extinction pre-NAC;
gray: extinction post-NAC; and maroon: persistence post-NAC;
Figure 1A). In our data, C1 and C12 clusters were predominantly pre-
sent in the pre- and post-NAC persistence group and were highly en-
riched in genes resembling acute myeloid leukemia blast cells and
breast (C1) and bone marrow lymphoid natural killer (NK) cells
(C12) (Figure 1A). In contrast, the presence of activated B cells and
monocyte progenitors (C5) was a hallmark of the extinction group
pre-NAC. Remarkably, we observed three clusters (C31, C22, and
C14) that were enriched in the extinction, and to a lesser extent in
the persistence, post-NAC. Those clusters denote CD56+ NK cells,
myeloid leukemia pre-leukemic hematopoietic stem cells (C31),
lung macrophage and fibroblast (C22), and macrophages and stimu-
lated macrophages (C14). To further select features and delineate cell
populations, we subjected the data from the same cell populations to
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UMAP dimension reduction analysis, which revealed a total of 13
clusters (Figure 1B). Remarkably, density-based clustering of C12
and C1 showed the clear distinctive pattern among other clusters
without overlapping.

Comparative analysis of persistence versus extinction single-

cell transcriptome pre-NAC revealed remarkable differences in

gene expression and enriched GO terms

To devise a gene signature associated with resistance to NAC, we
compared the transcriptome of persistence and extinction TNBC-
derived single cells pre-NAC. Hierarchical clustering of persistence
(n = 534) and extinction (n = 781) single cells shows remarkable dif-
ferences between the two groups at the transcriptome level (Figure 2A;
Table S2). Enrichment in GO categories associated with response to
interferon gamma, gene expression, and regulation of cell death was
prominent in the persistence group. In contrast, GO terms associated
with regulation of cell division, response to protein stimulus, and se-
rotonin metabolic processes were underrepresented in the persistence
group. Immune response was most prominent in genes enriched in
the extinction group. Differentially expressed genes between the
persistence and extinction group were also reflected employing a vol-
cano plot (Figure 2B).

To validate the data obtained from the discovery cohort, we validated
the expression of the top 10 upregulated (CALML5, AZGP1, S100P,
IRX1, IRX2, NES, AC013457.1, ACTA2, PIK3R1, and LRP11) and
top 10 downregulated (FTL, B2M, HLA-DRA, HGB1, LCP1,
CXCL9, CD74, IGHG1, CD44, and UBD) genes using a second
cohort consisting of 782 extinction and 535 persistence pre-NAC
TNBC-derived single cells (Figures 2C and 2D), respectively.

IPA revealed remarkable differences in enriched functional

categories and pathways in persistence versus extinction group

To gain better insight into the biological processes enriched in the
persistence versus extinction groups, we subjected upregulated genes
in the persistence or extinction group to IPA, which revealed activa-
tion of several canonical pathways in each group, respectively (Tables
S3 and S6). The top 20 enriched canonical pathways in the persistence
group are presented in Figure 3A, which highlight pathways involved
in organelle development and cellular function, like proliferation,
migration, and invasion, including oxidative phosphorylation, Integ-
rin and Integrin-linked kinase (ILK) signaling, GP6, EIF2, Rho family
GTPases, vascular endothelial growth factor (VEGF), glycolysis,
gluconeogenesis, TCA cycle, and cholesterol biosynthesis to be pre-
dominant in the persistence group (Figure 3A; Table S3). In contrast,
canonical pathways underrepresented in the persistence group (en-
riched in the extinction group) were mostly involved in dendritic
cell maturation, T cell signaling pathway, immune response, PKC9
signaling in T lymphocyte, inducible co-stimulator (ICOS)-ICOS
(CD278) signaling costimulatory molecule expressed on T helper cells
(Th1 and Th2 cells), calcium-induced T lymphocyte apoptosis, Th1
pathway, phospholipase C signaling, oxidative phosphorylation,
interferon signaling, and BAG2 signaling pathway (Figure 3B;
Table S4). Further IPA-downstream effects analysis (DEA) revealed
a number of affected downstream biological functions that are likely
to be affected by transcriptome data. The hierarchical heatmap por-
trays the affected downstream functional groups based on differen-
tially expressed mRNAs where the major boxes with size and color
coding depict a category of diseases and functions in the persistence
versus extinction group.17 Top enriched functional categories in the
persistence group were cellular movement and cell growth and prolif-
eration (Figure 3C; Table S7). To explore further into the downstream
functional effects of upstream regulators in each patient group, we
employed the regulator effector analysis pipeline in IPA on upregu-
lated genes in persistence versus extinction TNBC (Table S6). The
network identified 7 upstream regulators (5 up: GNA12, phosphati-
dylinositol 3-kinase [PI3K] family, Insulin-like growth factor binding
protein 2 [IGFBP2], STAT3, and EGFR; and 2 down: COL18A1 and
LONP1) and 35 genes in the intermediate of hierarchy, which collec-
tively drive oncogenic phenotype, such as cell cycle, proliferation
migration, and invasion (Figure 3D). Our data identified several acti-
vated (FOXM1, NOTCH1, and MYC) and suppressed (tumor necro-
sis factor [TNF] and IFNG) signaling cascades as potential drivers of
the predicted oncogenic phenotype in the persistence group
(Figure S1).

Differences in immune-infiltrating cells are the hallmark of the

extinction group

IPA analysis of enriched gene sets in the extinction group was of
mainly those involved in immune cell trafficking and cell-to-cell
signaling interaction (Figure 4A; Table S7). We subsequently looked
for the expression of selected immune-related genes based on differ-
ential gene expression analysis in a total of 5,524 single cells derived
from the extinction and persistence groups pre- and post-NAC. Our
data revealed higher expression of CD19, CD8A, CD4, CD52, CD2,
CD53, CD59, CD47, CD74, and CXCL9 in the extinction compared
with the persistence group pre-NAC (Figure 4B). Interestingly, the
number of immune-infiltrating cells declined in the post-NAC treat-
ment in the extinction group; however, the opposite was observed in
the persistence group, where the number of infiltrating immune cells
increased post-NAC (Figure 4B). Of particular interest, we observed a
substantial increase in the number of CD74+ cells post-NAC treat-
ment in the persistence group (Figure 4B). Additionally, we also
observed the emergence of a subset of CD47bright in the persistence
group post-NAC, which otherwise was not present pre-NAC. To
determine whether there are differences in the functionality of im-
mune-infiltrating cells in the extinction versus persistence, we sub-
jected the transcriptome from CD45+EPCAM� cells to IPA analysis,
which again revealed immune cells from the extinction group to
exhibit enhanced functionality compared with immune cells from
the persistence group, suggesting functional impairment of im-
mune-infiltrating cells in the persistence group (Figures 4C and 4D).

Clinical relevance of persistence versus extinction-derived gene

signature on TNBC patients’ survival

Comparative analysis of persistence versus extinction of TNBC
subjects identified 788 upregulated and 244 downregulated genes in
the persistence cohort (Figure 4; Table S2). Genes enriched in the
Molecular Therapy: Oncolytics Vol. 23 December 2021 153
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Figure 2. Comparative analysis of the transcriptional landscape in persistence and extinction TNBC-derived single cells pre-NAC

(A) Hierarchical clustering of TNBC-derived single cells from persistence (n = 534) and extinction (n = 781) group pre-NAC. Each column represents one cell, and each row

represents a gene. Expression level of each gene (log2) in a single cell is depicted according to the color scale. (B) Volcano plot illustrating the upregulated (red) and

downregulated (blue) genes in the persistence versus extinction group pre-NAC. Validation of top 10 upregulated (C) and top 10 downregulated (D) genes in a second cohort

consisting of 782 extinction and 535 persistence TNBC-derived single cells.
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Figure 3. Ingenuity pathway analysis (IPA) of

differentially expressed genes in persistence versus

extinction group

Enriched canonical pathways based on upregulated (A)

and downregulated (B) genes in persistence versus

extinction TNBC groups. (C) Tree map (hierarchical

heatmap) depicting affected functional categories based

on upregulated genes where the major boxes represent a

category of diseases and function. Illustration of cellular

movement and cell growth and proliferation are shown in

the lower panels. (D) Regulator effects network analysis

based on IPA highlighting a role for activated (GNA12,

PI3K family, IGFBP2, STAT3, and EGFR) and suppressed

(COL18A1 and LONP1) upstream regulators and their

roles in divining tumorigenic function.
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persistence or extinction group were subsequently subjected to sur-
vival analysis on a second cohort of 360 TNBC patients. Raw RNA
sequencing (RNA-seq) data from this cohort were retrieved from
the Sequence Read Archive (SRA): SRP157974 dataset and were sub-
sequently aligned to the human genome (hg38), and gene expression
data (log2) for the persistence- and extinction-derived gene signa-
tures were subjected to univariate survival analysis. Data presented
in Figure 5 revealed several genes upregulated in the persistence
group (CD55, KIF5B, ZFAS1, CAMTA1, LRPPRC, RSL24D1,
NEBL, COXC6, PTK2, TCEA1, GDI2, NUDT5, and CD46) to corre-
late with worse RFS in TNBC patients (Figure 5A). In contrast, the
expression of several genes upregulated in the extinction group
(IGHG2, IGHM, IGLC1, HLA-C, IGHG4, IGHGP, ITGB2, HLA-
DPB1, HLA-A, and SLAMF7) showed better prognosis (Figure 5B).
Molecular The
IPA of enriched gene sets in the extinction
group was of mainly those involved in immune
cell trafficking and function (Figure 4A; Table
S7), correlated with better RFS in the same
TNBC cohort (Figure 5B).We subsequently em-
ployed multivariate analysis using stepwise Cox
regression model and identified three-gene
signature (KIF5BhighHLA-ClowIGHG2low) as
best predictor of RFS (Figure 5C). The three-
gene signature was superior to other variables,
such as tumor size (continuous), age (old versus
young), intrinsic subtype (basal versus others),
and treatment (PTX and radiotherapy), in pre-
dicting RFS (p < 0.0001, hazard ratio [HR] =
2.2 [1.6–3.2]) (Table 1).

Targeted depletion of selected persistence-

derived genes reduces TNBC colony

formation and enhances PTX sensitivity

To provide additional mechanistic insight into
driver genes and their role in PTX resistance,
we chose 10 genes for further investigation
based on our differential and pathway analysis,
as well as integration with the Achilles depen-
dency data.18 The expression of 10 upregulated genes from the dis-
covery cohort (BYSL, ENO1, FDPS, GSTP1, MED20, MRPL9,
MRPL37, MYC, NDUFB11, and PMVK) was subsequently validated
in a second cohort of 782 extinction and 535 persistence TNBC-
derived single cells, which was consistent with the discovery cohort
(Figure 6A). The expression of the 10 genes was explored in a panel
of TNBC cell lines from the CCLE database, which confirmed their
expression, suggesting their suitability as cell models to study the
function of those genes (Figure 6B). The expression of the 10 genes
was depleted in two TNBC models (MDA-MB-231 and BT-549) em-
ploying small interfering RNA (siRNA)-mediated gene silencing as
single agent or in combination with PTX (20 nM), followed by col-
ony-forming unit (CFU) assay as a measure of the effects of gene tar-
geting on CFU potential of the two TNBCmodels. Targeted depletion
rapy: Oncolytics Vol. 23 December 2021 155

http://www.moleculartherapy.org


(legend on next page)

Molecular Therapy: Oncolytics

156 Molecular Therapy: Oncolytics Vol. 23 December 2021



Figure 5. Univariate and multivariate recurrence-free survival analysis in 360 TNBC patients

A cohort of 360 patients were divided into high and low based on median gene expression derived from the persistence (A) or extinction (B) groups using Kaplan-Meier

survival analysis. Hazard ratio and log rank p value are indicated on each plot. (C) The prognostic value of three-gene signature (KIF5BhighHLA-ClowIGHG2low) is indicated.
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of BYSL and MYC caused substantial inhibition of CFU potential
of the BT-549 and MDA-MB-231 models qualitatively and quantita-
tively, which was further enhanced in the presence of PTX
(Figures 6C–6F). Knockdown of FDPS, ENO1, and PMVK caused
significant inhibition of CFU potential of MDA-MB-231 and BT-
549 models, which was further enhanced in the presence of PTX
Figure 4. Immune infiltration is the hallmark of the extinction group

(A) Tree map (hierarchical heatmap) depicting affected functional categories based on d

where the major boxes represent a category of diseases and function. Illustration of imm

panels. (B) The expression of CD19, CD8A, CD4, CD52, CD2, CD53, CD59, CD47, CD7

and post-NAC. *p < 0.01, **p < 0.001, ***p < 0.0001. Tree map (hierarchical heatm

development and function (D).
(Figures 6C–6F). Interestingly, depleting MRPL37, NDUFB11, and
GSTP1 has minimal effects on CFU potential as single agents; how-
ever, the effects were very remarkable when combined with PTX,
suggesting possible synergistic effects. Taken together, our data
demonstrated a remarkable role for several persistence-derived genes
in mediating PTX resistance in TNBC.
ownregulated genes in the persistence group (upregulated in the extinction group)

une cell trafficking and cell-to-cell signaling and interaction are shown in the lower

4, and CXCL9 in the extinction (EXT) compared with the persistence (PER) group pre-

ap) depicting activation of immune cell trafficking (C) and hematological system
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Table 1. Multivariate analyses for the prognostic value of the 3-gene signature in TNBC

B SE Wald Sig. Exp(B)

95.0% CI for Exp(B) 95.0% CI for Exp(B)

Lower Upper

Three- gene Score .820 .178 21.256 .000 2.271 1.602 3.218

intrinsic subtype .206 .355 .338 .561 1.229 .613 2.466

Size -.244 .153 2.547 .110 .784 .581 1.057

Age -.195 .303 .415 .520 .823 .455 1.489

Paclitaxel .355 .377 .888 .346 1.427 .682 2.986

Radiotherapy .813 .298 7.412 .006 2.254 1.256 4.045
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DISCUSSION
Emerging data suggest added benefit for NAC in a fraction of TNBC
patients;19 hence patients who had residual disease after NAC treat-
ment usually have significantly shorter overall and post-recurrence
survival compared with patients with pCR.7,20 Therefore, delineating
the response of individual tumor-derived cells to NAC might help
identify the molecular signature capable of predicting the response
of TNBC patients to NAC treatment, hence offering them a more
beneficial treatment option. In the current study, we characterized
the transcriptional landscape from more than 5,000 single cells
derived from eight TNBC patients in response to NAC treatment.
Our data revealed significant changes in the transcriptome of individ-
ual cells from patients who exhibited clonal persistence, compared
with patients who exhibited clonal extinction. Our data revealed large
similarity in the gene expression profile in the persistence group pre-
and post-NAC treatment, suggesting those tumors did not respond
well to the treatment, compared with the extinction group who ex-
hibited better response to NAC treatment as evident by distinct tran-
scriptome portrait pre- and post-NAC. Surprisingly, clustering anal-
ysis performed on individual cells from different TNBC patients
revealed close clustering of each patients’ individual cells pre- and
post-NAC, suggesting the existence of patient-specific tumor
signature.

Employing UMAP and ICGS2 algorithms, we identified 13 cell clus-
ters based on similarity in their transcriptome profile. We observed
enrichment of activated B and dendritic cells as the main difference
between the extinction and persistence groups. Therefore, it is
obvious that the extinction group is characterized by substantial im-
mune infiltration compared with the persistence group. Several im-
mune-related genes were enriched in the extinction group, including
MHC class I and II, CCL19, CXCL9, CD19, CD52, CD53, CD59,
CD47, CXCL10, C1QB, CD74, and B2M. Our data are in agreement
with published literature correlating the percentage of intratumoral
lymphocytes infiltration to be an independent prognostic factor for
pathologic complete response to NAC in BC patients.21 Interestingly,
the same study identified CXCL9 among their predictive immune
signature, which was also identified in our current study. García-Tei-
jido et al.22 correlated immune infiltration with better response of
TNBC patients to NAC. Notably, Ladoire et al.23 reported immune
response post-NAC to predict BC survival; however, our data suggest
158 Molecular Therapy: Oncolytics Vol. 23 December 2021
that the prediction power of immune infiltration is pre-existing before
NAC treatment. Interestingly, our study revealed a novel observation
where the number of infiltrating immune cells pre-NAC was signifi-
cantly higher in the clonal extinction compared with the clonal persis-
tence group. However, although the number of infiltrating immune
cells declined dramatically in the clonal extinction group, the number
of immune-infiltrating cells increased in the clonal persistence group
post-NAC treatment. It is plausible that the number of immune cells
declined in the clonal extinction group as a sign of tumor regression;
however, the increase in immune infiltration post-NAC in the clonal
persistence group might reflect either tumor progression or triggered
immune reaction in response to cell death inflicted by NAC treat-
ment. CD52 is a 12-amino acid glycoprotein, which is widely ex-
pressed on the cell surface of different immune cells, includingmature
lymphocytes, NK cells, and antigen-presenting cells.24 Anti-CD52 an-
tibodies have been used to treat patients with T cell leukemia and dur-
ing organ transplantation.25,26 Elevated expression of CD52 in our
data might suggest a favorable activation state of tumor-infiltrating
immune cells. Nonetheless, our data revealed almost complete
absence of B cells (CD19+) from the clonal persistence group. It
is not clear why patients with increased immune infiltration
benefit from NAC treatment. It is plausible that immune infiltration
and cytokine release might enhance NAC efficacy, or alternatively,
tumors with heavy immune infiltration might represent a different
TNBC molecular subtype that responds differently to NAC treat-
ment, which warrants further investigation. Our data also revealed
the emergence of a CD47bright cell population in the post-NAC persis-
tence group. Earlier studies have shown CD47 expression to be regu-
lated by HIF-1 and to promote evasion of phagocytosis and mainte-
nance of cancer stem cell phenotype in BC.27 Additionally, high
expression of CD47 was recently found to be associated with epithe-
lial-mesenchymal transition and poor prognosis in TNBC, thus
corroborating our data.28

The clinical relevance of immune-related genes was further validated
in a large cohort of TNBC patients (n=360). Univariate analysis iden-
tified several genes that can predict RFS in TNBC patients (CAMTA1,
CD46, CD55, COX6C, GDI2, KIF5B, LRPPRC, NEBL, NUDT5,
PTK2, RSL24D1, TCEA1, and ZFAS1) as poor prognostic and
(HLA-A, HLA-C, HLA-DPB1, IGHG2, IGHG4, IGHGP, IGHM,
IGLC1, ITGB2, and SLAMF7) as favorable prognostic markers.



Figure 6. Targeted depletion of selected

persistence-derived genes inhibits TNBC CFU

potential in vitro

(A) Expression of BYSL, FDPS, ENO1, MED20, MRPL9,

MRPL9, NDUFB11, PMVK, MYC, and GSTP1 in a second

cohort of single cells derived from the persistence (782

cells) and the extinction (535 cells) TNBC. (B) Expression

of the selected 10 genes in a panel of TNBC cell lines from

the CCLE database. Clonogenic potential of MDA-MB-

231 (C and D) or BT-549 (E and F) after transfection with

the indicated siRNA as single agent or in combination with

paclitaxel (PTX; 20 nM). Data are representative of two

experiments conducted in duplicate.
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Previous study identified PTK2/FAK as a driver of radio-resistance in
HPV-negative head and neck cancer, thus corroborating the findings
from our study in the context of NAC resistance.29 Several of
the favorable prognostic gene markers (enriched in the extinction
group) belonged to immune regulation. Employing Cox regression
survival model, we identified a three-gene signature (KIF5BhighHLA-
ClowIGHG2low) predicative of TNBC RFS. Kinesin-1 heavy chain is a
protein that is encoded by the KIF5B (Kinesin Family Member 5B)
gene. A study by Wang et al.30 reveled binding of phospholipase
D2 (PLD2) to KIF5B2 to regulate kinesin-1 motor function and BC
metastasis. In lung cancer, a fusion protein of KIF5B-RET was shown
to promote tumorigenesis of non-small cell lung cancers through acti-
vation of STAT3 signaling.31

Our IPA upstream regulators analysis revealed neurotrophins and in-
sulin receptor signaling pathways (GNA12, PI3K family, IGFBP2,
STAT3, and EGFR) are predicted to activate tumorigenicity-associ-
ated cellular development and functions, including cell cycle, prolifer-
ation, migration, and invasion in the persistence group. IGFBP2 is a
pleiotropic oncogenic protein that regulates cancer development
leading to abnormal activation of EGFR that subsequently triggers
STAT3 signaling.32 IPA analysis on the upregulated genes revealed
enrichment in cellular movement, while analysis of the downregu-
Molecular The
lated genes revealed immune cell trafficking as
the main affected functional category in the
persistence group concurrent with activation
of FOXM1, NOTCH1, and MYC and suppres-
sion of TNF and IFNG mechanistic networks
(MNs). Canonical pathway analysis and
bioinformatics revealed upregulated genes to
be associated with enrichment of tumorigenic
development, including VEGF, glycolysis,
gluconeogenesis, TCA cycle, and cholesterol
biosynthesis, whereas top downregulated path-
ways indicate lack of immune response, such
as dendritic cell maturation, T cell signaling
pathway, immune response, PKC9 signaling in
T lymphocyte, ICOS-ICOS (CD278) signaling
costimulatory molecule expressed on T helper
cells (Th1 and Th2 cells), calcium-induced T
lymphocyte apoptosis, Th1 pathway, interferon signaling, and
BAG2 signaling pathway in persistence tumors. Inactive immune
pathways in TNBC that exhibited resistance to NAC as inferred
from tyrosine kinase activity, including ZAP70, LCK, SYK, and
JAK2, had significantly lower phosphorylation in the TNBC persis-
tence group.33 The ICOS (CD28) molecule expressed on activated
T cells plays a serious role in controlling the immune response in
BC, and overexpression of ICOSL protein is associated with poor
prognoses.34

We subsequently employed and integrated an approach to identify
potential mediators of NAC resistance through integration of our
transcriptome data analysis and dependency data from the Achilles
project, which led to the identification of 10 genes as potential drivers
of the TNBC persistence phenotype (BYSL, FDPS, ENO1, MED20,
MRPL9, MRPL37, NDUFB11, PMVK, MYC, and GSTP1). Targeted
depletion of BYSL and MYC led to substantial inhibition of TNBC
CFU potential as a single agent, while an additive or more than addi-
tive combination effects were observed for the other genes, suggesting
a possible sensitizing effect. Recent data by Zhang et al.35 reported c-
Myc to maintain the self-renewal and chemoresistance properties of
colon cancer stem cells. Taken together, our data unraveled the tran-
scriptional portrait associated with NAC resistance and identified
rapy: Oncolytics Vol. 23 December 2021 159
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several driver genes and suggest their potential utilization as prog-
nostic markers and therapeutic targets.

MATERIALS AND METHODS
Dataset and bioinformatics

Single-cell raw RNA-seq data were retrieved from the SRA database
under accession number SRA: SRP114962. Data were retrieved using
the SRA toolkit version 2.9.2 as previously described.36 FASTQ files
were subsequently pseudoaligned to the ENSEMBL hg38 assembly,
and reads were counted using KALLISTO 0.42.1. Expression data
(TPMs [transcripts per million] mapped reads) were subsequently
subjected to differential gene analysis using 2.0-fold change and p
value cut-off <0.05, ICGS2, hierarchical clustering, and UMAP
dimensionality reduction as described before.17,37,38 Early cell-type
predictions were created from the software GO-Elite in AltAnalyze
using its previously defined cell and tissue marker gene database.
This database encompasses markers for several cell types and bulk tis-
sue samples. The MarkerFinder algorithm was employed to define
specific markers associated with each phenotype based on the gene
set enrichment output from GO-Elite.39 Volcano plot (scatterplot)
was used to illustrate differentially expressed genes in GraphPad
Prism 8.0 software (GraphPad, San Diego, CA, USA).

Gene set enrichment and modeling of gene interactions

networks

Upregulated genes in the persistence or extinction groups were im-
ported into the IPA software (Ingenuity Systems; https://
digitalinsights.qiagen.com/) and were subjected to functional annota-
tions and regulatory network analysis using upstream regulator anal-
ysis (URA) to analyze molecules upstream, which are connected to
genes in the dataset via a set of either direct or indirect relationship
expression changes. MNs, hypothesis networks constructs on regula-
tors, determine with URA by connecting likely part of causal mecha-
nism. Causal network analysis (CNA) is simplification of URA that
connects target gene molecules through more than one intermediate
regulator and constructs mechanistic hypotheses. DEA identifies the
biological processes (disease) and functions, which are casually
affected by deregulation of genes in the dataset and predict the biolog-
ical process outline whether upregulated or downregulated. IPA uses
precise algorithms to predict functional regulatory networks from
gene expression data and provides a significance score for each
network according to the fit of the network to the set of focus genes
in the database. The p value is the negative log of p and represents
the possibility that focus genes in the network are found together
by chance.17,40

Read mapping, alignment, and survival analysis in TNBC cohort

Raw transcriptome data for 360 TNBC patients were retrieved from
the SRA database (accession number SRA: SRP157974) using the
SRA toolkit version 2.9.2 as described above. Paired-end RNA-seq
FASTQ files were subsequently pseudoaligned to the human genome
hg38, and reads were counted using KALLISTO 0.42.1 and were pre-
sented as log2-transformed TPM values as we described before.41 Ka-
plan-Meier (non-parametric) and Cox (semi-parametric) regression
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survival analysis were conducted using IBM SPSS statistics software.
For survival analysis, patients were grouped into high or low based on
median log2 gene expression. For multivariate analysis, Cox propor-
tional hazards regression model was constructed by incorporating
variate, which gave p % 0.05 using log rank test from the univariate
Kaplan-Meier analysis. A forward stepwise Cox regression was
applied in which variables with stepwise probability of R0.05 were
included in the model, while variables with probability of R0.1
were excluded. Once signatures were derived, a combination score
of all genes in the signature was constructed by calculating the sum
score for each gene (1 for high and 0 for low) and subsequently
dividing the cohort into high or low, based on the sum score before
subjecting to Kaplan-Meier analysis. The log rank test was used to
compare the outcome between expression groups. The Cox propor-
tional hazards multiple regression model was used to identify the in-
dependent prognostic factors against other confounding variables,
such as tumor size (continuous), age (old versus young), intrinsic sub-
type (basal versus others), and treatment (PTX and radiotherapy).
Statistical analyses to compare specific gene expression and graphing
were performed using GraphPad Prism 8.0 software (GraphPad Soft-
ware, San Diego, CA, USA).

TNBC cell culture

Human BC cell lines BT-549 and MDA-MB-231 were maintained
in RPMI 1640 medium (ATCC modification; catalog number
A1049101) and DMEM (Dulbecco’s modified Eagle’s medium),
respectively. Both were supplemented with D-glucose 4,500 mg/L,
2–4 mM L-glutamine, 10% fetal bovine serum, and 1� penicillin-
streptomycin (Pen-Strep) (all purchased from GIBCO-Invitrogen,
Waltham, MA, USA). Cells were grown as monolayers at 37�C in hu-
midified CO2 (5%) incubator.

siRNA transfection

The scrambled siRNA control and ON-TARGETplus SMARTpool
siRNA targeting human BYSL, FDPS, ENO1, MED20, MRPL9,
MRPL37, NDUFB11, PMVK, MYC, and GSTP1 were purchased
from Dharmacon (Lafayette, CO, USA). Transfection was performed
using a reverse transfection approach as previously described.42 In
brief, siRNA at a final concentration of 30 nM was diluted in 50 mL
of Opti-MEM (11058-021; GIBCO, Carlsbad, CA, USA), and 1 ml
of Lipofectamine 2000 (catalog no. 52758; Invitrogen) was diluted
in 50 ml of OPTI-MEM. The diluted siRNA and Lipofectamine
2000 were mixed together and incubated at room temperature for
20 min. Twenty microliters of transfection mixture was added to
the tissue culture plate, and subsequently 10,000 cells in 60 ml trans-
fection medium (complete DMEM without Pen-Strep) were added to
each well. Twenty-four hours later, the transfection cocktail was re-
placed with complete DMEM.

CFU assay and PTX sensitivity of control and siRNA-transfected

MDA-MB-231 and BT-549 cells

Transfected cells were cultured for 48 h and treated with PTX
(20 nM). On day 5, cells were fixed with 4% PFA for 5 min followed
by washing twice in PBS and stained with crystal violet (0.1% in 10%
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EtOH) for 10 min at room temperature. The images were taken and
compared with appropriate control. Subsequently, plates were air
dried at room temperature, and CFUs were quantified by dissolving
crystal violet in 5% SDS and measured absorbance at 590 nm. The ex-
periments were repeated twice, and data are represented as mean ±

SD from four technical replicas.

Statistical analyses

Statistical analyses and graphing were performed using Microsoft
Excel 2016 and GraphPad Prism 8.0 software (GraphPad, San Diego,
CA, USA). Two-tailed t test was used for comparative groups. p values
%0.05 (two-tailed t test) were considered significant. For IPA ana-
lyses, a Z score (2.0 % Z R 2.0) was considered significant.
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