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Lung adenocarcinoma (LUAD) is one of the most common histological subtypes of lung

cancer. The aim of this study was to construct consensus clusters based on multi-omics

data and multiple algorithms. In order to identify specific molecular characteristics and

facilitate the use of precision medicine on patients we used gene expression, DNA

methylation, gene mutations, copy number variation data, and clinical data of LUAD

patients for clustering. Consensus clusters were obtained using a consensus ensemble

of five multi-omics integrative algorithms. Four molecular subtypes were identified. The

CS1 and CS2 subtypes had better prognosis. Based on the immune and drug sensitivity

predictions, we inferred that CS1 may be less responsive to immunotherapy and less

sensitive to chemotherapeutic drugs. The high immune infiltration of CS2 cells may

respond well to immunotherapy. Additionally, the CS2 subtype may also respond to

EGFR molecular targeted therapy. The CS3 and CS4 subtypes were associated with

poor prognosis. These two subtypes had more mutations, especially TP53 ones, as

well as higher sensitivity to chemotherapeutics for lung cancer. However, CS3 was

enriched in immune-related pathways and may respond to anti-PD1 immunotherapy.

In addition, CS1 and CS4 were less sensitive to ferroptosis inhibitors. We performed a

comprehensive analysis of the five types of omics data using five clustering algorithms

to reveal the molecular characteristics of LUAD patients. These findings provide

new insights into LUAD subtypes and potential clinical treatment strategies to guide

personalized management and treatment.

Keywords: lung adenocarcinoma, molecular classification, multi-omics data, immunotherapy, precision medicine

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts for more than 80% of lung cancer cases and is
the second most common cancer worldwide, with a 5-year survival rate of ∼16% (1). Within the
aforementioned percentage, 45% accounts for lung squamous cell carcinoma (LUSC) cases and
30% accounts for lung adenocarcinoma (LUAD) cases (2). Many epidemiological and experimental
studies have attributed the occurrence and progression of LUAD mainly to environmental factors
and genetic alterations (3, 4). Recent multi-omics studies have shown that there are significant
differences in the copy number variation (CNV) and methylation of LUAD subtypes with different
prognoses (5, 6), and the low expression of CNTN4 and RFTN1 predicts poorer clinical outcomes
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in LUAD patients (7). Mutations such as EGFR, KRAS,
and TP53 play an important role in lung tumorigenesis (8);
however, not all tumors develop only by activating these
mutations and are eliminated by suppressing these genes. The
occurrence and development of lung cancer is a complex
dynamic process that relies on synergistic interactions among
genes, mutations, and the tumor microenvironment. Multi-
omics analysis can reveal synergistic interactions, and a subset
of genes identified from different histological studies is closely
related to biological functions (9). Therefore, it is important
to analyze epigenetics, mutations, and transcriptomes using
comprehensive multi-omics analyses. Histological and genetic
diversity can explain some individual differences in LUAD.
Moreover, the identification of the molecular subtypes of LUAD
will facilitate the implementation of precision medicine and
improve patient prognosis.

Lung cancer is the leading cause of cancer-related mortality
and is highly resistant to conventional radiotherapy and
chemotherapy (10). In addition to radiotherapy, there are two
main types of genetic-related therapeutic strategies, targeted
therapy and immunotherapy. Targeted therapies require specific
genetic mutations that were harbored by patients with lung
cancer. These mutations in receptors or protein kinases can affect
related signaling pathways such as the RAS-RAF-MEK-ERK,
PI3K-AKT-mTOR or JAK-STAT pathways, and corresponding
drugs using in the targeted therapy have been developed
for these targets (Figure 1) (11, 12). Immunotherapy is an
effective and safe treatment approach, which is always achieved
through the introduction of immune checkpoint blockers
(ICBs) such as antibodies targeting programmed death 1 (PD-
1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) (13, 14).
However, this approach is heavily influenced by the tumor
microenvironment (TME), including T cell abundance and
tumor mutational load (15). It is important to gain insight
into how TME coordinates treatment and prognostic outcomes.
The high heterogeneity and complex molecular patterns of
LUAD limit the benefit of targeted therapies for specific
patients. Therefore, a more comprehensive understanding of the
molecular mechanisms of LUAD is necessary to develop precise
treatments and to identify the populations that will benefit most
from it.

The underlying molecular mechanisms of tumors can
help identify a range of prognostic or diagnostically relevant
biomarkers (16). Although previous studies have made great
progress in understanding the pathogenesis and treatment
strategies of LUAD (17, 18), there are shortcomings, such
as insufficient omics data or a lack of drug treatment
analysis. In this study, we performed a multi-omics analysis
of the genomics, epigenomics, and transcriptomics of
LUAD. The data were comprehensively analyzed using
five clustering algorithms to reveal the molecular features
of LUAD patients. Additionally, we discussed potential
clinical treatment strategies based on specific molecular
features, including drug chemotherapy, immunotherapy,
and targeted therapy, which will hopefully be beneficial
in guiding the personalized management and treatment
of patients.

MATERIALS AND METHODS

Patients and Samples
The sample data were obtained from LUAD patients from The
Cancer Genome Atlas (TCGA). We used the “TCGAbiolinks”
(19) R package to obtain the transcriptomic expression data of
the TCGA-LUAD cohort. Then, we preprocessed the TCGA-
based RNA-seq data to filter out low-expressed genes, and
only retained genes with a count per million (CPM) ≤1 in
at least 10% of the samples. Filtered mRNAs were annotated
using the GENCODE 27 file. Protein-coding genes were
filtered and lncRNAs were identified using Vega (https://vega.
archive.ensembl.org/). We then calculated the number of non-
overlapping exons per thousand bases per million mapped
segments (FPKM) and converted FPKM into transcripts with
values per thousand million (TPM). The TPM expression data
for mRNA, lncRNA, and miRNA were first transformed by log2
calculations. Methylation data were evaluated by TCGA using
the Infinium 450K array, and corresponding clinical data were
downloaded fromXena Public Data Hubs (https://xena.ucsc.edu/
public-hubs), while somatic mutation data were obtained from
Firehose (http://www.firehose.org/). After matching the gene
expression, methylation, mutation, copy number variation data,
and clinical data of 522 LUAD patients, the multi-omics data
of 437 patients were finally included in the follow-up analysis.
The basic clinical information of each patient is presented in
Supplementary Table S1.

The mRNA expression matrix and clinical information were
obtained as validation datasets from external GEO cohorts
including GSE68465 (20), GSE72094 (21), and GSE41271 (22).
Information on the sample size, platform, and tissue sources of
these cohorts is provided in Supplementary Table S2.

Identification of Molecular Subtypes
We identified subtypes of LUAD patients based on mRNA
expression, lncRNA expression, miRNA expression, DNA
methylation, and somatic mutation data using the R package
“MOVICS” (23). We filtered features that were considered
elites, including 1,500 mRNAs, 1,000 lncRNAs, 1,500 miRNAs,
1,500 DNA CpG methylation sites, and mutated genes with
mutation rates above 0.3. To determine the appropriate number
of subtypes, we analyzed the clustering prediction index (CPI)
(24) and Gap-statistics (25) based on multi-omics data. CPI
is computed as the average of the adjusted rand indices,
while Gap-statistics compares the change in within-cluster
dispersion with that expected under an appropriate reference
null distribution. The larger the CPI value and the Gap-
statistics value, the better the clustering effect. Subsequently,
clustering was performed using five advanced multi-omics
clustering algorithms: iClusterBayes, SNF, ConsensusClustering,
CIMLR, and MoCluster. We listed the specific parameters of
each method in Supplementary Table S3. Finally, the combined
classification was obtained through the consensus set obtained
from the “getConsensusMOIC()” function, and the subtypes
were identified with high robustness. Sample similarity in
subtypes was quantified using silhouette scores.
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FIGURE 1 | Overview of molecular pathways, potential targets and drugs in non-small cell lung cancer (NSCLC).

Pathway Enrichment Analysis
Using the raw count data of RNA-seq gene expression,
differentially expressed mRNAs were identified by the R
package “DESeq2” (26). The filtering parameters for differentially
expressed mRNAs were set as follows: false discovery rate (FDR)
< 0.05, |log 2 Fold change (log2 FC)| > 2.

We used the R package “clusterProfiler” (27) for gene set
enrichment analysis (GSEA), and P-values were adjusted for
multiple testing using the Benjamini-Hochberg method with a
threshold of FDR <0.05. To further reveal the specific features
of each subtype, we assessed the activation levels of pathways
of interest, including previously published oncogenic pathways
(28), metabolic pathways (29), and immune cell features (30).

We calculated single-sample gene set enrichment scores for
the pathways of interest by the R package “GSVA” (31), and
the average enrichment scores for each subtype were used for
visualization by a heatmap.

Characterization of Genetic Alteration on
Subtypes
Somatic copy number alteration (SCNA) data were downloaded
from Firehose, and SCNA analysis was performed using
GISTIC2.0 (32) on GenePattern. We selected the hg19.mat
reference genome file for annotation, explored genomic regions
with significant amplifications or deletions (threshold of 0.1), and
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further visualized chromosomal amplifications and deletions at
the arm level for analysis.

We calculated differences in mutation frequencies between
individual samples using the “maftools” package (33), identified
mutations with significant differences (p < 0.05), and produced
an overall mutation landscape map using Oncoprint.

TMB was assessed by counting the number of non-
synonymous mutations per million bases. FGA is the percentage
of the genome affected by an increase or decrease in
copy numbers.

Immune Microenvironment Analysis
We evaluated the infiltration rate of immune cells using
the CIBERSORT (34) algorithm to estimate the abundance
of 22 immune cell types (LM22) between different tumor
stages. Additionally, a microenvironmental cell population
counter (MCPcounter) (30) was used to estimate the number
of infiltrating immune cells. The absolute abundance of
eight immune cell types and two stromal cell populations
in heterogeneous cellular tissues was quantified based on
transcriptomic data, thus reflecting the characteristics of the
tumor microenvironment.

Intra-Tumoral Heterogeneity
Weused themutant-allele tumor heterogeneity (MATH) score by
the R package “maftools” to assess intra-tumoral heterogeneity.
Each tumor’s MATH (35) score was calculated from the median
absolute deviation (MAD) and the median of the mutant-allele
fractions at the tumor-specific mutated loci. This score quantifies
genetic heterogeneity within a tumor using the normalized
variance of the frequency distribution of mutant alleles involved
in somatic mutations.

Assessing the Response to
Immunotherapy
To assess the likelihood of individual response to
immunotherapy, we used the tumor immune dysfunction
and exclusion (TIDE) algorithm (36). Higher TIDE scores
indicate greater dysfunction and rejection of T cells by the
immune microenvironment, suggesting a lower likelihood of
benefiting from immune checkpoint blockade (ICB). We used
the TIDE web application (http://tide.dfci.harvard.edu/) to
analyze the response status of each sample to immunotherapy.

In addition, specific gene sets containing 795 genes were
obtained from melanoma cohorts in which patients received
anti-CTLA-4 or anti-PD-1 checkpoint inhibition therapy.
Unsupervised subclass mapping analysis (SubMap) (37) was
used to compare similarities between lung adenocarcinoma and
immunotherapy subgroups and to identify responders to anti-
CTLA-4 or anti-PD-1 immunotherapy.

Chemotherapeutic Response Prediction
We predicted the chemotherapeutic response of each sample by
the R package “pRRophetic” (38) based on the Genomics of Drug
Sensitivity in Cancer (GDSC) database (39). “AllSoldTumours”
was selected as the tissue type for analysis, and the batch effect
of cell lines was eliminated using the ComBat function. The

mean value was used for repeated gene expressionmeasurements,
and all other parameters were set to their default values. The
maximum half-inhibitory concentration (IC50) of the samples
was estimated by ridge regression fitting to a homogenized
dataset, with a lower IC50 indicating higher drug sensitivity.
The accuracy of the predictions was assessed using ten-fold
cross-validation based on the GDSC training set, resulting in a
sensitivity estimate for each chemotherapeutic drug.

Validation of External Cohorts
We used nearest template prediction (NTP), which can be
flexibly applied to cross-platform, cross-species, and multiclass
predictions without any optimization of the analysis parameters,
to predict subtypes in validation cohorts (40).

Statistical Analyses
All statistical analyses were performed using R software (version
4.1.1). Fisher’s exact test for independence was used to statistically
test the association between categorical clinical information and
the defined subtypes. Either the chi-squared test or Fisher’s exact
test was used to test the significance of the logistic regression of
categorical data when appropriate. The Wilcoxon test (Mann-
Whitney test) was used for continuous data. Survival analysis was
performed using the R package survival, and Kaplan-Meier plots
and log-rank tests were used to assess the difference in the overall
survival (OS) between subtypes (41). For all statistical analyses, P
< 0.05 were considered statistically significant.

RESULTS

The Multi-Omics Classification of LUAD
Resulted in Four Subtypes
After matching multiple omics data, 437 samples were included
in the follow-up analysis. First, we estimated the number of
clusters based on CPI and gaps statistics analysis. The CPI
peaked at 4 and the gap statistic did not decline too much
at a k value of =4; therefore, the optimal number of four
clusters was considered (Figure 2A). Subsequently, to make the
classification more robust, we integrated the clustering results
of the five algorithms using a consensus ensemble (Figure 2B).
Ultimately, the patients were divided into four subtypes: CS1,
CS2, CS3, and CS4. We also quantified the similarity of the
samples through silhouette analysis. The results showed that
these subtypes were well separated and distinguishable from
each other, with silhouette scores of 0.72, 0.57, 0.40, and 0.54,
respectively (Figure 2C). The survival analysis showed that the
four subtypes had significantly different OS rates (P< 0.001). The
prognosis of CS1 and CS2 was relatively favorable, whereas that
of CS3 and CS4 was relatively poor. Among the four subtypes,
CS4 had the worst prognosis, and its OS was significantly lower
than those of other subtypes (CS4 vs. CS1, P= 0.001; CS4 vs. CS2,
P < 0.001; CS4 vs. CS3, P = 0.016; Figure 2D).

The distribution of the multi-omics data for each subtype
is shown in Figure 2E. The heatmap of the mRNA showed
that each subtype was clearly distinguished. A relatively obvious
hypermethylated region was observed in the CS3 subtype.
Additionally, the CS3 and CS4 subtypes were far more mutated
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FIGURE 2 | (A) Identification of the optimal number of clusters by calculating CPI (blue line) and the gap statistic (red line) in the LUAD cohort. (B) Consensus

heatmap based on the results of five multi-omics comprehensive clustering algorithms with a cluster number of 4. (C) Silhouette scores were used to quantify sample

similarity based on the consensus clustering results. (D) Kaplan-Meier survival analysis of overall survival in the four subtypes. (E) Comprehensive heatmap of

multi-omics integrative clustering by five clustering algorithms with annotation of the top features. (F) Heatmap of specific metabolism-related pathways in the four

subtypes. (G) Heatmap of specific immune-related pathways in the four subtypes. (H) Heatmap of specific tumor-associated pathways in the four subtypes.

than the other two subtypes. Within the top 10 representative
omics datasets, we found that TPX2, UBE2T, TTK, NCAPH, and
NEK2 were the top mRNA features, and TP53, EGFR, KEAP1,
RYR2, and CSMD3 were the top mutations with a high impact
on subtyping. PCED1B-AS1, SFTA1P, LINC00892, LINC00426
and ELK1, CLCN5, PGK1, SYP were the representative lncRNA
and genes corresponding to the methylated sites, respectively.
Moreover, information on patient age, race, pathological stage,
sex, smoking history, and TP53 mutations were also listed.

Clinical Characteristics
To characterize the basic information of LUAD patients, we
summarized the clinical variables of the four patient subtypes,
including age, race, pathological stage, sex, and TP53 (Table 1).
In this cohort of 437 patients, we found a significant difference
in patient age; the CS2 group seemed to be enriched in elderly
patients (P= 0.004). The CS2 and CS3 subtypes had more female
patients, while the CS1 and CS4 subtypes had more male patients

(P < 0.001). In addition, the TP53 mutations were significantly
higher in CS3 and CS4 than in CS1 and CS2 patients (P < 0.001).

Signaling Pathway Analysis in the Four
Subtypes
Tumors reprogram the metabolic pathway to meet the
requirements for biosynthesis and nutrition, and metabolic
patterns are associated with prognosis in many cancers (42, 43).
Therefore, further understanding cancer metabolism and
identifying key pathways may reveal the pathogenesis of lung
adenocarcinoma and improve clinical treatment. Thus, we first
studied whether there were different metabolic characteristics
among the subtypes. In the TCGA-LUAD cohort, we estimated
the GSVA enrichment score of the metabolic pathway and
constructed a heatmap for visualization (Figure 2F). We found
that each subtype had unique metabolic pathways with different
metabolic levels. Among these, CS1 and CS4 were enriched
in more metabolic pathways. The Krebs cycle ribose, sugar
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TABLE 1 | Baseline characteristics of LUAD participants in the CS1, CS2, CS3 and CS4.

CS1 (N = 81) CS2 (N = 120) CS3 (N = 144) CS4 (N = 92) Pa

Age [median (IQR)] 65.00 (60.00, 71.00) 69.00 (61.00, 75.00) 63.00 (56.00, 72.00) 63.00 (58.00, 72.00) 0.004

Gender (%) <0.001

FEMALE 32 (39.5) 79 (65.8) 88 (61.1) 36 (39.1)

MALE 49 (60.5) 41 (34.2) 56 (38.9) 56 (60.9)

Race (%) 0.632

ASIAN 1 (1.4) 3 (2.7) 2 (1.5) 0 (0.0)

Others 11 (15.7) 11 (9.8) 15 (11.5) 13 (15.1)

WHITE 58 (82.9) 98 (87.5) 114 (87.0) 73 (84.9)

pStage (%) 0.040

Stage I 44 (54.3) 78 (66.1) 74 (52.1) 41 (45.1)

Stage II 17 (21.0) 23 (19.5) 44 (31.0) 22 (24.2)

Stage III 15 (18.5) 13 (11.0) 20 (14.1) 21 (23.1)

Stage IV 5 (6.2) 4 (3.4) 4 (2.8) 7 (7.7)

TP53 (%) <0.001

Mutated 21 (25.9) 33 (27.5) 107 (74.3) 73 (79.3)

Wild 60 (74.1) 87 (72.5) 37 (25.7) 19 (20.7)

aχ2 or Fisher’s exact test for categorical data and Mann-Whitney test for continuous data.

metabolism, serine metabolism, and other metabolic pathways
were highly activated. In contrast, we found that carbohydrate
and nucleotide metabolism pathways associated with poor
prognosis were upregulated in CS3 and CS4, respectively. This
is consistent with the hypothesis that cancer cells have increased
requirements for glucose uptake and nucleotide synthesis
(29, 44). In contrast, the lipid metabolic pathway is associated
with a better prognosis and is upregulated in CS1 and CS2 (45).

We then explored the enrichment of immune-related
pathways in LUAD subtypes to assess their immunological
status and presented them in a heatmap (Figure 2G). Based on
their immune infiltration, we observed that CS2 and CS3 were
immune-hot subtypes. This implies that these patients may have
a better response to immunotherapy. These subtypes had higher
infiltration of monocytes, macrophages, dendritic cells, and some
B and T cells. In addition, CS3 and CS4 were enriched in the
fibroblast pathway, which may lead to a poor prognosis for
patients with these two subtypes.

We further compared the activation status of 50 tumor-
associated pathways among the four subtypes (Figure 2H).
The results showed that the mitotic spindle, PI3K/AKT/mTOR
signaling, G2M checkpoint, E2F targets, unfolded protein
response, mtorc1 signaling, DNA repair, and two MYC target
pathways were highly activated in CS4 cells. These activated
cell cycle-and oncogenic-related pathways were positively
correlated with the poor prognosis of CS4 and were significantly
downregulated in CS2. Epithelial-mesenchymal transition
(EMT) is a key process in cancer cell metastasis. In this process,
epithelial cells acquire the characteristics of mesenchymal cells,
which enhances the mobility and migration ability of cancer
cells. The epithelial-mesenchymal transition pathway is activated
in CS3 and CS4, which may be related to poor prognosis. We
also observed that the interferon alpha response, interferon
gamma response, allograft rejection, IL-2-STAT5 signaling,

IL-6/JAK/STAT3 signaling, inflammatory response, and other
pathways were activated in CS2 and CS3. These results suggest
that these two subtypes are related to immune response and
inflammation. Simultaneously, these immune-related pathways
were significantly downregulated in CS1 mice. Although both
the CS2 and CS3 subtypes showed activation of immune-related
pathways, more oncogenic pathways in CS3 were activated,
including EMT, angiogenesis, hypoxia, apoptosis, and the
PI3K/AKT/mTOR signaling pathway, which may contribute to
shaping a poor prognostic molecular subtype of CS3.

The Effect of Genetic Alteration on
Subtypes
Gene mutations and copy number alterations play key roles in
tumorigenesis and cancer development. Therefore, we compared
genetic alterations between the subtypes. We first evaluated the
copy number alterations of the four subtypes and found that,
compared with the other three subtypes, CS2 had fewer CNAs
in both lost and gained genomes (Figure 3A). To explore the
difference in SCNA among the patients of different subtypes, we
used GISTIC 2.0 to analyze the changes in their chromosomal
regions and drew copy number amplification and deletion maps
according to the G score (Figure 3B). We found that CS1
had obvious copy number amplification on chromosomes 8,
14 and 20. CS4 had obvious copy number amplification on
chromosomes 7, 8 and 14, and it showed copy number deletion
on chromosomes 9. Although CS2 and CS3 showed similar copy
number variation regions, the cell band of C3 had more regional
amplification and deletion than C2, which may also be the reason
why C2 was better than the C3 subtype in terms of prognosis. In
short, alterations in copy number may be among the mechanisms
that lead to differences in metabolism, immunity, and prognosis
among the four subtypes.
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Gene function is not only affected by its expression level
and copy number variation but also by mutations. As shown in
Figure 3C, the analysis of somatic mutations showed that 389
of 437 (89.02%) lung adenocarcinoma patients had mutations,
most of which were missense ones. Compared to the CS1
and CS2 subtypes, CS3 and CS4 had a higher number of
mutant genes. Twenty mutant genes had an overall mutation
rate of >15%. TP53 had the highest mutation frequency, with
mutations occurring in 52% of the samples. TP53, CSMD3,
RYR2, ZFHX4, and KRASwere the top fivemutated genes in lung
adenocarcinoma samples. TP53 and KRAS are common gene
mutations in lung adenocarcinoma and often indicate a worse
prognosis. More KEAP1 mutations were also present in CS1 and
CS4; studies have shown that non-small cell lung cancer (NSCLC)
patients carrying STK11/KEAP1mutations have less immune cell
infiltration, which may lead to a poorer response to immune
checkpoint inhibitors (ICIs) or poorer survival. We analyzed
the mutual exclusion and co-occurrence of mutations. Most
mutations co-occurred, whereas KRAS was mutually exclusive
with TP53 (Figure 3D).

The tumormutational burden (TMB) has become a promising
and clinically validated biomarker for immune checkpoint
inhibitors. We observed significantly higher average TMB
values for CS3 and CS4 (P < 0.001, Figure 3E). Tumors
with high TMB levels represent a potentially high number of
neoantigens in tumor cells that can be recognized by the immune
system. They are more likely to be recognized by the immune
system and respond to immunotherapy. However, they may
be affected by the immune microenvironment. The results of
our evaluation using the TIDE algorithm showed that patients
of the CS2 subtype were more likely to respond positively to
immunotherapy (Figure 3F).

Differential Analysis of Two Immune
Subtypes
CS2 and CS3 are two potential immune subtypes; however,
their immune infiltration profiles and potential responses to
immunotherapy are different and require further analysis.
Therefore, we further compared the CS2 and CS3 subtypes. First,
we performed differential expression analysis of CS2 and CS3 by
DESeq2 and identified 585 significantly differentially expressed
genes (Figure 4A), with a threshold value of FDR < 0.05, and an
absolute value of log2FC > 2. This included 255 genes that were
significantly upregulated and 330 genes that were significantly
downregulated in the CS2 subtype (Supplementary Table S4).
Among these genes, nine (i.e., TFF2, REG4, TFF1, ANXA10,
MUC17, EPS8L3, MUC5AC, ONECUT3, and GC) were
upregulated by more than five times, and three (i.e., MAGEA6,
MAGEA4, and MAGEB2) were downregulated by more than
five times. Among the significantly downregulated genes, the
MAGE-A subfamily members play an important role in patient
prognosis. Their overexpression is linked to poor prognosis in
lung cancer and could serve as a potential prognosticmarker (46).
This finding is consistent with the differences in survival between
CS2 and CS3.

In addition, we found significant differences in mutations
between CS2 and CS3 (Figure 4B), where CS3 harbored more

mutated genes, but EGFR mutations were more frequent in CS2
than in CS3. This implies that such patients may benefit from
EGFR-targeted therapy.

Next, we compared differences in immune cell infiltration.
We used the MCP-counter algorithm to calculate the abundance
of 10 immune-infiltrating cells (Figure 4C), demonstrating that
the immune enrichment score of CS2 in the B lineage, myeloid
dendritic cells, neutrophils, and endothelial cells was significantly
higher than that of CS3. However, CS3 cells had higher
monocytic lineage and fibroblast cell enrichment score. In lung
adenocarcinoma, infiltration by B cells could independently
predict favorable prognosis (47), whereas fibroblasts were
reported to be associated with poor outcomes (30, 48), which is
consistent with the poorer prognosis in CS3.

In addition, we used the CIBERSORT method to
evaluate the infiltration of LM22 immune cells (Figure 4D;
Supplementary Table S5) and found that although the CS2
subtype had higher infiltration of B cell memory, in CD4 naive
T cells, CD4 memory resting cells, dendritic cells, and resting
mast cells, the CS3 subtype appeared to exhibit a more highly
activated immune infiltration. Specifically, the CS3 subtype
showed high expression in terms of T cells CD8, T cells CD4
memory activated, and activated NK cells. At the same time, CS3
also showed higher infiltration of the anti-inflammatory immune
cell macrophages M0 and M1.

Precision Treatment Recommendations for
LUAD Patients
We referred to the chemotherapy regimen for cell lung cancer
in the NCCN Guidelines (Version 3.2020) and analyzed the
drug sensitivity of common chemotherapy drugs for lung
adenocarcinoma, including cisplatin, paclitaxel, docetaxel, and
vinorelbine (Figures 5A–D). We trained the predictionmodel on
the GDSC cell line dataset using ridge regression and assessed
the accuracy of the prediction by ten-fold cross-validation, based
on which the IC50 values of each sample in each subtype were
estimated. As shown in Figure 6, CS3 and CS4 patients had lower
IC50 values, indicating that they may be more sensitive to these
chemotherapy drugs. Previous studies have shown that inhibition
of STAT3 expression may be the key to the combination of
paclitaxel and cisplatin in NSCLC chemotherapy (49–51). miR-
526b-3p promotes the response to cisplatin by inhibiting STAT3.
miR-9600 enhanced the drug sensitivity of non-small cell lung
cancer to paclitaxel and cisplatin by inhibiting targeted STAT3.
In our study, STAT3 expression was significantly lower in CS3
and CS4 [CS1: 159.11 (126.81, 199.74); CS2: 147.22 (129.03,
182.49); CS3: 129.68 (108.29, 167.60); CS4: 122.66 (98.27, 159.05);
P < 0.001], which may be the main reason why these two
subtypes are more sensitive to cisplatin and paclitaxel. On the
other hand, class III β-tubulin (TUBB3) is a predictive marker of
vinorelbine sensitivity in non-small cell lung cancer (52). Tumors
with high levels of TUBB3 expression were more sensitive to
vinorelbine. This is also consistent with our findings [CS1: 4.58
(2.10, 10.14); CS2: 2.27 (0.89, 3.85); CS3: 7.78 (3.75, 13.19);
CS4: 8.47 (3.89, 14.13); P < 0.001]. Although previous studies
have shown that inhibitor of growth 4 (ING4) is associated with
docetaxel sensitivity (53), no such association was found in our
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FIGURE 3 | (A) Bar plot of fraction genome altered among the four subtypes. (B) The copy number amplifications and deletions among the 22 chromosomes in the

four subgroups. (C) The waterfall plot shows the somatic mutation landscape of the top 15 most frequently mutated genes. The bar plot above the heatmap denotes

the number of mutations occurring for each subject and the right side bar plot shows the number of subjects having a mutation for each gene. (D) The heatmap

shows the mutually co-occurring and exclusive mutations of the top 30 frequently mutated genes. (E) Comparison of TMB and TiTv (transitions and transversions)

among the four subtypes. (F) The bar plot of immunotherapy responders and non-responders predicted by the TIDE method.

subtypes. There may be other confounding factors, or other
potential markers yet to be discovered.

We further explored the possibility of the response of the
two groups of patients with potential immune subtypes to

immunotherapy. First, we made predictions using the TIDE
algorithm and found that 81 patients in CS2 and 31 patients
in CS3 had a potential response to immunotherapy (Figure 3F;
68 and 22%, respectively; P < 0.001). We then compared
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FIGURE 4 | (A) The volcano plot shows the overall pattern of differentially expressed genes in the CS2 and CS3 subgroups. (B) The forest plot displays the

significantly differentially mutated genes between two subgroups. (C) The boxplot shows the abundance of ten immune infiltrating cells calculated by the

MCP-counter algorithm in different subtypes. (D) The boxplot shows the infiltration of LM22 immune cells evaluated by the CIBERSORT method in two subtypes.
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FIGURE 5 | (A–D) The box plots of the estimated IC50 for common chemotherapy drugs (cisplatin, paclitaxel, docetaxel, and vinorelbine) of lung adenocarcinoma

between the four subtypes. (E) Submap analysis manifested that patients in CS3 were more likely to respond to anti-PD1-R immunotherapy. (F) The t test of the

MATH value revealed a difference in intra-tumoral heterogeneity between CS2 and CS3. (G–I) The box plots of the estimated IC50 for three ferroptosis inhibitors,

ML162, ML210, and erastin among the four subtypes.

the expression profiles of the two immune subtypes in LUAD
with another published dataset of patients with melanoma
responding to immunotherapy to predict the clinical response
to immune checkpoint blockade using the subtype mapping
method (Figure 5E). The results showed that CS3 patients
were more likely to respond to anti-PD-1 immunotherapy
(P = 0.015). TP53 missense mutations are associated with
better clinical outcomes of anti-PD-1/L1 therapy, and patients
with TP53/KRAS double mutations are a superior population
for immunotherapy. Therefore, CS3 may be more likely

to respond to anti-PD-1 immunotherapy than the other
subtypes. In addition to TIDE and SubMap predictions, we
also used intra-tumoral heterogeneity to predict the effect
of immunotherapy. Studies have shown that intra-tumoral
heterogeneity can better predict immunotherapy outcomes. The
higher the intra-tumoral heterogeneity, the easier it is to suppress
the antitumor immune response. We used the MATH value
as a biomarker of intra-tumoral heterogeneity and quantified
intra-tumoral heterogeneity using the ratio of the width of the
mutant allele component in the tumor-specific mutation locus
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FIGURE 6 | (A–C) Heatmap of NTP in three external cohorts GSE68465, GSE72094, and GSE41271 using subtype-specific upregulated biomarkers identified from

the LUAD cohort. (D–F) Kaplan-Meier survival curve of the predicted four subtypes of three external cohorts.
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to the central distribution (Supplementary Table S6). Although
the T test results showed that the intra-tumoral heterogeneity in
CS2 and CS3 was not significantly different (P = 0.058), the ITH
in CS2 was lower (Figure 5F), with a trend of responding better
to immunotherapy.

Recently, ferroptosis has gained popularity as an alternative
therapy for malignancies resistant to conventional therapies (54).
A correlation was found between the KEAP1 mutation status
and erastin-induced or ML162-induced ferroptosis. KEAP1
mutations are associated with resistance to ferroptosis (55). We
performed drug sensitivity analysis of the three main ferroptosis
inhibitors, ML162, ML210, and erastin. The results showed
that ML162 and ML210 were less sensitive to CS1 and CS4
(Figures 5G,H; P < 0.001). Although the difference in drug
sensitivity to erastin was not significant, there was a trend for it
to be lower in CS1 and CS4 (Figure 5I; P = 0.093).

Validation of Subtypes in Three External
Cohorts
We identified the first 200 upregulated biomarkers in the CS1,
CS2, CS3, and CS4 subtypes using “DESeq2,” adjusted for a
significance threshold of P < 0.05. Three external cohorts
GSE68465, GSE72094, and GSE41271 were used to verify
the reliability of the new subtype. Predictions were made in
each cohort using the NTP method based on the specific
upregulation of biomarkers in the subtypes (Figures 6A–C). It
is worth noting that in the three external validation cohorts,
although the survival differences of the CS1, CS2, and CS3
subtypes did not approach statistical significance, we observed
some prognostic predictions that were consistent with those of
the original subtypes (Figures 6D–F). Specifically, the survival
analysis showed that the clinical prognosis of CS4 was the worst
among all subtypes, while the prognosis of patients with the
CS2 subtype was the most favorable (GSE68465, P < 0.005;
GSE72094, P = 0.013; GSE41271, P = 0.076).

DISCUSSION

Lung cancer is a fatal malignancy and a leading cause of
cancer-related mortality worldwide. With the development of
high-throughput biochemical technologies, a large amount of
omics data has been accumulated to help characterize the
molecular mechanisms of different types of cancers (56). The
high heterogeneity and complex molecular patterns of LUAD
make it difficult to analyze marker genes or mutations alone,
and a more comprehensive understanding of the molecular
mechanisms of LUAD is necessary. Multi-omics data provide
a valuable resource for subtype analysis. Previous studies have
identified LUAD subtypes based on single omics datasets or a
single clustering algorithm (7, 16). However, few studies have
combined multi-omics data with multiple clustering algorithms
to classify LUAD (57). However, such analyses are often limited.
It is difficult to obtain a comprehensive understanding of tumor
occurrence and progression for analysis using a single omics
dataset. Additionally, a single clustering algorithm may not be
robust. Therefore, integrating multi-omics information provides

more correlational evidence for biological mechanisms, thus
allowing for a deeper understanding of complex biological
processes. In our study, we combined five clustering algorithms
to derive stable and robust subtypes.

To better understand the molecular characteristics of LUAD,
we classified it into four subtypes. We speculated that CS1 and
CS4 may be less responsive to immunotherapy. In addition, CS4
hadmoremutations and aworse prognostic profile thanCS1. The
immune infiltration profiles of CS2 and CS3 differed. In contrast,
CS3 harbored more mutations with remarkably poor clinical
outcomes. The functional and signaling pathway enrichment
analyses confirmed that CS1 was enriched in more metabolic
pathways than CS4, but was barely enriched in immune-related
pathways, while fewer oncogenic pathways were activated. Both
the CS2 and CS3 subtypes showed activation of immune-related
pathways, but more oncogenic pathways were activated in CS3.
In addition to metabolism-related pathways, the CS4 subtype
was also enriched in cell cycle-related, oncogenic, and malignant
fibroblast pathways.

Our study not only classifies LUAD patients but also provides
new insights for predicting the sensitivity of immunotherapy
and chemotherapy and possible targeted therapies. Recently,
molecular targeted therapy has significantly improved the
treatment of cancer patients. Epidermal growth factor receptor
(EGFR) is the most representative mutation in LUAD patients
and can be used as a sensitive therapeutic target inhibitor of
tyrosine kinase (TKI) (58). In our study, patients belong to CS2
had more EGFR mutations (0 vs. 25.00% vs. 11.81% vs. 7.61%;
P < 0.001); thus, CS2 could be a potential population that were
benefit from targeted therapy. Additionally, KRAS had a higher
mutation frequency in our finding, especially in the CS1 subtype,
with significantly more KRAS mutations (55.56% vs. 26.67% vs.
27.78% vs. 20.65%; P < 0.001; Supplementary Table S7). This
may lead to unfavorable response of chemotherapy in these
patients, and may affect the efficacy of EGFR-TKI. However,
the CS2 subtype may show higher likelihood of responding
to the KRAS inhibitor (e.g., Sotorasib) as compared to other
subtypes (59).

Immune checkpoint inhibitors (ICIs) have emerged as one of
the most promising approaches for cancer therapy (60). Studies
have shown that immune checkpoint inhibitor therapy targeting
PD-L1/PD-1 is a promising solution in the field of NSCLC
treatments (61). Some treatments have been approved by the
FDA for the treatment of advanced NSCLC patients and have
shown significant efficacy in clinical practice (62, 63). We used
the SubMap method to predict the likelihood that CS3 patients
would be more responsive to anti-PD-1 immunotherapy. In CS3
patients, who are rich in TP53 mutations and may respond to
PD-1 immunotherapy, this treatment may have better efficacy
(64). Although immune checkpoint inhibitors seem promising
for lung cancer treatment, not all lung cancer patients respond
to immune checkpoint inhibitor targeting, probably because of
the complexity and limitations of tumor immunity. Therefore,
LUAD subtyping may reveal subgroups of patients that could
benefit from immunotherapy or chemotherapy. We used TIDE
predictions and found that CS2 was a more promising subtype
for responding to immunotherapy. These results suggest that the
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CS2 subtype has a better immune infiltration environment and
may therefore inhibit tumor growth, progression, invasion, and
metastasis, thus demonstrating a better prognosis. Although CS3
did not have a high response rate to immunotherapy in TIDE
prediction, high TP53 mutations and highly activated immune
infiltration made it likely to benefit from anti-PD-1 therapy.

In addition, considering that chemotherapy remains a
common method for the treatment of lung cancer, we estimated
the chemosensitivity of each sample based on the IC50 value. The
results showed that subtypes CS3 and CS4 were more sensitive to
chemotherapy than the other two subtypes.

Ferroptosis affects the efficacy of chemotherapy, radiotherapy,
and immunotherapy; therefore, combinations of drugs that
target ferroptosis signaling could improve the outcomes of these
therapies. We investigated the sensitivity of different subtypes
of major ferroptosis inhibitors. We found that CS1 and CS4,
which are enriched for KEAP1 mutations, are less sensitive to
ferroptosis inhibitors and may be less likely to benefit from them.

Our study is the first to evaluate LUAD classifications
based on multi-omics data and multi-clustering methods. A
comprehensive molecular characterization analysis of LUAD
was performed. Molecular differences between the identified
subtypes may be beneficial in providing new markers for
specific treatments and opening new avenues for precision
therapy in lung adenocarcinoma. Our immune prediction and
drug sensitivity analysis also provide potential therapeutic
strategies for immunotherapy and chemotherapy. Meanwhile,
the prominent molecular features of each subtype may guide
the development of new drug strategies. However, this study has
some limitations. First, our study was retrospective; therefore,
our results need to be confirmed by prospective experiments.
In addition, TCGA data included in the analysis were mostly
from patients in developed countries, and data from developing
countries were lacking.
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