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ABSTRACT

Background and aims: Experiencing acute stress is common in behavioral addictions such as gambling
disorder. Additionally, like most substance-induced addictions, aberrant decision-making wherein a
reactive habit-induced response (conceptualized as a Model-free [MF] in reinforcement learning)
suppresses a flexible goal-directed response (conceptualized as a Model-based [MB]) is also common in
gambling disorder. In the current study we investigated the influence of acute stress on the balance
between habitual response and the goal-directed system. Methods: A sample of N 5 116 problem
gamblers (PG) and healthy controls (HC) performed an acute stress task – the Socially Evaluated Cold
pressure task (SECPT) – or a control task. Self-reported stress and salivary cortisol were collected as
measures of acute stress. Following the SECPT, participants performed the Two-Step Markov Task to
account for the relative contribution of MB and MF strategies. Additionally, verbal working memory
and IQ measures were collected to account for their mediating effects on the orchestration between
MB/MF and the impact of stress. Results: Both groups had comparable baseline and stress-induced
cortisol response to the SECPT. Non-stressed PG displayed lower MB learning than HC. MANOVA
and regression analyses showed a deleterious effect of stress-induced cortisol response on the orches-
tration between MB and MF learning in HC but not in PG. These effects remained when controlling for
working memory and IQ. Discussion and Conclusions: We found an abnormal pattern of modulation of
stress on the orchestration between MB and MF learning among PG. Several interpretations and future
research directions are discussed.
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INTRODUCTION

Gambling is a ubiquitous recreational activity worldwide. Despite its recreational facet, for a
small yet significant proportion of gamblers (estimated around 0.1–5.8% worldwide),
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tenacious engagement in gambling results in the develop-
ment of Gambling Disorder (GD), a persistent, excessive and
uncontrollable urge towards gambling despite the looming
negative consequences of this excessive engagement (APA,
2013). GD can be conceived as reflecting (1) an increased
activity within driving paths involved in seeking pleasure,
reward or reduction of stress and negative moods, as well as
overreliance on habit-induced reactive responses and (2) a
decreased self-control (Brand, 2022; Goldstein & Volkow,
2002; Noël, Brevers, & Bechara, 2013). Based on this theo-
retical consideration, two key aspects that characterize GD
are: 1) gambling to escape stress (Buchanan, McMullin,
Baxley, & Weinstock, 2020) and 2) making decisions that are
informed by habit-induced, reactive responses instead of
using a deliberative, goal-directed flexible approach (Everitt
& Robbins, 2005). While these characteristic features of GD
have been studied in isolation, to our knowledge a system-
atic investigation of a possible interaction between the
experience of acute stress and its consequent impact on habit
versus flexible decision-making has not been undertaken in
GD. The aim of this study is to investigate the existence of
this possible interaction. More specifically, the current study
aims to examine stress-induced modulation of the arbitra-
tion between habit-induced, highly reactive decisions versus
deliberative, goal-directed flexible decisions.

Stress represents a major accelerating factor in the
development of addictive disorders (Enoch, 2011), including
GD (Biback & Zack, 2015; Buchanan et al., 2020; Oakes,
Pols, & Lawn, 2019). Stress has a paradoxical impact in GD.
On the one hand recreational elements of gambling activities
and the rewarding experience of gambling engagements are
leveraged by gamblers to cope with stressful life events
(Edgerton, Keough, & Roberts, 2018; Weinstock, Whelan, &
Meyers, 2008), on the other hand consistent gambling
engagement in itself can be a distressing experience (APA,
2013) making gambling a potential stressor (Russell et al.,
2021). From a neurocognitive perspective, recurrent stress
exposure can cause profound changes within neural systems
involved in decision-making (Wirz, Bogdanov, & Schwabe,
2018). Particularly, recurrent exposure to acute stress may
increase one’s tendency to behave in an inflexible habitual
way (Schwabe & Wolf, 2009, 2010, 2011; Seehagen,
Schneider, Rudolph, Ernst, & Zmyj, 2015). Additionally,
uncontrollable stress causes a rapid and dramatic loss of
prefrontal cognitive abilities (e.g., response inhibition,
mental shifting, working memory) (Arnsten, 2009), thus
diminishing self-control (impaired ‘stop now process’,
(Brand, 2022)) and favoring the maladaptive persistence of
behaviors (e.g. gambling) despite being aware of its negative
consequences (i.e. compulsion).

Clinically, inflexible and habitual responses (as opposed
to deliberative and goal-directed responses) inform the de-
cisions undertaken in addictive states like GD (c.f., Wyck-
mans et al., 2019), fueling the persistence of addictive
behaviors like gambling despite the possibility of recurring
negative consequences (e.g., financial losses; Everitt & Rob-
bins, 2005). According to reinforcement learning (RL) the-
ory, such habitual, inflexible responses and the contrary

goal-directed behaviors arise from two parallel learning
systems, Model-Based (MB) and Model-Free (MF), which
differ in their way of updating choice-value during instru-
mental learning (Daw, Niv, & Dayan, 2005, 2011).
According to RL theory, when facing a decision, the
MB-system relies on an internal model of the contingencies
between actions and consequences, which informs the
computations of the expected values for each candidate
decision (Daw, 2018). Thus, MB strategies underlie goal-
directed behavior, as it enables flexible adaptation to the
environment and prospective update of action value in view
of long-term goals (Dolan & Dayan, 2013). Conversely, the
MF-system bypasses these laborious simulations and directly
computes the action-value based on past reward history
(Rummery & Niranjan, 1994; Sutton & Barto, 1998).
Therefore, the MF-system is associated with habitual
behavior as it depends solely on previously learned associ-
ations (Dolan & Dayan, 2013). Despite the advantage gained
by the lowered cognitive burden in MF decision-making
strategies, it comes at the cost of hampered flexibility: if the
contingencies between action and consequences change, the
stored action values become obsolete and lead to outdated
choices (Daw, 2018). Thus, under RL theory, addictive be-
haviors (which occur from excessive reliance on habitual,
reflexive responses coupled with diminished reliance on
deliberative goal-directed systems), arise from the asym-
metrical dynamics between the MF-MB systems wherein
there is an exacerbated MF-system involvement coupled
with a suppressed MB-system involvement underlying the
persistence of the addictive behavior at hand (e.g., Groman,
Massi, Mathias, Lee, & Taylor, 2019). In fact, recent research
undertaken in the field of substance-induced addictions (e.g.,
binge drinking; Doñamayor, Strelchuk, Baek, Banca, &
Voon, 2018) highlights that the presence of such an imbal-
ance between the MF and MB systems acts as a key factor
underlying the perpetuation of the addictive behaviors.
Crucially, recent evidence also suggests that a preclinical
existence of such imbalance could predispose an individual
to develop addictive behaviors (e.g., Chen et al., 2021).
Additionally, evidence from recent research has also repli-
cated these findings with PG (i.e., in the behavioral addiction
of GD; Wyckmans et al., 2019). Wyckmans et al. (2019)
demonstrated a diminished MB-system involvement
coupled with an heightened MF-system involvement in GD
in the Two-step Markov task (Daw, Gershman, Seymour,
Dayan, & Dolan, 2011) that systematically accounts for the
MF/MB strategies in decision-making.

In terms of the impact of stress on MF/MB-systems,
studies indicate that acute stress has a deleterious effect on
MB learning (Otto, Raio, Chiang, Phelps, & Daw, 2013;
Radenbach et al., 2015) which occurs due to the hampered
functioning of the amygdala-dorsal striatum connectivity and
prefrontal cortex, resulting in diminished executive processes
(Wirz et al., 2018). Conversely, stress-induced cortisol release
enhances MF learning (Park, Lee, & Chey, 2017) by
increasing the firing rate of dopaminergic neurons in the
dorsal striatum (Anstrom & Woodward, 2005), a region
involved in habit formation (Everitt & Robbins, 2005, 2016)
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such as those observed in addictive states. Considering the
above evidence, it seems plausible to reason that repeated
exposure to acute stress during gambling might present a risk
factor for the development of GD by favoring MF learning,
thus rendering the resulting behavior resistant to its negative
consequences. Therefore, acute stress experienced from
gambling (Russell et al., 2021), the increased reliance on MF-
systems among PG (Wyckmans et al., 2019), and the
amplification of MF-systems as a function of increased acute
stress (Park et al., 2017), calls for a need to systematically
investigate the effects of acute stress on the MF-system
among PG.

To pursue this line of investigation and understand how
acute stress modulates the arbitration between MF/MB-
systems, computational modelling approaches that augment
the previously used experimental inferential analyses ap-
proaches are needed (e.g., Wyckmans et al., 2019). Tradi-
tionally, MF/MB-systems are studied using the Two-step
Markov task (RL-task; Daw et al., 2011). Experimental ap-
proaches which focus on inferential analyses of the choice
behavior data such as reaction times and state-transition
probabilities from the Two-Step Markov Task do not pro-
vide insights about the latent learning processes in decision-
making that arise from the implementation of MF or MB
strategies. Discerning these latent psychological variables is
crucial to account for the impact of acute stress on the
relative weighing between MF/MB systems. Thus, fitting
behavioral choice data from the Two-Step Markov Task to a
Hybrid-RL 7 parameter model (Daw et al., 2011), wherein
each parameter will allow us to systematically estimate the
learning processes involved during decision-making (Gillan,
Otto, Phelps, & Daw, 2015; Mollick & Kober, 2020), would
appropriately discern the impact of acute stress on the dy-
namics between MF and MB.

The aim of the current study is to systematically inves-
tigate the impact of acute stress on the exacerbation of the
MF-system among PG. We aim to investigate this by fitting
a Hybrid-RL 7-parameter computational model to the
behavioral data obtained from Two-step Markov task, a
novel approach which remains unexplored in this line of
research. Acute stress will be induced with the Socially
Evaluated Cold Pressor Task (SECPT) that requires partic-
ipants to immerse one arm into cold water while being so-
cially observed and videorecorded, a method that robustly
increases laboratory stress reactivity (Schwabe, Haddad, &

Schachinger, 2008), including among PG (Grant & Cham-
berlain, 2019). Based on previous findings we hypothesized
that PG will repeat previously rewarded choices without
accounting for the task structure (Wyckmans et al., 2019).
Thus, we expected to observe a general bias towards MF
learning among PG as compared to healthy controls.
Furthermore, we hypothesized that stress would further in-
crease the activity of the MF-system and suppress the MB-
system among stressed PG as opposed to stressed controls.
Finally, we also accounted for verbal working memory and
abstract reasoning on MB/MF to account for their mediating
effects on the acute stress and MF/MB interaction.

METHODS

Participants

Seventy-three problem gamblers (PG) with a score of 6 or
higher on the South Oaks Gambling Screen (Lesieur &
Blume, 1987) and 75 healthy controls (HC) were recruited.
Only male participants (to avoid the confounding effect of
menstrual cycle on cortisol response to stress; Montero-
López et al., 2018) over 18 and without a history of neuro-
logical or psychiatric diseases were included. We excluded
five participants (two PG and three HC) due to corrupted
cortisol samples, as well as 27 participants (13 PG and
14 HC) who did not meet the success criteria for the RL-
Task (see below), yielding a final sample of 116 participants
(58 PG and 58 HC).

Procedure

The entire procedure lasted two hours (Fig. 1). Remunera-
tion was set at 30V, with up to 10V extra depending on
individual task performance. Participants first underwent a
semi-structured interview assessing demographic charac-
teristics and gambling habits (if applicable). Fluid intelli-
gence was assessed with the nine-item forms of the Raven’s
Standard Progressive Matrices Test (see supplementary
material, Bilker et al., 2012), followed by a working memory
task, the Operation Span Task (OSPAN; see supplementary
material, Unsworth, Heitz, Schrock, & Engle, 2005) and the
RL-task instructions. Before completing the RL-task, half the
participants underwent the SECPT (Schwabe et al., 2008),
during which they immersed their forearm in a basin of cold

Fig. 1. Experimental protocol. After filling out the informed consent form, participants underwent the Raven’s Standard Progressive
Matrices Test (RSPM) and OSPAN task. The first cortisol measurement (C1) was collected 10 min after the arrival. The second (C2) was
collected right after the dual-step Markov Task (RL task) instruction along with the first self-reported evaluation (VAS1). The second VAS
was taken right after the stress induction (SECPT)/control (WPT) procedure, while the third cortisol measurement (C3) was collected
10 min after the procedure. The fourth measurement (C4) was collected right after the Two-Step Markov Task (RL task). Participants

finished by filling out several questionnaires
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water (3 8C) for three minutes while being closely observed
by an experimenter and videorecorded. The other half un-
derwent the control procedure (Warm Pressor Task; WPT),
during which the water was at ambient temperature and no
camera or observation was used. In total, 60 and 56 par-
ticipants underwent the SECPT (30 HC and 30 PG) and
the WPT (28 HC and 28 PG), respectively. Participants
finished the session by filling out clinical questionnaires (see
supplementary material).

Measures

Stress response assessment. Participants rated their desire to
gamble, feeling of stress, and pain on visual analog scales
(VAS; ranging from 0 to 10) before and after the stress in-
duction procedure. Objective stress response measures were
taken in the form of salivary cortisol levels, collected 10 min
after arrival (C1), immediately following the RL-task in-
structions (C2), 10 min post-stress induction (C3), and after
the RL-task (C4). C1 and C3 were delayed by 10 min as
cortisol levels are expected to peak 10 min after stress onset
(McRae et al., 2006). Salivary cortisol analysis procedure is
described in the supplementary material.

Two-Step Markov Task. All participants received extensive
instructions for the Two-Step Markov Task (RL-task; Daw
et al., 2011; Otto, Raio, et al., 2013; Wyckmans et al., 2019)
and completed 10 practice trials at the end of which they
answered three instruction-related questions. The in-
structions were reiterated in case of incorrect responses.
Participants subsequently performed 200 trials of the RL-
task (Fig. 2A). During the first step, they were required to
choose between two fractal images displayed alongside each
other on a black background. Each image commonly (70%)
or rarely (30%) led to one of the two second-step stages
(Fig. 2C). Participants were informed that these probabilities

would stay fixed. During the second step, they had to choose
between two fractal images displayed alongside each other
on a colored background (green or blue, depending on their
first-step choice). Reward probabilities for each fractal image
varied in function of background color. Participants were
informed that these second-step probabilities would slowly
fluctuate as the task progressed (following a Gaussian
Random Walk with boundaries fixed at 0.25 and 0.75;
SD 5 0.025; Fig. 2B) to ensure continual exploration. After
the second step, a 1s feedback slide was displayed to indicate
whether the trial was rewarded (a 20c coin) or not (“0”).
Participants had 3s to indicate their preference by pressing
the letter “E” (left image) or “I” (right image) on an
AZERTY keyboard. Inter-stage and inter-trial intervals las-
ted 1s each. Before data analyses, we automatically excluded
participants who failed to answer within 3s more than 20
times, who picked the same first-step choice in 95% of the
trials, or who repeated previously rewarded second-step
responses at a rate lower than 50%. MB and MF algorithms
predict different observable choice patterns during subse-
quent 2-step trials (Fig. 2D). Under MF strategy, decisions
will be reinforced solely depending on the outcome of the
previous trial. Conversely, choice-value will update
depending on the interaction between previous outcomes
and transitions under MB strategy.

Statistical analyses

Data cleaning and statistical analyses were performed using
RStudio (v1.4.1103) and SPSS (v28). The sample size was
estimated based on previous studies (Sebold et al., 2014;
Voon et al., 2015). Accordingly, we aimed at finding a me-
dium-sized difference between HC and PG with 80% power
and 95% confidence, which required 64 participants per
group.

Pre- and post-procedure cortisol concentrations were
computed by averaging the first two and last two measures,

Fig. 2. A. Two-step decision task. (First step) Participants chose between the two images, leading preferentially to a green or a blue screen,
according to fixed probabilities. (Second step) Subjects chose between the two images linked to probabilities to win money. Those prob-
abilities slowly changed with time and differed according to the background color. B. Second step’s changes in the probability of reward.

C. Trial’s design. D. Theoretical decision pattern according to a pure MF strategy and to a pure MB strategy
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respectively. Results were log-transformed because of the
skewed nature of their distribution (Petzold, Plessow,
Goschke, & Kirschbaum, 2010). The influence of the
SECPT/WPT procedures on cortisol concentrations and
subjective ratings were assessed through repeated measures
MANOVA. Our total sample was split into two groups
depending on their cortisol response. Participants with a
cortisol increase equal to or higher than 1.5 nmol L�1 (N5 25)
were considered cortisol responders (Miller, Plessow,
Kirschbaum, & Stalder, 2013).

We fitted choice behavior on the RL-task to a
7-parameter hybrid reinforcement learning algorithm (Daw
et al., 2011) with the hBayesDM package (Ahn, Haines, &
Zhang, 2017). Four MCMC chains of 6,000 samples each
were run, with the first 3,000 samples as warm-up (see
supplementary material). We mainly focused our analyses
on the ω-parameter, which indicates the relative contribu-
tion of MB learning over MF learning during task comple-
tion. A between-subject MANOVA was used to assess the
influence of stress group (Stressed vs. Non-stressed), diag-
nostic group (PG vs. HC), and their interaction on these
7 parameters. Multiple regression was performed to assess
the continuous effect of cortisol increase, diagnostic group,
and their interaction on the ω-parameter.

Normality was assessed by dividing the skewness and
excess kurtosis by their respective standard deviation. Dis-
tributions with both scores [-3.29; 3.29] were considered
normal (Kim, 2013). The continuous variables were stan-
dardized before each regression. Demographic and clinical
variables from both groups were compared with Mann-
Whitney U or Welch t-tests. To avoid the confounding effect
of outliers in regressions, scores that differed over 3 times
the MAD from the median (Leys, Bernard, & Licata, 2013)
were removed before each regression.

Ethics

Participants were recruited through advertisement and gave
written informed consent to be part of the experiment. The
experiment was approved by the C.H.U. Brugmann Ethics
Committee (n8 OM 026) and performed according to the
Declaration of Helsinki.

RESULTS

Sample characteristics

Our final sample consisted of 116 participants, 58 HC, and
58 PG. Both groups were matched for age, gender (only
males), and education. Table 1 depicts the demographic and
clinical variables of PG and HC as well as between-group
comparisons and Cronbach’s alpha for each questionnaire.
PG displayed significantly lower scores on working memory
and fluid intelligence assessments than HC, as well as
significantly more psychiatric comorbidities, state-anxiety,
depressive symptoms, and reward sensitivity, which were
included as covariates in separate analyses (see supplemen-
tary material).

A repeated measures MANOVA was performed to
evaluate the effect of stress induction procedure (between-
subject; SECPT vs. WPT), time (within-subject; before vs.
after the procedure) and their interaction on salivary cortisol
concentrations, as well as self-reported stress, desire to
gamble (craving), and pain measures (Fig. 3). The interac-
tion effect on the combined dependent variables was sig-
nificant (F (4, 111) 5 7.49, P < 0.001; Wilks’ Λ 5 0.73,
η2p 5 0.28). Univariate analyses showed a significant effect
of the interaction for each dependent variable (Table 2),
indicating a higher increase in cortisol concentration and
subjective ratings among participants undergoing the
SECPT than the WPT. No group effect (PG vs. HC) was
found on pre- to post-procedure differences in cortisol
concentration and subjective ratings (F (4, 111) 5 0.96,
P 5 0.43; Wilks’ Λ 5 0.97, η2p 5 0.03).

We divided our sample into two groups according to
their cortisol response: participants with a cortisol elevation
higher than 1.5 nmol L�1 were considered as demonstrating
a cortisol response (Miller et al., 2013). The proportion of
PG and HC did not significantly differ between the re-
sponders (10 PG and 15 HC) and the non-responders
(48 PG and 43 HC) groups (X2 (1) 5 1.28, P 5 0.26). The
responder group contained significantly more participants
who underwent the SECPT than the WPT (X2 (1) 5 5.25,
P 5 0.02).

Analyses of choice behavior

MB and MF algorithms predict differential probabilities of
repeating the previous trial’s first step’s choice depending on
its outcome and transition. These differential probabilities
are illustrated in Fig. 4.

A between-subject MANOVA (Fig. 5) was performed to
evaluate the effects of diagnostic group (PG vs. HC), stress
response (responders vs. non-responders), and their inter-
action on each computational parameter. Results indicated a
significant interaction effect on the combined dependent
variables (F (7, 106) 5 4.23, P < 0.001; Wilks’ Λ 5 0.78,
η2p 5 0.22). Univariates analyses (displayed in supplemen-
tary table 1) indicated a significant effect of the interaction
on the ω-parameter (F (1, 112) 5 7.79, P 5 0.006,
η2p 5 0.07). Simple effect analyses with Bonferroni correc-
tions showed that the ω-parameter was significantly lower
among responders HC than non-responders HC (F (1, 56)
5 12.90, P < 0.01, η2p 5 0.19), but no significant difference
was observed between responder and non-responder PG
(F (1, 56) 5 0.22, P 5 0.98, η2p 5 0.004). The ω-parameter
was significantly lower among PG than HC in the non-
responder group (F (1, 89)5 9.32, P5 0.01, η2p 5 0.10), but
not in the responder group (F (1, 23) 5 2.92, P 5 0.34,
η2p 5 0.11). In six additional ANCOVA, we added the
OSPAN, Raven, SCL90R, BDI, STAI-YA, and RS scores
as covariables. The interaction effect remained significant
(P < 0.05, see supplementary table 2).

Interestingly, the interaction also showed a significant
effect on the ρ-parameter, (F (1,112) 5 8.78, P 5 0.004,
η2p 5 0.07), an index quantifying perseveration. It was
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Table 1. Descriptive scores of each clinical variable and their between-subject difference. Clinical variables assessed alcohol use disorder
symptoms (AUDIT), gambling disorder symptoms (SOGS), number of DSM items (DSM), working memory performances (OSPAN),

Raven score, psychiatric comorbidities (SCL90R), depressive symptoms (BDI), positive affects (PANAS pos), negative affects (PANAS neg),
state-anxiety (STAI-YA), trait-anxiety (STAI-YB), adverse live events (SRRS), sensibility to punishment (PS), sensibility to reward (RS),
routine tendencies (CoH R), automatism tendencies (CoH A), negative urgency (NU), positive urgency (PU), lack of premeditation (LoPr),
lack of perseverance (LoPe), and sensation seeking (SS). Groups are compared with Welsh’s t-tests or Mann-Whitney U according to the

distribution of their scores. Cronbach’s alphas are displayed when applicable. Significant group differences are displayed in bold

Variable PG (n 5 58) HC (n 5 58) Test Alpha

Age 29.22 (8.39) | Mdn 5 28 31.16 (9.86) | Mdn 5 28.5 U (116) 5 1,498.5, P 5 0.31 N/A
Study Level 13.88 (2.85) | Mdn 5 15 14.66 (2.4) | Mdn 5 15 U (115) 5 1,400, P 5 0.14 N/A
AUDIT 8.87 (7.75) | Mdn 5 8 6.34 (4.49) | Mdn 5 5 U (114) 5 1748, P 5 0.21 0.86
SOGS 9.05 (2.63) | Mdn 5 8.5 0.36 (1.1) | Mdn 5 0 U(79) 5 1,624, P < 0.001 0.86
DSM 3.97 (2.62) | Mdn 5 4 0.11 (0.32) | Mdn 5 0 U(90) 5 1881.5, P < 0.001 0.88
Smoker (Y|N) 22 | 36 19 | 39 X (1) 5 0.34, P 5 0.56 N/A
OSPAN 0.76 (0.13) | Mdn 5 0.77 0.8 (0.16) | Mdn 5 0.85 U(116) 5 1,207, P 5 0.01 N/A
Raven 4.5 (1.88) | Mdn 5 5 5.33 (1.94) | Mdn 5 6 U(116) 5 1,214.5, P 5 0.01 N/A
SCL90R 55.67 (49.01) | Mdn 5 44 35.1 (32.54) | Mdn 5 30.5 U(116) 5 2,119.5, P 5 0.02 0.97
BDI 6.28 (5.94) | Mdn 5 5 3.71 (4.12) | Mdn 5 2 U(116) 5 2090.5, P 5 0.02 0.88
PANAS pos 34.31 (7.8) | Mdn 5 34 36.21 (6.27) | Mdn 5 37 t (108.98) 5 1.44, P 5 0.15 0.85
PANAS neg 20.6 (8.25) | Mdn 5 18 18.1 (6.85) | Mdn 5 16.5 U (116) 5 1970, P 5 0.11 0.89
STAI-YA 36.54 (10.95) | Mdn 5 35 31.03 (8.83) | Mdn 5 29 t(107.39) 5 2.97, P 5 0.004 0.90
STAI-YB 42.36 (12.3) | Mdn 5 41.5 39.72 (11.18) | Mdn 5 38.5 t (110.12) 5 1.2, P 5 0.24 0.91
SRRS 244.96 (169.44) | Mdn 5 201 242.58 (206.81) | Mdn 5 184 U (115) 5 1,692.5, P 5 0.58 N/A
PS 41.84 (11.54) | Mdn 5 41 39.26 (9.46) | Mdn 5 39 t (108.08) 5 1.31, P 5 0.19 0.90
RS 43.98 (10.95) | Mdn 5 44 39 (7.89) | Mdn 5 40 U(116) 5 2,127, P 5 0.01 0.88
CoH R 52.44 (12.69) | Mdn 5 53 45.77 (12.05) | Mdn 5 45 t (31.46) 5 1.63, P 5 0.11 0.86
CoH A 33.94 (12.14) | Mdn 5 34.5 27 (9.42) | Mdn 5 22 t (27.28) 5 1.91, P 5 0.07 0.88
NU 8.76 (3.35) | Mdn 5 9 7.67 (3.2) | Mdn 5 8 t (113.76) 5 1.78, P 5 0.08 0.85
PU 10.17 (3.01) | Mdn 5 10.5 9.9 (2.59) | Mdn 5 10 t (111.48) 5 0.53, P 5 0.60 0.75
LoPr 9.12 (3.5) | Mdn 5 8 8.47 (3.13) | Mdn 5 8 U (116) 5 1828, P 5 0.42 0.88
LoPe 9.24 (3.63) | Mdn 5 9 9.07 (3.4) | Mdn 5 8 t (113.51) 5 0.26, P 5 0.79 0.92
SS 10.38 (3.28) | Mdn 5 11 9.78 (3.5) | Mdn 5 10 t (113.51) 5 0.96, P 5 0.34 0.86

Fig. 3. Cortisol and self-reported measures for the group that underwent the cold-pressor task (SECPT) and the Warm-Pressor Task (WPT).
Graphs show mean values ±SE. P-values of the effect of interaction between time and procedure are reported p P < 0.05, pp P < 0.01, ppp P < 0.001
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significantly lower among PG than HC in the stressed group
(F (1,23) 5 7.47, P 5 0.047, η2p 5 0.25), but not in the non-
responder group (F (1,89) 5 0.003, P > 0.99, η2p < 0.001).
Additionally, the ρ-parameter was significantly higher
among responder than non-responder HC (F (1,56) 5 8.51,
P 5 0.02, η2p 5 0.13), but no significant difference was
observed between responder and non-responder PG
(F (1,56) 5 1.70, P 5 0.59, η2p 5 0.03).

The ω-parameter was regressed on the diagnostic group
(DG; dummy coded: PG 5 -1 vs HC 5 1), cortisol increase
(dCort; continuous), and their interaction (Fig. 6). The model
was significant (F (3,93) 5 4.37, P < 0.01, R2 5 0.12), with a
significant dCortpDG interaction (β 5 -0.56 (0.19), P5 0.004)
indicating that stress was more deleterious on the ω-parameter
among HC than PG. Bayesian Kendall’s correlations indicated

strong evidence in favor of a negative correlation between the
ω-parameter and dCort among HC (ρ(58) 5 -0.35, BF 5
15.1), and moderate evidence against this correlation among
PG (ρ(58) 5 -0.05, BF 5 0.32). In six additional full factorial
regressions, we added the OSPAN, Raven, SCL90R, BDI,
STAI-YA, and RS scores as predictors. The interaction
dCortpDG remained significant (P < 0.05) in each regression,
and no additional predictor showed a significant main effect or
interaction with DG and dCort (P > 0.05).

DISCUSSION AND CONCLUSIONS

The objective of the present study was to investigate how
MB and MF were orchestrated in GD according to a hybrid-

Table 2.Mean (sd) cortisol concentrations (not log-transformed for interpretability) and self-reported measures, before and after the pressor
task. Results of the univariate interactions between time and procedure type are displayed

Cold Pressor Task (n 5 60) Warm Pressor Task (n 5 58) Univariate results

Before procedure After procedure Before procedure After procedure Timepprocedure

Cortisol concentration
(nmol l�1)

5.94 (4.11) 7.02 (6.70) 7.63 (5.38) 6.68 (6.53) F (1,114) 5 9.41, P 5 0.003,
η2p 5 0.08

Stress (/10) 1.88 (1.91) 2.32 (2.35) 2.30 (2.48) 1.76 (2.70) F (1, 114) 5 8.86, P 5 0.004,
η2p 5 0.07

Pain (/10) 0.95 (1.53) 2.53 (2.90) 0.76 (1.78) 0.78 (1.76) F (1, 114) 5 17.69, P < 0.001,
η2p 5 0.13

Craving (/10) 3.32 (3.11) 4.12 (3.20) 4.07 (3.4) 3.79 (3.25) F (1, 114) 5 10.61, P 5 0.001,
η2p 5 0.09

Fig. 4. Probability to maintain a first step choice in problem gamblers (PG) and healthy controls (HC) in trial following: a reward and a
common transition (PRC), a reward and a rare transition (PRR), a loss and a common transition (PUC), as well as a loss and a rare

transition (PUR). Graphs show mean values ±2 SE
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RL 7-parameter computational model and whether PG were
more sensitive than HC to the deleterious influence of stress
on this dynamic. This is the first study to our knowledge that
investigated the impact of stress on decision making in PG
by employing a computational modelling approach that goes
beyond the experimental approaches used in previous
studies (e.g., Wyckmans et al., 2019).

Results indicated that the two groups had comparable
baseline levels and stressor-induced elevation of salivary
cortisol. A deleterious effect of enhanced cortisol level on
MB/MF orchestration, characterized as a decrease of MB
learning relative to MF learning, was found in HC but not in
PG. Among non-stressed participants, results indicated that
the balance between MB and MF contributions, formalized

Fig. 5. Mean of the computational parameters among responder pathological gamblers (PG S), non-responder problem gamblers (PG NS),
responder controls (HC S), and non-responder controls (HC NS). Graphs show mean values ±2 SE

Fig. 6. Effect of the cortisol increase on ω-parameter in problem gamblers (PG) and healthy controls (HC), as determined by the
computational model. Each continuous score was standardized, 95% IC is displayed around each regression line
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by the ω-parameter, was biased towards MF learning in PG.
This pattern held even while controlling for the lower verbal
working memory performance found in PG. These results
not only aligned with previous study with PG and MF/MB
(Wyckmans et al., 2019) but also converged with similar
studies conducted in subjects with substance-use disorders
(Chen et al., 2021; Doñamayor et al., 2018; Sebold et al.,
2017; Voon et al., 2015). Thus, these results support the idea
that the inflexible repeated behaviors observed in PG might
be underpinned by a greater inclination towards a habitual
model of decision-making (Lucantonio, Caprioli, &
Schoenbaum, 2014). This tendency indicates a higher reli-
ance towards MF-strategies, wherein choices are based
essentially upon past rewards, with little consideration for
changes in contingency between response and consequence.

Despite similar objective (cortisol) and subjective (rat-
ings) responses to stress between the PG and HC groups,
cortisol response was only associated with changes on the
ω-parameter among HC (Otto, Raio et al., 2013; Radenbach
et al., 2015). Bayesian analyses further supported that the
stress-induced cortisol increase was not associated with
modulations in MB/MF orchestration in PG. A first expla-
nation could be that the overall poorer working memory
performance among PG and their general bias towards MF
learning might explain the absence of a deleterious effect of
the acute stressor on the MB/MF orchestration (i.e., floor
effect). Indeed, evidence suggests that MB is partially sup-
ported by working memory (Culbreth, Westbrook, Daw,
Botvinick, & Barch, 2016), as it involves the learning of the
action-outcome-transition contingencies and the planning
of the following choices (Otto, Gershman, Markman, &
Daw, 2013). Accordingly, the shift from MB towards MF
learning among HC following stress might be the conse-
quence of a stress-induced decrease in working memory
performance (Wirz et al., 2018). Hence, the cortisol increase
might have limited influence on PG’s already-impaired
working memory, thereby restricting the modulation by
stress on MB/MF orchestration in this population. However,
group differences in the stress-induced modulation of
learning strategies remained significant even when ac-
counting for the effect of working memory performances,
which suggests that this interpretation at best partially
explain our results.

Another interpretation would be that the stress induced
in the current study might have been insufficient among PG
to elicit a behavioral adaptation during the Two-Step Mar-
kov Task. Despite similar cortisol increases across HC and
PG, the latter are accustomed to functioning in highly
stressful environments (Buchanan et al., 2020), which could
be the cause of a persistent shift from goal-directed to
habitual behavior (Dias-Ferreira et al., 2009). While we
found no association between the ω-parameter and the so-
cial readjustment rating scale (SRRS; Holmes & Rahe, 1967),
the latter does not account for stressful events specific to PG,
such as financial preoccupation (Langham et al., 2015; Li,
Browne, Rawat, Langham, & Rockloff, 2017), meaning that
PG chronic stress might have been underestimated. Specific
measures of chronic stress are therefore needed to further

validate the influence of chronic stress on the behavioral
response to acute stress in GD.

Additionally, interoception, which critically contributes
to subjective emotional experience by modulating the sub-
jective strength of bodily responses (i.e., the ability to
perceive internal state) might have been abnormally inac-
curate in PG, as a recent study suggests (Moccia et al., 2021).
Also, in line with impaired interoception, alexithymic ten-
dencies (e.g., difficulty in identifying feelings) are greater in
PG than in healthy participants (Noël et al., 2018). This lack
of accurate perception of internal bodily states related to
emotions, such as the somatic experience of stress, might
contribute to downplaying the influence of stress-induction
on diverse behavioral responses among PG, including MF/
MB orchestration. Of note, the visual analog scales used to
score perceived stress was not meant to adequately capture
interoceptive processing. A multidomain, multidimensional
approach to interoception including cardiac, gastric, and
respiratory assessments should be preferred in future studies
to examine the role of this function in the association be-
tween acute stress and reinforcement learning in PG (Mur-
phy, Catmur, & Bird, 2018; Wang et al., 2019).

At the theoretical level, low working (Albein-Urios, Mar-
tinez-González, Lozano, & Clark, 2012; Brevers et al., 2012)
and impaired model-based strategy (Wyckmans et al., 2019)
found in PG may reflect the expression of two neurocognitive
pathways driving maladaptive and persistent gambling be-
haviors, i.e. a “stop now” process mediated by the dorsolateral
prefrontal cortex, and automatic responses to “must do”
stimuli mediated by the dorsal striatum (Brand, 2022). An
exciting line of future research would be to examine how a
third system, the “feel better” pathway (i.e. positive and
negative reinforcement) mediated by the ventral striatum,
interacts with the “stop now” and “must do” processes to
promote the escalation of gambling behaviors (Brand, 2022)
see also (Noël et al., 2013). Thus, by considering two critical
pathways of gambling disorder, the present study represents
the first step toward a more nuanced multidimensional neu-
rocognitive model of behavioral addiction.

Exploratory analyses showed that alongside the
ω-parameter, the perseveration parameter (the maintenance
of a choice irrespective of the previous outcomes and tran-
sitions) was higher among HC who showed a cortisol in-
crease after the stress-inducing procedure. Stress-induced
perseveration has never been reported and only one study
found overall higher perseveration in binge-eating disorder
and interpreted it as a lower involvement of cognitive con-
trol processes (Voon et al., 2015). While the ρ-parameter did
not significantly differ between HC and PG, exacerbated
perseveration among HC following acute stress might result
from the deleterious effect of cortisol increase on the pre-
frontal cortex (Wirz et al., 2018).

As computational modelling allows us to quantify inter-
individual differences in mechanisms underlying addiction
development and maintenance, they hold great promises to
promote targeted clinical interventions (Heinz et al., 2017).
For instance, contingency management therapies, which are
based on the principles of reinforcement that provide people
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tangible rewards (e.g., money) for evidence of behavioral
change (e.g., maintaining abstinence), show a high level of
efficacy in substance use disorders (Davis et al., 2016; Kim &
Hodgins, 2018; Mantzari et al., 2015), might specifically help
PG displaying low MB capacities, as MB strategy use is
increased when higher incentives are offered (Kool, Gersh-
man, & Cushman, 2017; Patzelt, Kool, Millner, & Gershman,
2019). However, clinical trials in PG are underway, and the
beneficial impact of contingency management on treatment
attendance and gambling abstinence needs to be confirmed
(Christensen, Witcher, Hudson-Breen, & Ofori-Dei, 2018).
Episodic future thinking training represents another prom-
ising way to reduce addiction severity (Snider, LaConte, &
Bickel, 2016). As outlined, PG encounter difficulties in
mentally simulating future events in a vivid manner (Noël,
Saeremans, Kornreich, Jaafari, & D’Argembeau, 2017).
Episodic foresight might support model-based control in the
sense that the agent prospectively evaluates actions based on
their potential outcomes. However, little is known about the
relationship between learning an internal model to prospec-
tively make decisions and the capacity to mentally navigate the
future. Finally, several brain stimulation techniques (tDCS,
rTMS) might target critical neural networks involved in MB/
MF orchestration, thus representing a promising way to treat
gambling addiction (Smittenaar, FitzGerald, Romei,Wright, &
Dolan, 2013; Weissengruber, Lee, O’Doherty, & Ruff, 2019).

The present study is not exempt from limitations. First,
only a third of participants undergoing the SECPT showed a
cortisol increase, lowering our power to observe small
cortisol-induced behavioral changes. Two reasons for this low
response rate compared to the initial validation study
(Schwabe et al., 2008) can be put forward, our participants
were older, and the experimenter in charge of the social
assessment was not of the opposite sex. Alternative but longer
stressors like the Trier Social Stress Test (Foley & Kirsch-
baum, 2010) or the Maastricht Acute Stress Test (Smeets, van
Ruitenbeek, Hartogsveld, & Quaedflieg, 2019) generating a
higher cortisol elevation may be recommended for further
investigation, but only if the longer duration is not an issue.
Nevertheless, both the HC and the PG groups displayed
similar levels of the cortisol stress response, and the influence
of acute stress on HC’s decisional processes was consistent
with the literature (Otto, Raio et al., 2013; Radenbach et al.,
2015). Additionally, false beliefs about action and reward
contingencies prevalent in GD, such as the hot-hand effect or
gambler’s fallacy (Joukhador, Blaszczynski, & Maccallum,
2004), have not been taken into account. As MB and MF are
high-level processes, emerging from many sub-computations
(Collins & Cockburn, 2020; Daw, 2018), these alternative
decision strategies could have severely biased our strictly
dichotomized behavioral assessment (Mohr et al., 2018).
Further iterations of this paradigm in GD should therefore
control for these false beliefs and assess how they might be
related to weakened MB learning. Finally, we focused only on
males in the present research, primarily because we aimed to
discern the effects of experimentally induced stress on cortisol
without other physiological confounds, since the cortisol
response to stress among females remains susceptible to

variations across the phases of their menstrual (Kirschbaum,
Wüst, & Hellhammer, 1992; Montero-López et al., 2018;
Ozgocer, Ucar, & Yildiz, 2017). However, examination of
reinforcement learning strategies in female PGs is warranted,
particularly due to the finding that the phase of the menstrual
cycle modulates reward-related neural function in females
(Dreher et al., 2007). For instance, a relationship among
ovarian hormones, negative mood, and gambling behavior
(e.g., ovulation is accompanied by riskier gambling behaviors)
has been recently reported (Joyce et al., 2019). Future research
should investigate how physiological stress, for instance, in
response to a social stressor across the female menstrual cycle,
impacts model-based and model-free evaluations. This line of
research is all the more urgent as the study of female-specific
factors in behavioral addiction remains understudied (Joyce,
Good, Tibbo, Brown, & Steward, 2021).

To summarize, the present study adds evidence towards
the hypothesis that GD includes a compulsive component
with a propensity towards inflexible habits formation when
facing new decisions, arising from a bias towards MF con-
trol. PG’s resistance to acute stress might be caused by
several non-exclusive factors, namely low working-memory
capacities, high chronic stress, and deleterious interoceptive
accuracy. Despite a normal cortisol response to stress, we
found an abnormal pattern of the modulation of stress on
the relative weighing of goal-directed and habitual action
strategies in GD.
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